

December 10, 2015

Los Angeles Fire Department Underground Storage Tank – Enforcement Unit 200 North Main Street, Room 1700 Los Angeles, California 90012

Re: Groundwater Assessment Results, Former Underground Storage Tank Site, 12870 Panama Street, Los Angeles, California 90066

To Whom It May Concern:

Alta Environmental (Alta) submits this letter-report to provide a brief summary of the groundwater analytical results at the subject site. The Site is an approximately 2.15-acre property located within a mixed commercial and residential area of Los Angeles, California. Two subsurface hydraulic lifts and one 250-gallon waste oil UST were formerly located within a 1,424 square-foot facilities maintenance building located along the southeastern property boundary. The UST and the two hydraulic lifts were removed and properly disposed under City of Los Angeles Fire Department (LAFD) oversight. Following UST removal, soils impacted by Total Petroleum Hydrocarbons (TPH) were overexcavated to 10 feet below ground surface (bgs), and on April 1, 1996, a no further action finding was later issued by the LAFD.

As indicated on the attached figure, groundwater samples were recently collected from several borings drilled at locations upgradient and downgradient of the former UST area. The borings were drilled into the groundwater utilizing both hand augering and direct-push drilling methods. Upon reaching groundwater, a temporary well screen was advanced into the formation to facilitate the collection of groundwater samples. The samples were submitted to a state-certified laboratory for analysis of TPH as gasoline (TPH-g), diesel (TPH-d), and waste oil (TPH-o) by EPA Method 8015M and for volatile organic compounds (VOCs) by EPA Method 8260B.

The distribution of TPH concentrations are provided in the attached Figure. Tabulated summaries of the VOC and TPH results are provided in Tables 1 and 2, attached. The laboratory reports of the groundwater samples are also attached. A summary of the groundwater investigation results are as follows:

- Groundwater was encountered at approximately 12 to 13.5 feet bgs.
- Concentrations of TPH-d were detected in the groundwater samples, ranging up to 1,500 micrograms per liters (µg/L) at Boring B5.
- Concentrations of TPH-o were also detected in the groundwater samples, ranging up to 3,800 µg/L at Boring B14.
- No concentrations of TPH-g were detected.
- Except for a trace (J-flag) concentrations of 2-butanone and carbon disulfide (also detected in the laboratory method blank sample) from Borings B5 and B14, no VOCs in groundwater samples were detected.

Please review the enclosed analytical data and advise on further action. We can be reached at 562-495-5777 to discuss. Your prompt response will be greatly appreciated.

Alta Environmental

Respectfully submitted by:

. Rilenon

Steven R. Ridenour, PG Senior Geologist III

FESSIO MICHAEL 4 CASSIDY HH H No. 6281 13 Mike Cassidy EXP.3 PG 6281, CHG 580 OF CA Vice President - Site Assessment and Remediation Branch Manager – Irvine Office

Attachments:

Figure – Detail View: TPH Concentrations in Groundwater Tables 1 and 2 Laboratory Analytical Report of Groundwater Samples

TABLE 1 Water Sample Results for VOCs Panama Street - Additional Site Assessment 12870 Panama Street Los Angeles, California

		Sample ID:	B5	B13	B14	B15	B17	B18	B19
VOCs by		Date:	8/6/2015	9/24/2015	9/24/2015	9/24/2015	9/24/2015	9/24/2015	9/24/2015
EPA Method 8260B in Water	MDL (µg/L):	RL (µg/L):	NID		VOC	Concentration	(µg/L)		
Acetone	10	20	ND	ND	ND	ND	ND	ND	ND
Benzene Bromobenzene	0.14	0.5	ND	ND	ND	ND ND	ND	ND ND	ND
Bromochloromethane	0.48	1	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.21	1	ND	ND	ND	ND	ND	ND	ND
Bromoform	0.5	1	ND	ND	ND	ND	ND	ND	ND
Bromomethane	3.9	10	ND	ND	ND	ND	ND	ND	ND
2-Butanone	2.2	10	4.8J	ND	ND	ND	ND	ND	ND
n-Butylbenzene	0.23	1	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	0.25	1	ND	ND	ND	ND	ND	ND	ND
	0.28	10	ND	ND	0.44.LB	ND	ND	ND	ND
Carbon Tetrachloride	0.23	0.5	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.17	1	ND	ND	ND	ND	ND	ND	ND
Chloroethane	2.3	5	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.46	1	ND	ND	ND	ND	ND	ND	ND
Chloromethane	1.8	10	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	0.24	1	ND	ND	ND	ND	ND	ND	ND
4-Chiorotoluene	0.13	1	ND	ND	ND	ND	ND	ND	
1.2-Dibromo-3-Chloropropane	1.2	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.36	1	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	0.46	1	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.46	1	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0.4	1	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.43	1	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.46	1	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane	0.28	0.5	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.43	1	ND	ND	ND	ND	ND	ND	ND
c-1,2-Dichloroethene	0.48	1	ND	ND	ND	ND	ND	ND	ND
t-1,2-Dichloroethene	0.37	1	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.42	1	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	0.3	1	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	0.36	1	ND	ND	ND	ND	ND	ND	ND
c-1 3-Dichloropropene	0.46	0.5	ND	ND	ND	ND	ND	ND	ND
t-1.3-Dichloropropene	0.25	0.5	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.14	1	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	2.1	10	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	0.58	1	ND	ND	ND	ND	ND	ND	ND
p-lsopropyltoluene	0.16	1	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	0.64	10	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	4.4	10	ND	ND	ND	ND	ND	ND	
n-Propylbenzene	0.17	1	ND	ND	ND	ND	ND	ND	ND
Styrene	0.17	1	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	0.4	1	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.41	1	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.39	1	ND	ND	ND	ND	ND	ND	ND
Toluene	0.24	1	ND	ND	ND	ND	ND	ND	ND
1,2,3-1 richlorobenzene	0.51	1	ND	ND	ND	ND ND	ND	ND ND	ND
1.1.1-Trichloroethane	0.3	1	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.78	10	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.38	1	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.37	1	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	1.7	10	ND	ND	ND	ND	ND	ND	ND
1,2,3- I richloropropane	0.64	5	ND	ND	ND DIV	ND	ND ND	ND	ND
1,2,4-Trimethylbenzene	0.36	1	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	2.8	10	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.3	0.5	ND	ND	ND	ND	ND	ND	ND
p/m-Xylene	0.3	1	ND	ND	ND	ND	ND	ND	ND
o-Xylene	0.23	1	ND	ND	ND	ND	ND	ND	ND
Methyl-t-Butyl Ether (MTBE)	0.31	1	ND	ND	ND	ND	ND	ND	ND
I ert-Butyl Alcohol (IBA)	4.6	10	ND	ND	ND DIV	ND	ND ND	ND	ND
Ethyl-t-Butyl Ether (ETRE)	0.33	2		ND	ND		ND	ND	
Tert-Amyl-Methyl Ether (TAME)	0.22	2	ND	ND	ND	ND	ND	ND	ND
Ethanol	50	100	ND	ND	ND	ND	ND	ND	ND
	Dil	ution Factor:	1	1	1	1	1	1	1

NOTES:

VOC = Volatile Organic Compound

MDL = Method Detection Limit

RL = Reporting Limit

MCLs = california Department of Public Health Maximum Contaminant Levels, Updated July 2014 ND = Indicated constituents not detected at or above the MDL J = Analyte detected; however, result is an estimated value between the MDL and RL.

µg/L = micrograms per liter

B = Analyte was present in the associated method blank

- = Not Applicable
 NE = No MCL Established

TABLE 2Water Sample Results for TPHPanama Street - Additional Site Assessment12870 Panama StreetLos Angeles, California

TPHcc by EPA Method 8015M in Water							
Sample ID	Sample Date	TPH-GRO (C6-C10) (ug/L)	TPH-DRO (C10-C22) (ug/L)	TPH-ORO (C23+) (ug/L)			
	MDL (ug/L):	48	7.7-15	51-100			
	RL (µg/L)	50	48-96	240-480			
B5	8/6/2015	ND	1,500	190J			
B13	9/24/2015	ND	ND	ND			
B14	9/24/2015	ND	530	3800			
B15	9/24/2015	ND	15J	ND			
B17	9/24/2015	ND	ND	ND			
B18	9/24/2015	ND	ND	ND			
B19	9/24/2015	ND	9.4J	ND			

NOTES:

ND = Indicates constituents not detected above the PQL

MDL = Method Detection Limit

RL = Reporting Limit

TPH-GRO = total petroleum hydrocarbons as gasoline range organics

TPH-DRO = total petroleum hydrocarbons as diesel range organics

TPH-ORO = total petroleum hydrocarbons as oil range organics

ug/L = micrograms per liter

J = Analyte detected; result is an estimated value between the MDL and RL

WORK ORDER NUMBER: 15-08-0383

Calscience

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Alta Environmental Client Project Name: 12870 Panama Street / MCGU-15-5422 Attention: Steve Ridenour 3777 Long Beach Blvd., Annex Building Long Beach, CA 90802-3335

Vikos Patel

Approved for release on 08/20/2015 by: Vikas Patel Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

ResultLink)

Email your PM >

🛟 eurofins

Calscience

Contents

Client Pro Work Ord	bject Name: ler Number:	12870 Panama Street / MCGU-15-5422 15-08-0383	
1	Work Or	der Narrative	3
2	Detectio	ns Summary	4
3	Client Sa 3.1 EPA 3.2 EPA 3.3 EPA 3.4 EPA	ample Data	5 5 6 7 8
4	Quality (4.1 MS/ 4.2 LCS	Control Sample Data	14 14 16
5	Sample	Analysis Summary	20
6	Glossary	of Terms and Qualifiers	21
7	Chain-of	-Custody/Sample Receipt Form	22

Work Order: 15-08-0383

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 08/06/15. They were assigned to Work Order 15-08-0383.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client:	Alta Environmental			Work Order:	1	5-08-0383		
	3777 Long Beach Blvd., Annex Building			Project Name:		12870 Panama Street / MCGU-15-5422		
	Long Beach, CA 90802-333	5		Received:	C	8/06/15		
Attn:	Steve Ridenour						Page 1 of 1	
Client Sa	mpleID							
Analy	<u>rte</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction	
B5 (15-08	3-0383-1)							
TPH a	as Motor Oil	190	HD,J,ET	53*	ug/L	EPA 8015B (M)	EPA 3510C	
TPH a	as Diesel	1500	HD,ET	50	ug/L	EPA 8015B (M)	EPA 3510C	
2-But	anone	4.8	J	2.2*	ug/L	EPA 8260B	EPA 5030C	

Subcontracted analyses, if any, are not included in this summary.

* MDL is shown

Analytical Report

Alta Environmental			Date Receiv	ved:			08/06/15
3777 Long Beach Blvd., Annex Buil	ding		Work Order				15-08-0383
Long Beach, CA 90802-3335			Preparation	:			EPA 3510C
-			Method:			E	PA 8015B (M)
			Units:				ug/L
Project: 12870 Panama Street / MC	GU-15-5422					Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B5	15-08-0383-1-F	08/06/15 09:30	Aqueous	GC 48	08/18/15	08/18/15 21:47	150818B08
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	= to the MDL (DL	_) but < RL (LOO	Q), if found, are	qualified with a	a "J" flag.
Parameter	Resu	<u>ilt</u>	<u>RL</u>	MDL	DF	<u>(</u>	<u>Qualifiers</u>
TPH as Motor Oil	190		250	53	1.00	ł	HD,J,ET
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
n-Octacosane	70		68-140				
Method Blank	099-15-278-980	N/A	Aqueous	GC 48	08/18/15	08/18/15 20:29	150818B08
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DL	_) but < RL (LOO	Q), if found, are	qualified with a	a "J" flag.
Parameter	Resu	<u>ilt</u>	<u>RL</u>	MDL	DF	<u>(</u>	<u>Qualifiers</u>
TPH as Motor Oil	ND		250	53	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
n-Octacusane	83		00-140				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Return to Contents

Alta Environn	nental			Date Receiv	ved:			08/06/15
3777 Long B	each Blvd., Annex Buil	ding		Work Order		15-08-0383		
Long Beach,	CA 90802-3335	-		Preparation	:			EPA 3510C
				Method:			E	EPA 8015B (M)
				Units:				ua/L
Project: 1287	'0 Panama Street / MC	GU-15-5422					P	age 1 of 1
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B5		15-08-0383-1-F	08/06/15 09:30	Aqueous	GC 48	08/18/15	08/18/15 21:47	150818B07
Comment(s):	- Results were evaluated to	the MDL (DL), co	oncentrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Parameter		Re	sult	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Diesel		15	00	50	8.0	1.00		HD,ET
Surrogate		Re	<u>c. (%)</u>	Control Limits	<u>Qualifiers</u>			
n-Octacosane		70		68-140				
Method Blank		099-15-304-113	4 N/A	Aqueous	GC 48	08/18/15	08/18/15 20:29	150818B07
Comment(s):	- Results were evaluated to	the MDL (DL), co	oncentrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Parameter		Re	sult	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Diesel		NE)	50	8.0	1.00		
Surrogate		Re	ec. (%)	Control Limits	<u>Qualifiers</u>			
n-Octacosane		83		68-140				

Alta Environmental			Date Receiv	ved:			08/06/15
3777 Long Beach Blvd., Annex Build	ding		Work Order: 15-08-038				15-08-0383
Long Beach, CA 90802-3335	C		Preparation	:			EPA 5030C
5			Method:			E	PA 8015B (M)
			Units:				ua/L
Project: 12870 Panama Street / MC	GU-15-5422		••••••			Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B5	15-08-0383-1-D	08/06/15 09:30	Aqueous	GC 1	08/18/15	08/19/15 01:03	150818L052
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DL	_) but < RL (LOC	Q), if found, are	qualified with a	ı "J" flag.
Parameter	<u>Resu</u>	lt	<u>RL</u>	MDL	DF	<u>(</u>	Qualifiers
TPH as Gasoline	ND		50	48	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	56		38-134				
Method Blank	099-12-436-10272	N/A	Aqueous	GC 1	08/18/15	08/18/15 16:43	150818L052
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	ı "J" flag.
Parameter	<u>Resu</u>	lt	<u>RL</u>	<u>MDL</u>	DF	<u>(</u>	Qualifiers
TPH as Gasoline	ND		50	48	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	54		38-134				

Date Received:	08/06/15
Work Order:	15-08-0383
Preparation:	EPA 5030C
Method:	EPA 8260B
Units:	ug/L
	Page 1 of 6
	Date Received: Work Order: Preparation: Method: Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B5	15-08-0383-1-A	08/06/15 09:30	Aqueous	GC/MS JJ	08/18/15	08/18/15 15:11	150818L004
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >= t	the MDL (DL) but < RL (LO	Q), if found, are o	qualified with a	"J" flag.
Parameter	Resul	<u>t</u>	RL	MDL	DF	<u>C</u>	ualifiers
Acetone	ND	:	20	10	1.00		
Benzene	ND		0.50	0.14	1.00		
Bromobenzene	ND		1.0	0.30	1.00		
Bromochloromethane	ND		1.0	0.48	1.00		
Bromodichloromethane	ND		1.0	0.21	1.00		
Bromoform	ND		1.0	0.50	1.00		
Bromomethane	ND		10	3.9	1.00		
2-Butanone	4.8		10	2.2	1.00	J	
n-Butylbenzene	ND		1.0	0.23	1.00		
sec-Butylbenzene	ND		1.0	0.25	1.00		
tert-Butylbenzene	ND		1.0	0.28	1.00		
Carbon Disulfide	ND		10	0.41	1.00		
Carbon Tetrachloride	ND		0.50	0.23	1.00		
Chlorobenzene	ND		1.0	0.17	1.00		
Chloroethane	ND	:	5.0	2.3	1.00		
Chloroform	ND		1.0	0.46	1.00		
Chloromethane	ND		10	1.8	1.00		
2-Chlorotoluene	ND		1.0	0.24	1.00		
4-Chlorotoluene	ND		1.0	0.13	1.00		
Dibromochloromethane	ND		1.0	0.25	1.00		
1,2-Dibromo-3-Chloropropane	ND	:	5.0	1.2	1.00		
1,2-Dibromoethane	ND		1.0	0.36	1.00		
Dibromomethane	ND		1.0	0.46	1.00		
1,2-Dichlorobenzene	ND		1.0	0.46	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.43	1.00		
Dichlorodifluoromethane	ND		1.0	0.46	1.00		
1,1-Dichloroethane	ND		1.0	0.28	1.00		
1,2-Dichloroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene	ND		1.0	0.43	1.00		
c-1,2-Dichloroethene	ND		1.0	0.48	1.00		
t-1,2-Dichloroethene	ND		1.0	0.37	1.00		
1,2-Dichloropropane	ND		1.0	0.42	1.00		
1,3-Dichloropropane	ND		1.0	0.30	1.00		

Calscience

Alta Environmental		Date Rec	eived:		08/06/15	
3777 Long Beach Blvd., Annex Building	Work Ord	Work Order:				
Long Beach, CA 90802-3335	Preparati	on:	EPA 5030C			
g, _		Method:			EPA 8260B	
		Linite:				
Project: 12870 Panama Street / MCGU-1	5-5422	orma.	Page 2 of 6			
Parameter	Result	RL	MDL	DF	Qualifiers	
2,2-Dichloropropane	ND	1.0	0.36	1.00		
1,1-Dichloropropene	ND	1.0	0.46	1.00		
c-1,3-Dichloropropene	ND	0.50	0.25	1.00		
t-1,3-Dichloropropene	ND	0.50	0.25	1.00		
Ethylbenzene	ND	1.0	0.14	1.00		
2-Hexanone	ND	10	2.1	1.00		
Isopropylbenzene	ND	1.0	0.58	1.00		
p-Isopropyltoluene	ND	1.0	0.16	1.00		
Methylene Chloride	ND	10	0.64	1.00		
4-Methyl-2-Pentanone	ND	10	4.4	1.00		
Naphthalene	ND	10	2.5	1.00		
n-Propylbenzene	ND	1.0	0.17	1.00		
Styrene	ND	1.0	0.17	1.00		
1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00		
1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00		
Tetrachloroethene	ND	1.0	0.39	1.00		
Toluene	ND	1.0	0.24	1.00		
1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00		
1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00		
1,1,1-Trichloroethane	ND	1.0	0.30	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00		
1,1,2-Trichloroethane	ND	1.0	0.38	1.00		
Trichloroethene	ND	1.0	0.37	1.00		
Trichlorofluoromethane	ND	10	1.7	1.00		
1,2,3-Trichloropropane	ND	5.0	0.64	1.00		
1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00		
1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00		
Vinyl Acetate	ND	10	2.8	1.00		
Vinyl Chloride	ND	0.50	0.30	1.00		
p/m-Xylene	ND	1.0	0.30	1.00		
o-Xylene	ND	1.0	0.23	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00		
Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00		
Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00		
Ethanol	ND	100	50	1.00		

Return to Contents

Dibromofluoromethane

1,2-Dichloroethane-d4

Toluene-d8

110

108

102

Alta Environmental	Date Receive	ed:	08/06/15 15-08-0383	
3777 Long Beach Blvd., Annex Bu	Work Order:			
Long Beach, CA 90802-3335	Preparation:		EPA 50300	
		Method:		EPA 8260B
		Units:		ug/L
Project: 12870 Panama Street / MCGU-15-5422				Page 3 of 6
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers	
1.4-Bromofluorobenzene	104	80-120		

78-126

75-135

80-120

RL: Reporting Limit.	DF: Dilution Factor.	MDL: Method Detection Limit.

Alta Environmental	Date Received:	08/06/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-08-0383
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 12870 Panama Street / MCGU-15-5422		Page 4 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-001-17931	N/A	Aqueous	GC/MS JJ	08/18/15	08/18/15 11:22	150818L004
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
Parameter	Resul	<u>t</u>	<u>RL</u>	MDL	DF		Qualifiers
Acetone	ND		20	10	1.00		
Benzene	ND		0.50	0.14	1.00		
Bromobenzene	ND		1.0	0.30	1.00		
Bromochloromethane	ND		1.0	0.48	1.00		
Bromodichloromethane	ND		1.0	0.21	1.00		
Bromoform	ND		1.0	0.50	1.00		
Bromomethane	ND		10	3.9	1.00		
2-Butanone	ND		10	2.2	1.00		
n-Butylbenzene	ND		1.0	0.23	1.00		
sec-Butylbenzene	ND		1.0	0.25	1.00		
tert-Butylbenzene	ND		1.0	0.28	1.00		
Carbon Disulfide	ND		10	0.41	1.00		
Carbon Tetrachloride	ND		0.50	0.23	1.00		
Chlorobenzene	ND		1.0	0.17	1.00		
Chloroethane	ND		5.0	2.3	1.00		
Chloroform	ND		1.0	0.46	1.00		
Chloromethane	ND		10	1.8	1.00		
2-Chlorotoluene	ND		1.0	0.24	1.00		
4-Chlorotoluene	ND		1.0	0.13	1.00		
Dibromochloromethane	ND		1.0	0.25	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	1.2	1.00		
1,2-Dibromoethane	ND		1.0	0.36	1.00		
Dibromomethane	ND		1.0	0.46	1.00		
1,2-Dichlorobenzene	ND		1.0	0.46	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.43	1.00		
Dichlorodifluoromethane	ND		1.0	0.46	1.00		
1,1-Dichloroethane	ND		1.0	0.28	1.00		
1,2-Dichloroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene	ND		1.0	0.43	1.00		
c-1,2-Dichloroethene	ND		1.0	0.48	1.00		
t-1,2-Dichloroethene	ND		1.0	0.37	1.00		
1,2-Dichloropropane	ND		1.0	0.42	1.00		
1,3-Dichloropropane	ND		1.0	0.30	1.00		

🔅 eurofins

Anal	vtical	Report	
/	<i>y</i>		

Alta Environmental		Date Rec	eived:	08/06/15			
3777 Long Beach Blvd., Annex Building	Work Ord	er:	15-08-0383				
Long Beach, CA 90802-3335	Preparatio	on:	EPA 5030C				
3,		Method:			EPA 8260B		
		Units:			ug/l		
Project: 12870 Panama Street / MCGU-15-	5422	ermor			Page 5 of 6		
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	<u>Qualifiers</u>		
2,2-Dichloropropane	ND	1.0	0.36	1.00			
1,1-Dichloropropene	ND	1.0	0.46	1.00			
c-1,3-Dichloropropene	ND	0.50	0.25	1.00			
t-1,3-Dichloropropene	ND	0.50	0.25	1.00			
Ethylbenzene	ND	1.0	0.14	1.00			
2-Hexanone	ND	10	2.1	1.00			
Isopropylbenzene	ND	1.0	0.58	1.00			
p-Isopropyltoluene	ND	1.0	0.16	1.00			
Methylene Chloride	ND	10	0.64	1.00			
4-Methyl-2-Pentanone	ND	10	4.4	1.00			
Naphthalene	ND	10	2.5	1.00			
n-Propylbenzene	ND	1.0	0.17	1.00			
Styrene	ND	1.0	0.17	1.00			
1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00			
1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00			
Tetrachloroethene	ND	1.0	0.39	1.00			
Toluene	ND	1.0	0.24	1.00			
1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00			
1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00			
1,1,1-Trichloroethane	ND	1.0	0.30	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00			
1,1,2-Trichloroethane	ND	1.0	0.38	1.00			
Trichloroethene	ND	1.0	0.37	1.00			
Trichlorofluoromethane	ND	10	1.7	1.00			
1,2,3-Trichloropropane	ND	5.0	0.64	1.00			
1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00			
1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00			
Vinyl Acetate	ND	10	2.8	1.00			
Vinyl Chloride	ND	0.50	0.30	1.00			
p/m-Xylene	ND	1.0	0.30	1.00			
o-Xylene	ND	1.0	0.23	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00			
Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00			
Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00			
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00			
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00			
Ethanol	ND	100	50	1.00			

Dibromofluoromethane

1,2-Dichloroethane-d4

Toluene-d8

Alta Environmental		Date Receive	ed:	08/06/15		
3777 Long Beach Blvd., Annex Building]	Work Order:		15-08-0383		
Long Beach, CA 90802-3335		Preparation:		EPA 5030C		
		Method:		EPA 8260B		
		Units:		ug/L		
Project: 12870 Panama Street / MCGU	-15-5422			Page 6 of 6		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	97	80-120				

78-126

75-135

80-120

95

109

102

Analytical Report

Quality Control - Spike/Spike Duplicate

Alta Environmental			Date Received	1:		08/06/15	
3777 Long Beach Blvd., Ar	nnex Building		Work Order:	15-08-0			
Long Beach, CA 90802-33	35		Preparation:		EPA 5030C		
			Method:			EPA 8015B (M)	
Project: 12870 Panama St	reet / MCGU-15-5422					Page 1 of 2	
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number	
15-08-1082-3	Sample	Aqueous	GC 1	08/18/15	08/18/15 17:19	150818S017	
		-				4500400045	

15-08-1082-3	Matrix Spike		Aqueous	GC 1		08/18/15	08/18/15	17:55	150818S017	
15-08-1082-3	Matrix Spike I	Duplicate	Aqueous	GC 1		08/18/15	08/18/15	18:30	150818S017	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Gasoline	52.58	2000	1763	86	1735	84	68-122	2	0-18	

RPD: Relative Percent Difference. CL: Control Limits

Alta Environmental	Date Received:	08/06/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-08-0383
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: 12870 Panama Street / MCGU-15-5422		Page 2 of 2

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepar	ed Date Ana	lyzed	MS/MSD Ba	tch Number
15-08-1049-4	Sample		Aqueous	5	GC/MS JJ	08/18/15	08/18/15	12:24	150818S002	2
15-08-1049-4	Matrix Spike		Aqueous	5	GC/MS JJ	08/18/15	08/18/15	12:51	150818S002	2
15-08-1049-4	Matrix Spike	Duplicate	Aqueous	5	GC/MS JJ	08/18/15	08/18/15	13:19	150818S002	2
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Ree	<u>MSD</u> c. <u>Conc.</u>	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	ND	50.00	64.20	128	62.32	125	74-122	3	0-21	3
Carbon Tetrachloride	ND	50.00	68.07	136	66.43	133	60-144	2	0-21	
Chlorobenzene	ND	50.00	55.77	112	53.60	107	73-120	4	0-22	
1,2-Dibromoethane	ND	50.00	55.94	112	54.70	109	80-122	2	0-20	
1,2-Dichlorobenzene	ND	50.00	54.15	108	53.00	106	70-120	2	0-26	
1,2-Dichloroethane	ND	50.00	61.57	123	59.28	119	64-142	4	0-20	
1,1-Dichloroethene	ND	50.00	61.64	123	61.97	124	52-136	1	0-21	
Ethylbenzene	ND	50.00	59.52	119	57.35	115	77-125	4	0-24	
Toluene	ND	50.00	63.82	128	60.75	122	72-126	5	0-23	3
Trichloroethene	ND	50.00	66.50	133	64.24	128	74-128	3	0-22	3
Vinyl Chloride	ND	50.00	60.68	121	59.56	119	67-133	2	0-20	
p/m-Xylene	ND	100.0	113.0	113	108.1	108	63-129	4	0-25	
o-Xylene	ND	50.00	56.67	113	54.05	108	62-128	5	0-24	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	60.87	122	62.16	124	68-134	2	0-21	
Tert-Butyl Alcohol (TBA)	ND	250.0	287.1	115	290.3	116	65-143	1	0-30	
Diisopropyl Ether (DIPE)	ND	50.00	61.31	123	60.04	120	61-139	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	57.93	116	58.33	117	64-136	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	57.66	115	56.25	113	67-133	2	0-20	
Ethanol	ND	500.0	541.1	108	463.4	93	34-178	15	0-58	

RPD: Relative Percent Difference. CL: Control Limits

Alta Environmental	Date Received:	08/06/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-08-0383
Long Beach, CA 90802-3335	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)
Project: 12870 Panama Street / MCGU-15-5422		Page 1 of 4

Quality Control Sample ID Type Matrix Instrument

Quality Control Sample ID	Туре	Mati	rix	Instrument	Date Prep	ared Date	e Analyzed	LCS/LCSD Ba	tch Number
099-15-278-980	LCS	Aqu	ieous	GC 48	08/18/15	08/1	18/15 21:15	150818B08	
099-15-278-980	LCSD	Aqu	ieous	GC 48	08/18/15	08/1	18/15 21:31	150818B08	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	2000	1553	78	1658	83	75-117	6	0-13	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

Alta Environmental	Date Received:	08/06/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-08-0383
Long Beach, CA 90802-3335	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)
Project: 12870 Panama Street / MCGU-15-5422		Page 2 of 4

 Quality Control Sample ID
 Type
 Matrix
 Instrument
 Date Prepared
 Date Analyzed
 LCS/LCSD Batch Number

 099-15-304-1134
 LCS
 Aqueous
 GC 48
 08/18/15
 08/18/15 20:44
 150818B07

099-15-304-1134	LCS	Aqu	eous	GC 48	08/18/15	08/18	8/15 20:44	150818B07	
099-15-304-1134	LCSD	Aqu	eous	GC 48	08/18/15	08/18	8/15 21:00	150818B07	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	2000	1990	100	2071	104	75-117	4	0-13	

RPD: Relative Percent Difference. CL: Control Limits

Alta Environmental	Date Received:	08/06/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-08-0383
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: 12870 Panama Street / MCGU-15-5422		Page 3 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-436-10272	LCS	Aqueous	GC 1	08/18/15	08/18/15 16:07	150818L052
Parameter		Spike Added	Conc. Recover	red LCS %Re	<u>. %Rec.</u>	<u>CL</u> <u>Qualifiers</u>
TPH as Gasoline		2000	1736	87	78-120)

🛟 eurofins

Calscience

Alta Environmental	Date Received:	08/06/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-08-0383
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: 12870 Panama Street / MCGU-15-5422		Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
099-14-001-17931	LCS	Aqueous	GC/MS JJ	08/18/15	08/18/15 09:50	150818L004	
Parameter	Spike Ac	ded <u>Conc.</u>	Recovered LCS	<u>%Rec. %Re</u>	ec. CL ME	<u>E CL</u>	Qualifiers
Benzene	50.00	57.46	115	80-1	20 73	-127	
Carbon Tetrachloride	50.00	58.02	116	67-1	39 55	-151	
Chlorobenzene	50.00	50.56	101	78-1	20 71	-127	
1,2-Dibromoethane	50.00	52.84	106	80-1	20 73	-127	
1,2-Dichlorobenzene	50.00	50.80	102	63-1	29 52	-140	
1,2-Dichloroethane	50.00	56.34	113	70-1	30 60	-140	
1,1-Dichloroethene	50.00	52.94	106	66-1	26 56	-136	
Ethylbenzene	50.00	53.19	106	80-1	23 73	-130	
Toluene	50.00	56.59	113	80-1	20 73	-127	
Trichloroethene	50.00	60.93	122	80-1	22 73	-129	
Vinyl Chloride	50.00	51.31	103	70-1	30 60	-140	
p/m-Xylene	100.0	101.2	101	75-1	23 67	-131	
o-Xylene	50.00	50.80	102	74-1	22 66	-130	
Methyl-t-Butyl Ether (MTBE)	50.00	58.12	116	69-1	29 59	-139	
Tert-Butyl Alcohol (TBA)	250.0	249.3	100	69-1	29 59	-139	
Diisopropyl Ether (DIPE)	50.00	56.94	114	68-1	28 58	-138	
Ethyl-t-Butyl Ether (ETBE)	50.00	55.27	111	63-1	35 51	-147	
Tert-Amyl-Methyl Ether (TAME)	50.00	54.87	110	67-1	33 56	-144	
Ethanol	500.0	498.1	100	42-1	68 21	-189	

Total number of LCS compounds: 19 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits

Page 1 of 1

Return to Contents

Calscience

Work Order: 15-08-0383

Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 8015B (M)	EPA 3510C	682	GC 48	1
EPA 8015B (M)	EPA 5030C	902	GC 1	2
EPA 8260B	EPA 5030C	996	GC/MS JJ	2

Calscience

Work Order: 15-08-0383

Glossary of Terms and Qualifiers

Vork Order:	15-08-0383	Page 1 of 1
<u>Qualifiers</u>	Definition	
*	See applicable analysis comment.	
<	Less than the indicated value.	
>	Greater than the indicated value.	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data clarification.	was reported without further
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrin control and, therefore, the sample data was reported without further clarification.	ogate spike compound was
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspect associated LCS recovery was in control.	cted matrix interference. The
4	The MS/MSD RPD was out of control due to suspected matrix interference.	
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix	cinterference.
6	Surrogate recovery below the acceptance limit.	
7	Surrogate recovery above the acceptance limit.	
В	Analyte was present in the associated method blank.	
BU	Sample analyzed after holding time expired.	
BV	Sample received after holding time expired.	
CI	See case narrative.	
Е	Concentration exceeds the calibration range.	
ET	Sample was extracted past end of recommended max. holding time.	
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.	
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard bu were also present (or detected).	ut heavier hydrocarbons
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard bu also present (or detected).	ut lighter hydrocarbons were
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limestimated.	nit. Reported value is
JA	Analyte positively identified but quantitation is an estimate.	
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).	
ND	Parameter not detected at the indicated reporting limit.	
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample ex concentration by a factor of four or greater.	ceeding the spike
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.	
Х	% Recovery and/or RPD out-of-range.	
Z	Analyte presence was not confirmed by second column or GC/MS analysis.	
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % mois reported on a wet weight basis.	sture. All QC results are
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holdin (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being stated holding time unless received at the laboratory within 15 minutes of the collection time.	g time of <= 15 minutes received outside of the

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

1		
	nts	
	Conte	
	urn to	
	Retu	

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

Calscience Env	ironme	intal La	bor	atoi	'ies,	Inc.							0	HAI	ЧО Z	Ъ́О С	STO	DY RE	ECOF	Q
SoCal Laboratory 7440 Lincoln Way Garden Grove, CA 92841 (714) 895-5494	-1427	NorCal Sel 5063 Comi Concord, C (925) 689-	vice Ce nercial 3A 9452 3022	nter Circle, S 0-8577	uite H		Fom		E ONLY	B				ateage	3		of			
LABORATORY CLIENT: A 1/42 EA	VI CUM	enta)					CLE	NT PROJ	ECT NA	VE/NC	MBER:		r,		P.C	. NO.:				
ADDRESS: 2777 Long R	tall.	12121	Man	X	KIN		PRO	JUL C	NTACT:	11		510	1		SAI	MPLER((S): (PF	(INI)		Τ
OITY Love Reach		STATE			000	ZIP		Sh	à	\mathcal{G}	Ser	UCAN				R	Y			
TEL: Jords SADA E-MAIL:	Steve. N	denew .	201	trent	. wer	· com.				LL .	Ш Ш О	JES	TEC T	AN	ALY	SES	6			
TURNAROUND TIME:	R [] 72 HI	E ST	ANDARI	0				(11	(
COELT EDF GLOBAL ID					LOG C	ODE	1	70-90)			(30	(00								
SPECIAL INSTRUCTIONS:					рәл	ېروم ۲	N GRO	or DRO or (C6C36) or	ITBE (8260) or ((097	tes (8260)		(†808) s	(28	(0728) 10 (018 	196 or 7199 or 218.6]	min			
LAB	SAMP	LING		Š	breser	evnes: MiT bl	o (6) H	н (р (р) н	EX \ /	(8) sQ	vgena) \$00	sticide)8) sB	58) 2A 219M S	7] (IV	51			
USE SAMPLE ID	DATE	TIME	MATRIX	CONT.	uη	∋i⊣ ——	<u>ат</u>	dT TP	18	٥٨	×O	۸S	Ъθ	ЪС		 Cr	/			
ß<	8/6/15	930	A. U	9													$\boldsymbol{\lambda}$			
												:								
		an a																		
									_											
Relinquished by: (Signature)				8	eceived	by: (Sign	JUNU	filiation	, T	1 CT					Date:	El B		Time: /3	X	Pag
Relinquished by: (Signature)				æ	eceived	by: (Sign	ature/Af	filiation)							Date:			Time:		e 22
Relinquished by: (Signature)				<u>۳</u>	eceived	by: (Sign	ature/Af	filiation)							Date:			Time:		of 25
DISTRIBUTION: White with final repo	ort Green and Y	ellow to Client.		-														09/01/	13 Revis] ig

seurofins			WORK ORDER	NUMBER:	Pag 15-08	e 23 (}- (of 25)38ろ
••	Calscience	SAMPLE RECEIPT	CHECKLIST	C	OOLER	1	OF 1
CLIENT: <u>Alta</u>	Environme	ental		DAI	re: 08 /	6	_ / 2015
TEMPERATURE: (C Thermometer ID: SC Sample(s) outs Sample(s) outs Sample(s) received Ambient Temperature	Criteria: 0.0°C – 6. C5 (CF:-0.2°C); Te side temperature c side temperature c ed at ambient temp re: □ Air □ Filter	0°C, not frozen except sedim mperature (w/o CF): <u>3.4</u> criteria (PM/APM contacted b criteria but received on ice/ch perature; placed on ice for tra	ent/tissue) °C (w/ CF): ろ.∂ y:) illed on same day o ansport by courier	°C; □	Blank 🔎 Checke	Í Sarr	iple 681
CUSTODY SEAL: Cooler	esent and Intact	 Present but Not Intact Present but Not Intact 	Not Present	□ N/A □ N/A	Checke Checke	d by: d by:	681 965
SAMPLE CONDITIO	ON:				Yes	No	N/A
Chain-of-Custody (C	COC) document(s)	received with samples			ø		
COC document(s) re	eceived complete				Ŕ		
□ Sampling date □ No analysis re Sampler's name ind Sample container la Sample container(s) Proper containers for Sufficient volume/m Samples received w Aqueous sample □ pH □ Residu Proper preservation Unpreserved aqu	a ☐ Sampling time equested ☐ Not re icated on COC bel(s) consistent v) intact and in good or analyses reques ass for analyses re vithin holding time as for certain analy ual Chlorine ☐ Di a chemical(s) noted ueous sample(s) re	e Li Matrix Li Number of c elinquished D No relinquish vith COC d condition sted equested ses received within 15-minut ssolved Sulfide Dissolved d on COC and/or sample con eceived for certain analyses	ed date	nquished time			
 ∠ Volatile Organ Container(s) for cer ∠ Volatile Organ 	nics □ Total Meta tain analysis free o nics □ Dissolved	als □ Dissolved Metals of headspace Gases (RSK-175) □ Dissol	ved Oxygen (SM 45	500)	. 🗆	ø	
☐ Carbon Dioxic	e (SM 4500)	-errous iron (Sivi 3500)	iyarogen Sunde (n		. 🗆		ø
	-		(Trip Blar	ak Lot Numb	é.		,
Aqueous: ✓ VOA □ 125PBznna □ 2 □ 500PB Ø 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ Container: A = Ambe Preservative: b = buff s = HoS	 UOAh UOAr 50AGB 250CG 1AGBna ₂ 1 80zCGJ 1602 Canister Sorbe r, B = Bottle, C = Cle fered, f = filtered, h = 504, u = ultra-pure z	$ha_2 \square 100PJ \square 100PJna_2 IIB \square 250CGBs \square 250PB IIAGBs □ 1PB □ 1PBna □zCGJ □ Sleeve () □ IIent Tube □ PUF □ear, E = Envelope, G = Glass, J= HCl, n = HNO3, na = NaOH, nacnna = Zn(CH_3CO_2)_2 + NaOH$	□ 125AGB □ 125A □ 250PBn □ 500AC □ □ EnCores [®] () □ Other Matrix (= Jar, P = Plastic, and $a_2 = Na_2S_2O_3$, p = H ₃ F	GBh □ 125A GBh □ 500AG □] TerraCores [®]): [d Z = Ziploc/Re PO₄, Labele	GBp □ J □ 500/ ()] sealable B ed/Check(Review(125PE AGJs ag ad by: ed by:	3

Page 24 of 25 WORK ORDER NUMBER: **15-08-** 0393

Calscience

4
 5
 6

SAMPLE ANOMALY REPORT

DATE: 08 / 06 / 2015

SAMPLES, CONTAINERS, AND LABELS:	Comments
□ Sample(s) NOT RECEIVED but listed on COC	
□ Sample(s) received but NOT LISTED on COC	
□ Holding time expired (list client or ECI sample ID and analysis)	
□ Insufficient sample amount for requested analysis (list analysis)	
□ Improper container(s) used (list analysis)	
□ Improper preservative used (list analysis)	
No preservative noted on COC or label (list analysis and notify lab)	no preservative noted on coc or
□ Sample container(s) not labeled	containers
□ Client sample label(s) illegible (list container type and analysis)	
□ Client sample label(s) do not match COC (comment)	
\square Project information	
Client sample ID	
□ Sampling date and/or time	
\square Number of container(s)	
Requested analysis	
Sample container(s) compromised (comment)	
□ Water present in sample container	
\Box Air sample container(s) compromised (comment)	
□ Verv low in volume	
Leaking (not transferred; duplicate bag submitted)	
□ Leaking (transferred into ECI Tedlar™ bags*)	
□ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments

HEADSPACE:

(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)

,			. .	0	3 1
ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**
1	E	5			

(Containers with bubble for other analysis)

ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis

Comments:

** Record the total number of containers (i.e., vials or bottles) for the affected sample.

Return to Contents

DISTRIBUTIOR. White with final report, Green and Teacw to Learn. Piecce note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yetlow copies respectively.

Change Request to analyze samples on 24hr TAT received	from Ste	re Ridenour on August 18, 2015.	
Calscience Environmental Laboratorie	s, inc.	CHAIN OF CUSTO	Y RECORD
SoCal Laboratory DNC/Cet Service Center 7440 Lincotn Way 5065 Commercial Circle, Suite Garden Grove, CA 92841-1427 Concord, CA 94620-6677 Concord, CA 94620-6677	` x		
LECONTORY CLEME A / 1/2 EAVI DINNENTED		alent Provect NAME / NAME : 12870 Danaya St. /	
ADDRESS: 2777 Love Beach 15hold Marce Bi	2	PROJECT CONTACT: SAMPLER(8): (PS	E
arr low Kerch Brail	70207	Shre lidered I	
The Star Sort Erne Stere Cidenard a lacuni	Mp. W	REQUESTED ANALTSES	
TURNATIOND TIME: SAME DAY 724 HR 48 HR 72 HR 25 TANDARD			
	DG CODE	1 (92) (92)	
SPECIAL INSTRUCTIONS:		4, 518 e	
	میں	60108/14 (60108/14 (60108/14 (6260) 0) (6250) (6250) 0) (6250) (6250) 0) (6250) 0) (6250) 0) (6250) 0) (6250) 0) (6250) 0) (6250) 0) (6250) 0) (6250) 0) (6250) 0) (625) (6250)	
	peve	() or Di ()	
SAMPLING SAMPLING NO.	serqnU nasen Fleid F	ССКА) 155 М 155 М 1	
n -	XX		
Reinquicited by: (Signature)	Salved by: (Sig	INUCY ECT BALLY	Tane: /32X
Reinquistred by: (Signeedie)	ceived by. (Sig	bire/Athlation)	Time:
Reinquished by: (Signature)	oetved by: (Big	atrave/Affiliation) Date:	Tane:
			09/01/13 Revision

WORK ORDER NUMBER: 15-09-1939

Calscience

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Alta Environmental Client Project Name: 12870 Panama Street / MCGU-15-5506 Attention: Jonathan Barkman 3777 Long Beach Blvd., Annex Building Long Beach, CA 90802-3335

En Orto for

Approved for release on 10/06/2015 by: Vikas Patel Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

ResultLink >

Email your PM >

🛟 eurofins

Calscience

Contents

Client Pro Work Orc	oject Name: ler Number:	12870 Panama Street / MCGU-15-5506 15-09-1939	
1	Work Or	der Narrative	3
2	Detectio	ns Summary	4
3	Client Sa 3.1 EPA 3.2 EPA 3.3 EPA 3.4 EPA	ample Data. A 8015B (M) TPH Motor Oil (Aqueous). A 8015B (M) TPH Diesel (Aqueous). A 8015B (M) TPH Gasoline (Aqueous). A 8260B Volatile Organics + Oxygenates (Aqueous).	5 5 7 9 11
4	Quality (4.1 MS/ 4.2 LCS	Control Sample Data	32 32 34
5	Sample	Analysis Summary	38
6	Glossary	y of Terms and Qualifiers	39
7	Chain-of	i-Custody/Sample Receipt Form	40
8	Subcont	ract Narrative	44

Work Order: 15-09-1939

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/24/15. They were assigned to Work Order 15-09-1939.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

TPH as Diesel

Detections Summary

Client:	Client: Alta Environmental 3777 Long Beach Blvd., Annex Building			Work Order: Project Name:		15-09-1939 12870 Panama Street / MCGU-15-5506			
	Long Beach, CA 90802-3	335		Received:		09/24/15			
Attn:	Jonathan Barkman						Page 1 of 1		
Client Sa	ampleID								
Anal	<u>yte</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	Method	Extraction		
B14 (15-	09-1939-2)								
TPH	as Motor Oil	3800	HD	480	ug/L	EPA 8015B (M)	EPA 3510C		
TPH	as Diesel	530	HD	96	ug/L	EPA 8015B (M)	EPA 3510C		
Carb	on Disulfide	0.44	B,J	0.41*	ug/L	EPA 8260B	EPA 5030C		
B15 (15-	09-1939-3)								
TPH	as Diesel	15	HD,J	8.7*	ug/L	EPA 8015B (M)	EPA 3510C		
B19 (15-	09-1939-6)								

8.0*

ug/L

EPA 8015B (M)

HD,J

9.4

Subcontracted analyses, if any, are not included in this summary.

Page 4 of 44

EPA 3510C

* MDL is shown

Alta Environmental			Date Receiv	/ed:			09/24/15
3777 Long Beach Blvd., Annex Build	ding		Work Order	:			15-09-1939
Long Beach, CA 90802-3335	U		Preparation	:			EPA 3510C
			Method:				EPA 8015B (M)
			Units:				, ua/L
Project: 12870 Panama Street / MC	GU-15-5506					F	Page 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B13	15-09-1939-1-I	09/24/15 08:40	Aqueous	GC 47	09/25/15	09/25/15 20:59	150925B13
Comment(s): - Results were evaluated to	the MDL (DL), c	concentrations >=	to the MDL (DL	.) but < RL (LOO	Q), if found, are	qualified with	a "J" flag.
Parameter	Re	<u>esult</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Motor Oil	N	D	240	51	1.00		
Surrogate	D	oo (9/)	Control Limito	Qualifiara			
<u>Sunogate</u>			CONTROL LINITS	Quaimers			
n-Octacosane	02	2	00-140				
B14	15-09-1939-2-I	09/24/15 10:45	Aqueous	GC 47	09/25/15	09/26/15 10:59	150925B13
Comment(s): - Results were evaluated to	the MDL (DL), c	oncentrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Parameter	Re	<u>esult</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Motor Oil	38	300	480	100	2.00		HD
<u>Surrogate</u>	Re	<u>ec. (%)</u>	Control Limits	<u>Qualifiers</u>			
n-Octacosane	84	1	68-140				
B15	15-09-1939-3-I	09/24/15 10:25	Aqueous	GC 47	09/25/15	09/25/15 21:18	150925B13
Comment(s): - Results were evaluated to	the MDL (DL), c	concentrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Parameter	<u>R</u> (<u>esult</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Motor Oil	N	D	270	58	1.00		
Surrogate	R	ec (%)	Control Limits	Qualifiers			
n-Octacosane	8/	<u>1</u>	68-140	<u>Quamers</u>			
	0-	t	00-140				
B17	15-09-1939-4-I	09/24/15 11:05	Aqueous	GC 47	09/25/15	09/25/15 21:35	150925B13
Comment(s): - Results were evaluated to	the MDL (DL), c	concentrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Parameter	Re	<u>esult</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Motor Oil	N	D	260	56	1.00		
Surrogata	D.	oc (%)	Control Limita	Qualifiara			
n-Octacosane	<u>R0</u> 94	<u>cc. (70)</u>	68-140				

Analytical Report

Alta Environmental			Date Receiv	/ed:			09/24/15
3777 Long Beach Blvd., Annex Build	ding		Work Order	:			15-09-1939
Long Beach, CA 90802-3335			Preparation		EPA 3510C		
-			Method:			I	EPA 8015B (M)
			Units:				ug/L
Project: 12870 Panama Street / MC	GU-15-5506					Р	age 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B18	15-09-1939-5-I	09/24/15 09:50	Aqueous	GC 47	09/25/15	09/25/15 21:53	150925B13
Comment(s): - Results were evaluated to	the MDL (DL), cor	centrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Parameter	Res	<u>ult</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Motor Oil	ND		250	53	1.00		
Surrogate	Rec	<u>. (%)</u>	Control Limits	Qualifiers			
n-Octacosane	88		68-140				
B19	15-09-1939-6-H	09/24/15 12:00	Aqueous	GC 47	09/25/15	09/25/15 22:10	150925B13
Comment(s): - Results were evaluated to	the MDL (DL), cor	centrations >=	to the MDL (DL) but < RL (LOC	a), if found, are	qualified with	a "J" flag.
Parameter	Res	<u>ult</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Motor Oil	ND		250	53	1.00		
Surrogate	Rec	<u>. (%)</u>	Control Limits	<u>Qualifiers</u>			
n-Octacosane	86		68-140				
Method Blank	099-15-278-1003	N/A	Aqueous	GC 47	09/25/15	09/25/15	150925B13
						10.40	
Comment(s): - Results were evaluated to	the MDL (DL), cor	centrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Comment(s): - Results were evaluated to Parameter	the MDL (DL), cor <u>Res</u>	centrations >=	to the MDL (DL	.) but < RL (LOG <u>MDL</u>	2), if found, are <u>DF</u>	qualified with	a "J" flag. <u>Qualifiers</u>
Comment(s): - Results were evaluated to <u>Parameter</u> TPH as Motor Oil	o the MDL (DL), cor <u>Res</u> ND	centrations >=	to the MDL (DL <u>RL</u> 250	.) but < RL (LOC <u>MDL</u> 53	0), if found, are <u>DF</u> 1.00	qualified with	a "J" flag. <u>Qualifiers</u>
Comment(s): - Results were evaluated to Parameter TPH as Motor Oil <u>Surrogate</u>	o the MDL (DL), cor <u>Res</u> ND <u>Rec</u>	ucentrations >= ult . (%)	to the MDL (DL <u>RL</u> 250 <u>Control Limits</u>	.) but < RL (LOC <u>MDL</u> 53 <u>Qualifiers</u>	2), if found, are <u>DF</u> 1.00	qualified with	a "J" flag. <u>Qualifiers</u>

Alta Environn	nental				Date Receiv	ved:			09/24/15
3777 Long Be	each Blvd., Annex Build	ding			Work Order	:			15-09-1939
Long Beach,	CA 90802-3335				Preparation	:			EPA 3510C
-					Method:				EPA 8015B (M)
					Units:				ug/L
Project: 1287	0 Panama Street / MC	GU-15-5506	6					F	Page 1 of 2
Client Sample N	umber	Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B13		15-09-1939-1	1-1	09/24/15 08:40	Aqueous	GC 47	09/25/15	09/25/15 20:59	150925B12
Comment(s):	- Results were evaluated to	the MDL (DL)), conc	entrations >=	to the MDL (DL	_) but < RL (LOC	Q), if found, are	qualified with	n a "J" flag.
Parameter			Resul	<u>t</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Diesel			ND		48	7.7	1.00		
Surrogate			Rec ((0/)	Control Limite	Qualifiers			
n-Octacosane			82	<u></u>	68-140	Quaimers			
in Octacosane			02		00140				
B14		15-09-1939-2	2-I	09/24/15 10:45	Aqueous	GC 47	09/25/15	09/26/15 10:59	150925B12
Comment(s):	- Results were evaluated to	the MDL (DL)), conc	entrations >=	to the MDL (DL) but < RL (LOC	a), if found, are	qualified with	n a "J" flag.
Parameter			Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	DF		<u>Qualifiers</u>
TPH as Diesel			530		96	15	2.00		HD
Surrogate			Rec. ((%)	Control Limits	Qualifiers			
n-Octacosane			84	<u>,,,,</u>	68-140				
B15		15-09-1939-3	3-I	09/24/15 10:25	Aqueous	GC 47	09/25/15	09/25/15 21:18	150925B12
Comment(s):	- Results were evaluated to	the MDL (DL)), conc	entrations >=	to the MDL (DL) but < RL (LOC	a), if found, are	qualified with	n a "J" flag.
Parameter			Resul	<u>t</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Diesel			15		54	8.7	1.00		HD,J
Surrogate			Rec. ((%)	Control Limits	Qualifiers			
n-Octacosane			84		68-140				
								_	
B17		15-09-1939-4	4-I	09/24/15 11:05	Aqueous	GC 47	09/25/15	09/25/15 21:35	150925B12
Comment(s):	- Results were evaluated to	the MDL (DL)	, conc	entrations >=	to the MDL (DL) but < RL (LOC	a), if found, are	qualified with	n a "J" flag.
Parameter			Resul	<u>t</u>	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>
TPH as Diesel			ND		52	8.3	1.00		
Surrogate			Rec. ((%)	Control Limits	Qualifiers			
n-Octacosane			86	·	68-140				

Alta Environn	nental			Date Receiv	ved:			09/24/15
3777 Long Be	each Blvd., Annex Build	ding		Work Order				15-09-1939
Long Beach,	CA 90802-3335	-		Preparation	:			EPA 3510C
U				Method:				EPA 8015B (M)
				Units:				ua/L
Project: 1287	0 Panama Street / MC	GU-15-5506	3				F	Page 2 of 2
Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B18		15-09-1939-5	-l 09/24/15 09:50	Aqueous	GC 47	09/25/15	09/25/15 21:53	150925B12
Comment(s):	- Results were evaluated to	the MDL (DL),	concentrations >	= to the MDL (DL) but < RL (LOC	Q), if found, are o	qualified with	a "J" flag.
Parameter			Result	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Diesel			ND	50	8.0	1.00		
Surrogate			<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
n-Octacosane			88	68-140				
B19		15-09-1939-6	-H 09/24/15 12:00	Aqueous	GC 47	09/25/15	09/25/15 22:10	150925B12
Comment(s):	- Results were evaluated to	the MDL (DL),	concentrations >	= to the MDL (DL) but < RL (LOC	Q), if found, are o	qualified with	a "J" flag.
Parameter			<u>Result</u>	<u>RL</u>	MDL	DE		<u>Qualifiers</u>
TPH as Diesel			9.4	50	8.0	1.00		HD,J
Surrogate			<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
n-Octacosane			86	68-140				
Method Blank		099-15-304-1	175 N/A	Aqueous	GC 47	09/25/15	09/25/15 18:40	150925B12
Comment(s):	- Results were evaluated to	the MDL (DL),	concentrations >	= to the MDL (DL	_) but < RL (LOO	Q), if found, are o	qualified with	a "J" flag.
Parameter			<u>Result</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Diesel			ND	50	8.0	1.00		
Surrogate			<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
n-Octacosane			80	68-140				

Analytical Report

Alta Environmental			Date Receiv	/ed:			09/24/15
3777 Long Beach Blvd., Annex Build	ding		Work Order	:			15-09-1939
Long Beach, CA 90802-3335			Preparation	:			EPA 5030C
			Method:			ł	EPA 8015B (M)
			Units:				ug/L
Project: 12870 Panama Street / MC	GU-15-5506					Р	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B13	15-09-1939-1-E	E 09/24/15 08:40	Aqueous	GC 1	09/25/15	09/25/15 20:03	150925L022
Comment(s): - Results were evaluated to	the MDL (DL), c	concentrations >=	to the MDL (DL) but < RL (LOO	Q), if found, are o	qualified with	a "J" flag.
Parameter	<u>R</u> (<u>esult</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Gasoline	N	D	50	48	1.00		
Surrogate	R	ec (%)	Control Limits	Qualifiers			
1.4-Bromofluorobenzene	66	6	38-134	duamoro			
		-					
B14	15-09-1939-2-E	E 09/24/15 10:45	Aqueous	GC 1	09/25/15	09/25/15 20:38	150925L022
Comment(s): - Results were evaluated to	the MDL (DL), c	concentrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are o	qualified with	a "J" flag.
Parameter	<u>R</u>	<u>esult</u>	<u>RL</u>	MDL	DF		Qualifiers
TPH as Gasoline	N	D	50	48	1.00		
Surrogate	R	ec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	65	5	38-134				
B15	15-09-1939-3-E	E 09/24/15	Aqueous	GC 1	09/25/15	09/25/15	150925L022
		10:25				21:14	
Comment(s): - Results were evaluated to	the MDL (DL), c	concentrations >=	to the MDL (DL	.) but < RL (LOC	2), if found, are o	qualified with	a "J" flag.
Parameter TPU as Casaling	<u>Ri</u>	<u>esuit</u>	<u>RL</u>				Qualifiers
IPH as Gasoline	IN	D	50	48	1.00		
<u>Surrogate</u>	R	<u>ec. (%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	66	6	38-134				
B17	15-09-1939-4-E	E 09/24/15	Aqueous	GC 1	09/25/15	09/25/15	150925L022
		11:05	•			21:49	
Comment(s): - Results were evaluated to	the MDL (DL), c	concentrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are o	qualified with	a "J" flag.
Parameter	<u>R</u>	<u>esult</u>	<u>KL</u>	MDL	DF		Qualifiers
TPH as Gasoline	N	D	50	48	1.00		
Surrogate	R	ec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	65	5	38-134				

Alta Environmental			Date Receiv	/ed:			09/24/15
3777 Long Beach Blvd., Annex Build	ding		Work Order	:			15-09-1939
Long Beach, CA 90802-3335			Preparation	:			EPA 5030C
-			Method:				EPA 8015B (M)
			Units:				ug/L
Project: 12870 Panama Street / MC	GU-15-5506					Р	age 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B18	15-09-1939-5-E	09/24/15 09:50	Aqueous	GC 1	09/25/15	09/25/15 23:00	150925L022
Comment(s): - Results were evaluated to	the MDL (DL), con	centrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Parameter	Resi	<u>ult</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
TPH as Gasoline	ND		50	48	1.00		
Surrogate	Rec.	. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	67		38-134				
B19	15-09-1939-6-E	09/24/15 12:00	Aqueous	GC 1	09/25/15	09/25/15 23:36	150925L022
B19 Comment(s): - Results were evaluated to	15-09-1939-6-E the MDL (DL), con	09/24/15 12:00	Aqueous	GC 1 .) but < RL (LOC	09/25/15 2), if found, are	09/25/15 23:36 qualified with	150925L022 a "J" flag.
B19 Comment(s): - Results were evaluated to Parameter	15-09-1939-6-E the MDL (DL), con <u>Rest</u>	09/24/15 12:00 centrations >=	Aqueous to the MDL (DL <u>RL</u>	GC 1 .) but < RL (LOC <u>MDL</u>	09/25/15 2), if found, are <u>DF</u>	09/25/15 23:36 qualified with	150925L022 a "J" flag. Qualifiers
B19 Comment(s): - Results were evaluated to Parameter TPH as Gasoline	15-09-1939-6-E the MDL (DL), con <u>Resu</u> ND	09/24/15 12:00 centrations >= ult	Aqueous to the MDL (DL <u>RL</u> 50	GC 1 .) but < RL (LOC <u>MDL</u> 48	09/25/15 2), if found, are <u>DF</u> 1.00	09/25/15 23:36 qualified with	150925L022 a "J" flag. Qualifiers
B19 Comment(s): - Results were evaluated to Parameter TPH as Gasoline Surrogate	15-09-1939-6-E the MDL (DL), con <u>Resu</u> ND <u>Rec.</u>	09/24/15 12:00 centrations >= 	Aqueous to the MDL (DL RL 50 <u>Control Limits</u>	GC 1 .) but < RL (LOC <u>MDL</u> 48 <u>Qualifiers</u>	09/25/15 2), if found, are <u>DF</u> 1.00	09/25/15 23:36 qualified with	150925L022 a "J" flag. <u>Qualifiers</u>
B19 Comment(s): - Results were evaluated to Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene	15-09-1939-6-E the MDL (DL), con <u>Resu</u> ND <u>Rec.</u> 67	09/24/15 12:00 centrations >= ult _(%)	Aqueous to the MDL (DL RL 50 Control Limits 38-134	GC 1) but < RL (LOC <u>MDL</u> 48 <u>Qualifiers</u>	09/25/15 2), if found, are <u>DF</u> 1.00	09/25/15 23:36 qualified with	150925L022 a "J" flag. <u>Qualifiers</u>
B19 Comment(s): - Results were evaluated to Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Method Blank	15-09-1939-6-E o the MDL (DL), con <u>Res</u> ND <u>Rec.</u> 67 099-12-436-10337	09/24/15 12:00 centrations >= ult .(%) 7 N/A	Aqueous to the MDL (DL RL 50 Control Limits 38-134 Aqueous	GC 1 .) but < RL (LOC <u>MDL</u> 48 <u>Qualifiers</u> GC 1	09/25/15 2), if found, are <u>DF</u> 1.00 09/25/15	09/25/15 23:36 qualified with 09/25/15 14:43	150925L022 a "J" flag. Qualifiers 150925L022
B19 Comment(s): - Results were evaluated to Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Method Blank Comment(s): - Results were evaluated to	15-09-1939-6-E the MDL (DL), con <u>Resu</u> ND <u>Rec.</u> 67 099-12-436-10337 the MDL (DL), con	09/24/15 12:00 centrations >= ult _(%) 7 N/A centrations >=	Aqueous to the MDL (DL RL 50 Control Limits 38-134 Aqueous to the MDL (DL	GC 1 .) but < RL (LOC <u>MDL</u> 48 <u>Qualifiers</u> GC 1 .) but < RL (LOC	09/25/15 2), if found, are <u>DF</u> 1.00 09/25/15 2), if found, are	09/25/15 23:36 qualified with 09/25/15 14:43 qualified with	150925L022 a "J" flag. Qualifiers 150925L022 a "J" flag.
B19 Comment(s): - Results were evaluated to Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Method Blank Comment(s): - Results were evaluated to Parameter	15-09-1939-6-E o the MDL (DL), con <u>Resu</u> ND <u>Rec.</u> 67 099-12-436-10337 o the MDL (DL), con <u>Resu</u>	09/24/15 12:00 centrations >= ult (%) 7 N/A centrations >= ult	Aqueous to the MDL (DL RL 50 Control Limits 38-134 Aqueous to the MDL (DL RL	GC 1) but < RL (LOC <u>MDL</u> 48 <u>Qualifiers</u> GC 1) but < RL (LOC <u>MDL</u>	09/25/15 2), if found, are <u>DF</u> 1.00 09/25/15 2), if found, are <u>DF</u>	09/25/15 23:36 qualified with 09/25/15 14:43 qualified with	150925L022 a "J" flag. Qualifiers 150925L022 a "J" flag. Qualifiers
B19 Comment(s): - Results were evaluated to Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Method Blank Comment(s): - Results were evaluated to Parameter TPH as Gasoline	15-09-1939-6-E the MDL (DL), con <u>Ress</u> ND <u>Rec.</u> 67 099-12-436-10337 the MDL (DL), con <u>Ress</u> ND	09/24/15 12:00 centrations >= ult .(%) 7 N/A centrations >= ult	Aqueous to the MDL (DL RL 50 Control Limits 38-134 Aqueous to the MDL (DL RL 50	GC 1) but < RL (LOC <u>MDL</u> 48 <u>Qualifiers</u> GC 1) but < RL (LOC <u>MDL</u> 48	09/25/15 a), if found, are <u>DF</u> 1.00 09/25/15 a), if found, are <u>DF</u> 1.00	09/25/15 23:36 qualified with 09/25/15 14:43 qualified with	150925L022 a "J" flag. Qualifiers 150925L022 a "J" flag. Qualifiers
B19 Comment(s): - Results were evaluated to Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Method Blank Comment(s): - Results were evaluated to Parameter TPH as Gasoline Surrogate Surrogate TPH as Gasoline	15-09-1939-6-E the MDL (DL), con <u>Resu</u> ND <u>Rec.</u> 67 099-12-436-10337 o the MDL (DL), con <u>Resu</u> ND <u>Rec.</u>	09/24/15 12:00 centrations >= ult _(%) 7 N/A centrations >= ult _(%)	Aqueous to the MDL (DL RL 50 Control Limits 38-134 to the MDL (DL RL 50 Control Limits	GC 1 .) but < RL (LOC <u>MDL</u> 48 <u>Qualifiers</u> GC 1 .) but < RL (LOC <u>MDL</u> 48 <u>Qualifiers</u>	09/25/15 2), if found, are <u>DF</u> 1.00 09/25/15 2), if found, are <u>DF</u> 1.00	09/25/15 23:36 qualified with 09/25/15 14:43 qualified with	150925L022 a "J" flag. Qualifiers 150925L022 a "J" flag. Qualifiers

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 12870 Panama Street / MCGU-15-5506		Page 1 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B13	15-09-1939-1-A	09/24/15 08:40	Aqueous	GC/MS LL	09/25/15	09/25/15 16:53	150925L007
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
Parameter	Resul	<u> t</u>	<u>RL</u>	MDL	DF	<u>(</u>	Qualifiers
Acetone	ND		20	10	1.00		
Benzene	ND		0.50	0.14	1.00		
Bromobenzene	ND		1.0	0.30	1.00		
Bromochloromethane	ND		1.0	0.48	1.00		
Bromodichloromethane	ND		1.0	0.21	1.00		
Bromoform	ND		1.0	0.50	1.00		
Bromomethane	ND		10	3.9	1.00		
2-Butanone	ND		10	2.2	1.00		
n-Butylbenzene	ND		1.0	0.23	1.00		
sec-Butylbenzene	ND		1.0	0.25	1.00		
tert-Butylbenzene	ND		1.0	0.28	1.00		
Carbon Disulfide	ND		10	0.41	1.00		
Carbon Tetrachloride	ND		0.50	0.23	1.00		
Chlorobenzene	ND		1.0	0.17	1.00		
Chloroethane	ND		5.0	2.3	1.00		
Chloroform	ND		1.0	0.46	1.00		
Chloromethane	ND		10	1.8	1.00		
2-Chlorotoluene	ND		1.0	0.24	1.00		
4-Chlorotoluene	ND		1.0	0.13	1.00		
Dibromochloromethane	ND		1.0	0.25	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	1.2	1.00		
1,2-Dibromoethane	ND		1.0	0.36	1.00		
Dibromomethane	ND		1.0	0.46	1.00		
1,2-Dichlorobenzene	ND		1.0	0.46	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.43	1.00		
Dichlorodifluoromethane	ND		1.0	0.46	1.00		
1,1-Dichloroethane	ND		1.0	0.28	1.00		
1,2-Dichloroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene	ND		1.0	0.43	1.00		
c-1,2-Dichloroethene	ND		1.0	0.48	1.00		
t-1,2-Dichloroethene	ND		1.0	0.37	1.00		
1,2-Dichloropropane	ND		1.0	0.42	1.00		
1,3-Dichloropropane	ND		1.0	0.30	1.00		

Calscience

Alta Environmental		Date Receive	d:		09/24/15	
3777 Long Beach Blvd., Annex Building		Work Order:		15-09-1939		
Long Beach, CA 90802-3335		Preparation:		EPA 50300		
		Method:			EPA 8260B	
		Linite:			uq/l	
Project: 12870 Panama Street / MCGU-15-550	06	onno.			Page 2 of 21	
Parameter	Result	RL	MDL	DF	Qualifiers	
2,2-Dichloropropane	ND	1.0	0.36	1.00		
1,1-Dichloropropene	ND	1.0	0.46	1.00		
c-1,3-Dichloropropene	ND	0.50	0.25	1.00		
t-1,3-Dichloropropene	ND	0.50	0.25	1.00		
Ethylbenzene	ND	1.0	0.14	1.00		
2-Hexanone	ND	10	2.1	1.00		
Isopropylbenzene	ND	1.0	0.58	1.00		
p-Isopropyltoluene	ND	1.0	0.16	1.00		
Methylene Chloride	ND	10	0.64	1.00		
4-Methyl-2-Pentanone	ND	10	4.4	1.00		
Naphthalene	ND	10	2.5	1.00		
n-Propylbenzene	ND	1.0	0.17	1.00		
Styrene	ND	1.0	0.17	1.00		
1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00		
1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00		
Tetrachloroethene	ND	1.0	0.39	1.00		
Toluene	ND	1.0	0.24	1.00		
1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00		
1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00		
1,1,1-Trichloroethane	ND	1.0	0.30	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00		
1,1,2-Trichloroethane	ND	1.0	0.38	1.00		
Trichloroethene	ND	1.0	0.37	1.00		
Trichlorofluoromethane	ND	10	1.7	1.00		
1,2,3-Trichloropropane	ND	5.0	0.64	1.00		
1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00		
1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00		
Vinyl Acetate	ND	10	2.8	1.00		
Vinyl Chloride	ND	0.50	0.30	1.00		
p/m-Xylene	ND	1.0	0.30	1.00		
o-Xylene	ND	1.0	0.23	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00		
Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00		
Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00		
Ethanol	ND	100	50	1.00		

Alta Environmental	Date Receive	ed:	09/24/15 15-09-1939		
3777 Long Beach Blvd., Annex Bui	Work Order:				
Long Beach, CA 90802-3335	Preparation:		EPA 5030C		
		Method:		EPA 8260E	
		Units:		ug/L	
Project: 12870 Panama Street / MC			Page 3 of 21		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	92	80-120			
Dibromofluoromethane	98	78-126			
1,2-Dichloroethane-d4	91	75-135			
Toluene-d8	98	80-120			

Return to Contents

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 12870 Panama Street / MCGU-15-5506		Page 4 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B14	15-09-1939-2-A	09/24/15 10:45	Aqueous	GC/MS LL	09/25/15	09/25/15 17:28	150925L007
Comment(s): - Results were evaluated	to the MDL (DL), conc	entrations >=	to the MDL (DI	L) but < RL (LC	Q), if found, are	qualified with	a "J" flag.
Parameter	Resu	<u> t</u>	<u>RL</u>	MDL	DF		<u>Qualifiers</u>
Acetone	ND		20	10	1.00		
Benzene	ND		0.50	0.14	1.00		
Bromobenzene	ND		1.0	0.30	1.00		
Bromochloromethane	ND		1.0	0.48	1.00		
Bromodichloromethane	ND		1.0	0.21	1.00		
Bromoform	ND		1.0	0.50	1.00		
Bromomethane	ND		10	3.9	1.00		
2-Butanone	ND		10	2.2	1.00		
n-Butylbenzene	ND		1.0	0.23	1.00		
sec-Butylbenzene	ND		1.0	0.25	1.00		
tert-Butylbenzene	ND		1.0	0.28	1.00		
Carbon Disulfide	0.44		10	0.41	1.00		B,J
Carbon Tetrachloride	ND		0.50	0.23	1.00		
Chlorobenzene	ND		1.0	0.17	1.00		
Chloroethane	ND		5.0	2.3	1.00		
Chloroform	ND		1.0	0.46	1.00		
Chloromethane	ND		10	1.8	1.00		
2-Chlorotoluene	ND		1.0	0.24	1.00		
4-Chlorotoluene	ND		1.0	0.13	1.00		
Dibromochloromethane	ND		1.0	0.25	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	1.2	1.00		
1,2-Dibromoethane	ND		1.0	0.36	1.00		
Dibromomethane	ND		1.0	0.46	1.00		
1,2-Dichlorobenzene	ND		1.0	0.46	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.43	1.00		
Dichlorodifluoromethane	ND		1.0	0.46	1.00		
1,1-Dichloroethane	ND		1.0	0.28	1.00		
1,2-Dichloroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene	ND		1.0	0.43	1.00		
c-1,2-Dichloroethene	ND		1.0	0.48	1.00		
t-1,2-Dichloroethene	ND		1.0	0.37	1.00		
1,2-Dichloropropane	ND		1.0	0.42	1.00		
1,3-Dichloropropane	ND		1.0	0.30	1.00		

Calscience

Alta Environmental		Date Rec	eived:		09/24/15	
3777 Long Beach Blvd., Annex Building		Work Ord	ler:	15-09-1939		
Long Beach. CA 90802-3335		Preparatio		EPA 5030C		
		Method			EPA 8260B	
		l Inits:				
Project: 12870 Panama Street / MCGU-15	orma.	Units:				
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qualifiers	
2,2-Dichloropropane	ND	1.0	0.36	1.00		
1,1-Dichloropropene	ND	1.0	0.46	1.00		
c-1,3-Dichloropropene	ND	0.50	0.25	1.00		
t-1,3-Dichloropropene	ND	0.50	0.25	1.00		
Ethylbenzene	ND	1.0	0.14	1.00		
2-Hexanone	ND	10	2.1	1.00		
Isopropylbenzene	ND	1.0	0.58	1.00		
p-Isopropyltoluene	ND	1.0	0.16	1.00		
Methylene Chloride	ND	10	0.64	1.00		
4-Methyl-2-Pentanone	ND	10	4.4	1.00		
Naphthalene	ND	10	2.5	1.00		
n-Propylbenzene	ND	1.0	0.17	1.00		
Styrene	ND	1.0	0.17	1.00		
1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00		
1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00		
Tetrachloroethene	ND	1.0	0.39	1.00		
Toluene	ND	1.0	0.24	1.00		
1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00		
1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00		
1,1,1-Trichloroethane	ND	1.0	0.30	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00		
1,1,2-Trichloroethane	ND	1.0	0.38	1.00		
Trichloroethene	ND	1.0	0.37	1.00		
Trichlorofluoromethane	ND	10	1.7	1.00		
1,2,3-Trichloropropane	ND	5.0	0.64	1.00		
1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00		
1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00		
Vinyl Acetate	ND	10	2.8	1.00		
Vinyl Chloride	ND	0.50	0.30	1.00		
p/m-Xylene	ND	1.0	0.30	1.00		
o-Xylene	ND	1.0	0.23	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00		
Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00		
Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00		
Ethanol	ND	100	50	1.00		

Alta Environmental	Date Receive	ed:	09/24/15 15-09-1939			
3777 Long Beach Blvd., Annex Building	Work Order:					
Long Beach, CA 90802-3335		Preparation:		EPA 5030C		
		Method:		EPA 8260B		
		Units:		ug/L		
Project: 12870 Panama Street / MCGU-	15-5506			Page 6 of 21		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	90	80-120				
Dibromofluoromethane	132	78-126	2,7			
1,2-Dichloroethane-d4	128	75-135				
Toluene-d8	97	80-120				

Alta Environmental	Date Received:	09/24/15	
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939	
Long Beach, CA 90802-3335	Preparation:	EPA 5030C	
	Method:	EPA 8260B	
	Units:	ug/L	
Project: 12870 Panama Street / MCGU-15-5506		Page 7 of 21	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B15	15-09-1939-3-A	09/24/15 10:25	Aqueous	GC/MS LL	09/25/15	09/25/15 18:04	150925L007
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >= to	o the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
Parameter	Resu	<u>t F</u>	<u>RL</u>	MDL	DF	<u>Q</u>	ualifiers
Acetone	ND	2	20	10	1.00		
Benzene	ND	(0.50	0.14	1.00		
Bromobenzene	ND	1	1.0	0.30	1.00		
Bromochloromethane	ND	1	1.0	0.48	1.00		
Bromodichloromethane	ND	1	1.0	0.21	1.00		
Bromoform	ND	1	1.0	0.50	1.00		
Bromomethane	ND	1	10	3.9	1.00		
2-Butanone	ND	1	10	2.2	1.00		
n-Butylbenzene	ND	1	1.0	0.23	1.00		
sec-Butylbenzene	ND	1	1.0	0.25	1.00		
tert-Butylbenzene	ND	1	1.0	0.28	1.00		
Carbon Disulfide	ND	1	10	0.41	1.00		
Carbon Tetrachloride	ND	(0.50	0.23	1.00		
Chlorobenzene	ND	1	1.0	0.17	1.00		
Chloroethane	ND	Ę	5.0	2.3	1.00		
Chloroform	ND	1	1.0	0.46	1.00		
Chloromethane	ND	1	10	1.8	1.00		
2-Chlorotoluene	ND	1	1.0	0.24	1.00		
4-Chlorotoluene	ND	1	1.0	0.13	1.00		
Dibromochloromethane	ND	1	1.0	0.25	1.00		
1,2-Dibromo-3-Chloropropane	ND	Ę	5.0	1.2	1.00		
1,2-Dibromoethane	ND	1	1.0	0.36	1.00		
Dibromomethane	ND	1	1.0	0.46	1.00		
1,2-Dichlorobenzene	ND	1	1.0	0.46	1.00		
1,3-Dichlorobenzene	ND	1	1.0	0.40	1.00		
1,4-Dichlorobenzene	ND	1	1.0	0.43	1.00		
Dichlorodifluoromethane	ND	1	1.0	0.46	1.00		
1,1-Dichloroethane	ND	1	1.0	0.28	1.00		
1,2-Dichloroethane	ND	(0.50	0.24	1.00		
1,1-Dichloroethene	ND	1	1.0	0.43	1.00		
c-1,2-Dichloroethene	ND	1	1.0	0.48	1.00		
t-1,2-Dichloroethene	ND	1	1.0	0.37	1.00		
1,2-Dichloropropane	ND	1	1.0	0.42	1.00		
1,3-Dichloropropane	ND	1	1.0	0.30	1.00		

Calscience

3777 Long Beach Blvd., Annex Building Work Order: 15-09-1939 Long Beach, CA 90802-3335 Preparation: EPA 5030C Project: 12870 Panama Street / MCGU-15-5506 Preparation: Units: ug/L Project: 12870 Panama Street / MCGU-15-5506 Preparation: ND 1.0 0.36 1.00 2-2-Dichloropropane ND 1.0 0.36 1.00	Alta Environmental		Date Rec	eived:		09/24/15
Long Beach, CA 90802-3335 Preparation: Method: Units: EPA 82600 (PEA 82600) Project: 12870 Panama Street / MCGU-15-5506 Page 8 of 21 Parameter Result RL MDL DE Qualifiers 2-2 Ochohropropane ND 1.0 0.36 1.00 1-1 Ochohropropane ND 0.50 0.25 1.00 1-3 Dichhoropropane ND 0.50 0.25 1.00 1-3 Dichhoropropane ND 1.0 0.46 1.00 2-Hasanne ND 1.0 0.48 1.00 1-3 Dichhoropropene ND 1.0 0.44 1.00 2-Hearanne ND 1.0 0.44 1.00 2-Hearanne ND 1.0 0.44 1.00 4-Adettyl=2-Pontanone ND 1.0 0.44 1.00 Preparatione ND 1.0 0.41 1.00 Naphthalene ND 1.0 0.41 1.00 Naphthalene ND 1.0 0.31 1.00 </th <th colspan="2">3777 Long Beach Blvd., Annex Building</th> <th>Work Ord</th> <th colspan="3">15-09-1939</th>	3777 Long Beach Blvd., Annex Building		Work Ord	15-09-1939		
Method: EPA 8260B Units: ug/L Project: Page 8 of 21 Parametar Result RL MDL Quatifiers 2-2bichlorpropane ND 1.0 0.36 1.00 1.1-Dichlorpropene ND 1.0 0.46 1.00 -1.3-Dichlorpropene ND 0.0 0.25 1.00 -1.3-Dichlorpropene ND 1.0 0.14 1.00 Stopropythemzene ND 1.0 0.14 1.00 Isopropythemzene ND 1.0 0.14 1.00 Valexanone ND 1.0 0.14 1.00 Isopropythemzene ND 1.0 0.16 1.00 Methylone Chioide ND 1.0 0.44 1.00 NPPropytenzene ND 1.0 0.17 1.00 ND 1.0 0.17 1.00 1.1,1.2-Tertachoresthane ND ND 1.0 0.41 1.00 1.1,1.2-Tertachoresthane <t< th=""><th>Long Beach, CA 90802-3335</th><th></th><th>Preparati</th><th>EPA 5030C</th></t<>	Long Beach, CA 90802-3335		Preparati	EPA 5030C		
Units: ug/L Project: 12870 Panama Street / MCGU-15-5506 Page 8 of 21 Pariametar Result RL MOL DE Qualifiers 2.2 Obchiloropropene ND 1.0 0.36 1.00 1 1.1 Dichtoropropene ND 0.50 0.25 1.00 1 1.1 Dichtoropropene ND 0.50 0.25 1.00 1 Ethylbenzene ND 1.0 0.14 1.00 24 1.00 Stoprophenzene ND 1.0 0.48 1.00 1.00 1.00 Stoprophenzene ND 1.0 0.44 1.00 1.00 1.00 1.00 1.00 1.01 </th <th></th> <th></th> <th>Method:</th> <th></th> <th></th> <th>EPA 8260B</th>			Method:			EPA 8260B
Project: 12870 Panama Street / MCGU-15-550 Page 8 of 21 Parameter Result RL MDL DE Qualifiers 22-Dichloropropene ND 1.0 0.36 1.00			Units:			ug/l
Parameter Result RL MDL DE Qualifiers 2.2-Dichloropropene ND 1.0 0.36 1.00 1.1-Dichloropropene ND 0.50 0.25 1.00 -1.3-Dichloropropene ND 0.50 0.25 1.00 L-1.3-Dichloropropene ND 0.50 0.25 1.00 Ethylbenzene ND 1.0 0.14 1.00 Isopropylbenzene ND 1.0 0.58 1.00 Isopropylbenzene ND 1.0 0.64 1.00 Isopropylbenzene ND 1.0 0.64 1.00 Isopropylbenzene ND 1.0 0.64 1.00 n-Propylbenzene ND 1.0 0.44 1.00 n-Propylbenzene ND 1.0 0.41 1.00 1.1.1.2-Tetrachloroethane ND 1.0 0.41 1.00 1.1.2.2-Tetrachloroethane ND 1.0 0.51 1.00 1.2.4-Trintohoroethane	Project: 12870 Panama Street / MCGU	-15-5506	ormo.			Page 8 of 21
2.2 DichloropropeneND1.00.361.001.1 - DichloropropeneND0.500.251.001.3.2 - DichloropropeneND0.500.251.00EthylbenzaneND1.00.141.00SoporybenzeneND1.00.581.00PisopropytloueneND1.00.581.00PisopropytloueneND1.00.641.00AmbridgeND1.00.641.00AmbridgeND1.00.641.00AmbridgeND1.00.171.00NaphthaleneND1.00.171.00SyreneND1.00.171.00SyreneND1.00.411.001.1.2.2-TetrachloroethaneND1.00.411.001.1.2.2-TetrachloroethaneND1.00.411.001.2.3-TrichloroethaneND1.00.511.001.2.4-TrinbloroethaneND1.00.511.001.2.4-TrichloroethaneND1.00.361.001.1.2-TetrachloroethaneND1.00.781.001.2.4-TrinbloroethaneND1.00.741.001.2.4-TrinbloroethaneND1.00.741.001.2.4-TrinbloroethaneND1.00.741.001.2.4-TrinbloroethaneND1.00.741.001.2.4-TrinbloroethaneND1.00.641.001.2.4-Trinbl	Parameter	<u>Result</u>	<u>RL</u>	MDL	DE	<u>Qualifiers</u>
1.1-DichloropropeneND1.00.461.00<1.3-Dichloropropene	2,2-Dichloropropane	ND	1.0	0.36	1.00	
c-1.3-DichloropropeneND0.500.251.00t-1.3-DichloropropeneND0.500.251.00t-1.3-DichloropropeneND1.00.141.002-HexanoneND1.00.581.00IsopropylbenzaneND1.00.681.00Pi-SopropylbuleneND1.00.641.00Methylene ChlorideND1.00.641.00A-Methyl-2-PentanoneND1.00.771.00NaphthaleneND1.00.171.00StyreneND1.00.401.001.1,1.2-TetrachloroethaneND1.00.411.001.1,2.2-TetrachloroethaneND1.00.411.001.2,2-TrichloroethaneND1.00.341.001.2,2-TrichloroethaneND1.00.501.001.1,2-TetrachloroethaneND1.00.511.001.2,2-TrichloroethaneND1.00.381.001.2,2-TrichloroethaneND1.00.381.001.1,1-TrichloroethaneND1.00.381.001.1,2-TrichloroethaneND1.00.381.001.2,2-TrithelbroethaneND1.00.381.001.2,2-TrithelbroethaneND1.00.381.001.1,2-TrichloroethaneND1.00.311.011.2,2-TrithelbroethaneND1.00.311.011.2,3-TrithelbroethaneND<	1,1-Dichloropropene	ND	1.0	0.46	1.00	
i.1.3-DickloropropeneND0.500.251.00EthylenzeneND1.00.141.00SopropylbenzeneND1.00.581.00p-IsopropylbenzeneND1.00.641.00Methylene ChlorideND100.641.004.Methyle.2-PentanoneND100.441.00NaphthaleneND100.171.00-PropylbenzeneND1.00.171.00StyreneND1.00.411.001.1.2.2-TetrachloroethaneND1.00.411.001.1.2.2-TetrachloroethaneND1.00.411.001.2.3-TichkloroethaneND1.00.411.001.2.4-TrickloroethaneND1.00.511.001.2.4-TrickloroethaneND1.00.511.001.2.4-TrickloroethaneND1.00.331.001.1.2-TrickloroethaneND1.00.371.001.2.4-TrickloroethaneND1.00.361.001.2.4-TrickloroethaneND1.00.361.001.2.4-TrickloroethaneND1.00.371.001.2.4-TrickloroethaneND1.00.361.001.2.4-TrickloroethaneND1.00.361.001.2.4-TrickloroethaneND1.00.361.001.2.4-TrickloroethaneND1.00.361.001.2.4-TrickloroethaneND1.0	c-1,3-Dichloropropene	ND	0.50	0.25	1.00	
Ethylbenzene ND 1.0 0.14 1.00 2-Hexanone ND 10 2.1 1.00 begrorpylbenzene ND 1.0 0.58 1.00 p-Isopropylboluene ND 1.0 0.64 1.00 Methyle-Choride ND 10 0.64 1.00 Methyle-Choride ND 10 2.5 1.00 A-Methyl-2-Pentanone ND 1.0 0.17 1.00 Styrene ND 1.0 0.44 1.00 1.1.1.2-Ertachloroethane ND 1.0 0.40 1.00 1.1.1.2-Ertachloroethane ND 1.0 0.40 1.00 1.2.2-Tetrachloroethane ND 1.0 0.41 1.00 1.2.2-Tetrachloroethane ND 1.0 0.24 1.00 1.2.4-Trichlorobenzene ND 1.0 0.30 1.00 1.2.4-Trichloroethane ND 1.0 0.37 1.00 1.1.2-Trichloroethane ND 1.0	t-1,3-Dichloropropene	ND	0.50	0.25	1.00	
2-HexanoneND102.11.00IsopropylenzeneND1.00.681.00PlespropyllelueneND100.641.00Methylene ChlorideND104.441.00Amethyle-PentanoneND104.41.00NaphthaleneND104.41.00-PropylenzeneND1.00.171.00StyreneND1.00.411.001,1,2-TetrachloroethaneND1.00.411.001,1,2-TetrachloroethaneND1.00.441.001,2,3-TrichloroethaneND1.00.241.001,2,3-TrichloroethaneND1.00.501.001,1,2-TitchloroethaneND1.00.301.001,1,2-TrichloroethaneND1.00.301.001,2,3-TrichloroethaneND1.00.301.001,1,1-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,2,4-TrichlybenzeneND1.00.361.001,2,4-TrichlybenzeneND1.02.81.00<	Ethylbenzene	ND	1.0	0.14	1.00	
IsopropylbenzeneND1.00.581.00p-IsopropylblenzeneND1.00.641.004-Methyls-2-PentanoneND104.41.00NaphthaleneND102.51.00n-PropylbenzeneND1.00.171.00StyreneND1.00.401.001.1,1.2-TetrachloroethaneND1.00.401.001.1,1.2-TetrachloroethaneND1.00.411.00TolueneND1.00.241.001.2,3-TrichlorobenzeneND1.00.511.001.1,1-TrichloroethaneND1.00.511.001.2,3-TrichloroethaneND1.00.511.001.2,3-TrichloroethaneND1.00.511.001.1,1-TrichloroethaneND1.00.381.001.1,1-TrichloroethaneND1.00.381.001.1,2-TrichloroethaneND1.00.371.001.1,2-TrichloroethaneND1.00.371.001.1,2-TrichloroethaneND1.00.371.001.1,2-TrichloroethaneND1.00.361.001.1,2-TrichloroethaneND1.00.361.001.1,2-TrichloroethaneND1.00.361.001.1,2-TrichloroethaneND1.00.371.001.2,3-TrinethylberzeneND1.00.361.001.2,4-TrinethylberzeneND1.0<	2-Hexanone	ND	10	2.1	1.00	
p-IsopropyIdoluene ND 1.0 0.16 1.00 Methylene Chloride ND 10 0.64 1.00 4-Methyl-2-Pentanone ND 10 4.4 1.00 Naphthalene ND 10 2.5 1.00 n-PropyIbenzene ND 1.0 0.17 1.00 Styrene ND 1.0 0.40 1.00 1,1,1,2-Tetrachloroethane ND 1.0 0.40 1.00 1,1,2-Tetrachloroethane ND 1.0 0.41 1.00 1,2.3-Trichlorobenzene ND 1.0 0.39 1.00 1,2.3-Trichlorobenzene ND 1.0 0.51 1.00 1,2.3-Trichlorobenzene ND 1.0 0.30 1.00 1,1.2-Trichlorobenzene ND 1.0 0.33 1.00 1,1.2-Trichlorobenzene ND 1.0 0.33 1.00 1,1.2-Trichlorobenzene ND 1.0 0.33 1.00 1,1.2-Trichlorobenzene ND	Isopropylbenzene	ND	1.0	0.58	1.00	
Methylene Chloride ND 10 0.64 1.00 4-Methyl-2-Pentanone ND 10 4.4 1.00 Naphthalene ND 10 2.5 1.00 Npropelbenzene ND 1.0 0.17 1.00 Styrene ND 1.0 0.40 1.00 1,1,2.2-Tetrachloroethane ND 1.0 0.40 1.00 Totachloroethane ND 1.0 0.40 1.00 1,1,2.2-Tetrachloroethane ND 1.0 0.39 1.00 Totavaloroethane ND 1.0 0.24 1.00 1,2.3-Trichlorobenzene ND 1.0 0.51 1.00 1,1.4-Trichloroethane ND 1.0 0.38 1.00 1,1.2-Trichloroethane ND 1.0 0.36 1.00 1,1.2-Trichloroethane ND 1.0 0.36 1.00 1,1.2-Trichloroethane ND 1.0 0.37 1.00 1,2.3-Trichloroethane ND 1.0	p-Isopropyltoluene	ND	1.0	0.16	1.00	
4-Methyl-2-PentanoneND104.41.00NaphtaleneND102.51.00n-PropylbenzeneND1.00.171.00StyreneND1.00.471.001,1,2-TetrachloroethaneND1.00.401.001,1,2-TetrachloroethaneND1.00.411.00TetrachloroethaneND1.00.411.00TolueneND1.00.241.001,2,3-TrichloroethaneND1.00.511.001,2,4-TrichloroethaneND1.00.501.001,2,4-TrichloroethaneND1.00.301.001,1,2-TrichloroethaneND1.00.381.001,1,2-TrichloroethaneND1.00.381.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.371.001,2,3-TrichloroethaneND1.00.361.001,2,3-TrichloroethaneND1.00.361.001,2,3-TrichloroethaneND1.00.361.001,2,3-TrichloroethaneND1.00.301.001,2,3-TrichloroethaneND1.00.301.001,2,3-TrichloroethaneND1.00.301.001,2,3-TrichloroethaneND1.00.301.001,2,3-TrichloroethaneND1.00.301.001,2,4-TrimethylbenzeneND1.00.	Methylene Chloride	ND	10	0.64	1.00	
Naphthalene ND 10 2.5 1.00 n-Propylbenzene ND 1.0 0.17 1.00 Styrene ND 1.0 0.17 1.00 Styrene ND 1.0 0.10 1.00 1,1,1.2-Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.39 1.00 1,2,2-Tetrachloroethane ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.51 1.00 1,2,4-Trichlorobenzene ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.36 1.00 1,1,2-Trichloroethane ND 1.0 0.36 1.00 1,1,2-Trichloroethane ND 1.0 0.36 1.00 1,2,3-Trichloropopane ND 1.0<	4-Methyl-2-Pentanone	ND	10	4.4	1.00	
n-PropylbenzeneND1.00.171.00StyreneND1.00.171.001,1,12-TetrachloroethaneND1.00.401.001,1,2-TetrachloroethaneND1.00.391.00TetrachloroethaneND1.00.391.00TolueneND1.00.511.001,2,3-TirchlorobenzeneND1.00.501.001,1.1-TirchloroethaneND1.00.301.001,1.2-TirchloroethaneND1.00.301.001,1.2-TirchloroethaneND1.00.381.001,1.2-TirchloroethaneND1.00.381.001,1.2-TirchloroethaneND1.00.371.001,1.2-TirchloroethaneND1.00.371.001,1.2-TirchloroethaneND1.00.361.001,2.3-TirchloroptopaneND1.00.361.001,2.4-TirchloroethaneND1.00.361.001,3.5-TirnethylbenzeneND1.00.361.001,3.5-TirnethylbenzeneND1.00.301.00ynyl AcataleND1.00.311.00ynyl ChlorideND1.00.311.00ynyl ChlorideND1.00.311.00ynyl ChlorideND1.00.331.00ynyl ChlorideND1.00.331.00ynyl ChlorideND1.00.331.00	Naphthalene	ND	10	2.5	1.00	
Styrene ND 1.0 0.17 1.00 1,1,1,2-Tetrachloroethane ND 1.0 0.40 1.00 1,1,2-Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.39 1.00 Toluene ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.50 1.00 1,2,4-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.33 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,2,3-Trichloropthane ND 1.0 0.36 1.00 1,3,2-Trichloroptopane ND 1.0 0.36 1.00 1,3,5-Trimethylbenzene ND 1.0 0.30 1.00 Yinyl Chloride ND	n-Propylbenzene	ND	1.0	0.17	1.00	
1,1,2-Tetrachloroethane ND 1.0 0.40 1.00 1,1,2-Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.39 1.00 Toluene ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.51 1.00 1,2,4-Trichlorobenzene ND 1.0 0.50 1.00 1,1,1-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,2,3-Trichloropropane ND 1.0 0.36 1.00 1,2,3-Trimethylbenzene ND 1.0 0.36 1.00 1,3,5-Trimethylbenzene ND 1.0 0.30 1.00 Yinyl Acetate ND 1.0 0.30 1.00 Yinyl Acetate ND	Styrene	ND	1.0	0.17	1.00	
1,1,2,2-Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.39 1.00 Toluene ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.50 1.00 1,2,4-Trichlorobenzene ND 1.0 0.50 1.00 1,1,1-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,2,3-Trichloropethane ND 1.0 0.37 1.00 1,2,3-Trichloropropane ND 5.0 0.64 1.00 1,2,3-Trinethylbenzene ND 1.0 0.28 1.00 1,3,5-Trimethylbenzene ND 1.0 0.30 1.00 Vinyl Acetate ND 1.0 0.30 1.00 Vinyl Acetate ND <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>1.00</td> <td></td>	1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00	
Tetrachloroethene ND 1.0 0.39 1.00 Toluene ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.51 1.00 1,2,4-Trichloroethane ND 1.0 0.50 1.00 1,1,1-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1.0 0.33 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1.0 0.33 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1.0 0.33 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1.0 0.37 1.00 Trichloroethene ND 1.0 0.37 1.00 1,2-Trichloropopane ND 1.0 0.36 1.00 1,3-Trimethylbenzene ND 1.0 0.28 1.00 Vinyl Actate ND 1.0 0.30 1.00 o-Xylene ND 1.0 0.31 1.00 o-Xyl	1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00	
Toluene ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.51 1.00 1,2,4-Trichlorobenzene ND 1.0 0.50 1.00 1,1,1-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 Trichlorofluoromethane ND 1.0 0.37 1.00 1,2,3-Trichloropropane ND 1.0 0.36 1.00 1,2,4-Trimethylbenzene ND 1.0 0.36 1.00 1,3,5-Trimethylbenzene ND 1.0 0.30 1.00 Vinyl Acheta ND 0.50 0.30 1.00 Vinyl Choride ND 1.0 0.31 1.00 ox/ylene ND <td< td=""><td>Tetrachloroethene</td><td>ND</td><td>1.0</td><td>0.39</td><td>1.00</td><td></td></td<>	Tetrachloroethene	ND	1.0	0.39	1.00	
1,2,3-Trichlorobenzene ND 1.0 0.51 1.00 1,2,4-Trichlorobenzene ND 1.0 0.50 1.00 1,1,1-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 10 0.78 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 Trichlorofluoromethane ND 1.0 0.37 1.00 1,2,3-Trichloropropane ND 5.0 0.64 1.00 1,2,4-Trimethylbenzene ND 1.0 0.36 1.00 1,3,5-Trinethrylbenzene ND 1.0 0.28 1.00 Vinyl Acetate ND 1.0 0.30 1.00 Vinyl Choride ND 0.50 0.30 1.00 o-Xylene ND 1.0 0.31 1.00 o-Xylene ND 1.0 0.31 1.00 Otisopropyl Ether (MTBE) ND 1.0 0.33 1.00 Diisopropyl Ether (DIPE) ND	Toluene	ND	1.0	0.24	1.00	
1.2.4-Trichlorobenzene ND 1.0 0.50 1.00 1,1.1-Trichloroethane ND 1.0 0.30 1.00 1,1.2-Trichloroethane ND 10 0.78 1.00 1,1.2-Trichloroethane ND 1.0 0.38 1.00 1,1.2-Trichloroethane ND 1.0 0.37 1.00 Trichloroethane ND 1.0 0.37 1.00 Trichloroptopane ND 1.0 0.36 1.00 1,2.4-Trimethylbenzene ND 1.0 0.36 1.00 1,2.3-Trichloroptopane ND 1.0 0.36 1.00 1,2.4-Trimethylbenzene ND 1.0 0.28 1.00 1,3.5-Trimethylbenzene ND 1.0 0.30 1.00 Vinyl Acetate ND 1.0 0.30 1.00 Vinyl Chloride ND 1.0 0.30 1.00 o-Xylene ND 1.0 0.31 1.00 o-Xylene ND 1.0 0.31 1.00 Tert-Butyl Alcohol (TBA) ND 1.0	1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00	
1,1,1-TrichloroethaneND1.00.301.001,1,2-TrichloroethaneND100.781.001,1,2-TrichloroethaneND1.00.381.00TrichloroethaneND1.00.371.00TrichloroptoaneND101.71.001,2,3-TrichloropropaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.381.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND1.00.301.00Vinyl ChlorideND0.500.301.00vinyl ChlorideND1.00.331.00Vinyl ChlorideND1.00.331.00Vinyl ChlorideND1.00.301.00o-XyleneND1.00.311.00Tert-Butyl Alcohol (TBA)ND1.00.331.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.441.00EthanolND1.005.01.00	1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00	
1,1,2-Trichloro-1,2,2-TrifluoroethaneND100.781.001,1,2-TrichloroethaneND1.00.381.00TrichloroethaneND1.00.371.00TrichloroftuoromethaneND101.71.001,2,3-TrichloroppaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.311.00o-XyleneND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00EthanolND1.00501.00	1,1,1-Trichloroethane	ND	1.0	0.30	1.00	
1,1,2-TrichloroethaneND1.00.381.00TrichloroetheneND1.00.371.00TrichlorofluoromethaneND101.71.001,2,3-TrichloropropaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.331.00o-XyleneND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00	
Trichloroethene ND 1.0 0.37 1.00 Trichlorofluoromethane ND 10 1.7 1.00 1,2,3-Trichloropropane ND 5.0 0.64 1.00 1,2,4-Trimethylbenzene ND 1.0 0.36 1.00 1,3,5-Trimethylbenzene ND 1.0 0.28 1.00 Vinyl Acetate ND 1.0 2.8 1.00 Vinyl Chloride ND 0.50 0.30 1.00 p/m-Xylene ND 1.0 0.30 1.00 o-Xylene ND 1.0 0.30 1.00 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.31 1.00 Tert-Butyl Alcohol (TBA) ND 1.0 0.33 1.00 Diisopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00	1,1,2-Trichloroethane	ND	1.0	0.38	1.00	
TrichlorofluoromethaneND101.71.001,2,3-TrichloropropaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Ethyl-t-Butyl Ether (TAME)ND2.00.221.00EthanolND100501.00	Trichloroethene	ND	1.0	0.37	1.00	
1,2,3-TrichloropropaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Disopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.001.00	Trichlorofluoromethane	ND	10	1.7	1.00	
1,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Disopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND1.00501.00	1,2,3-Trichloropropane	ND	5.0	0.64	1.00	
1,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Ethyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.00	1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00	
Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00EthanolND2.00.221.00	1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00	
Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.00	Vinyl Acetate	ND	10	2.8	1.00	
p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.00	Vinyl Chloride	ND	0.50	0.30	1.00	
o-Xylene ND 1.0 0.23 1.00 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.31 1.00 Tert-Butyl Alcohol (TBA) ND 10 4.6 1.00 Diisopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	p/m-Xylene	ND	1.0	0.30	1.00	
Methyl-t-Butyl Ether (MTBE) ND 1.0 0.31 1.00 Tert-Butyl Alcohol (TBA) ND 10 4.6 1.00 Diisopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	o-Xylene	ND	1.0	0.23	1.00	
Tert-Butyl Alcohol (TBA) ND 10 4.6 1.00 Diisopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00	
Diisopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00	
Ethyl-t-Butyl Ether (ETBE)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.00	Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00	
Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00	
Ethanol ND 100 50 1.00	Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00	
	Ethanol	ND	100	50	1.00	

Return to Contents

Dibromofluoromethane

1,2-Dichloroethane-d4

Toluene-d8

102

95

99

0					
(2	C	CI	on	C	
u a	13	U I	CII	6	

Alta Environmental	Date Receive	ed:	09/24/15			
3777 Long Beach Blvd., Annex Building		Work Order:		15-09-1939		
Long Beach, CA 90802-3335		Preparation:		EPA 5030C		
		Method:		EPA 8260B		
		Units:		ug/L		
Project: 12870 Panama Street / MCGU-1			Page 9 of 21			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	90	80-120				

78-126

75-135

80-120

Return to Contents

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 12870 Panama Street / MCGU-15-5506		Page 10 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B17	15-09-1939-4-A	09/24/15 11:05	Aqueous	GC/MS LL	09/25/15	09/25/15 18:39	150925L007
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
Parameter	Resul	<u>t</u>	<u>RL</u>	MDL	DF	<u>c</u>	Qualifiers
Acetone	ND		20	10	1.00		
Benzene	ND		0.50	0.14	1.00		
Bromobenzene	ND		1.0	0.30	1.00		
Bromochloromethane	ND		1.0	0.48	1.00		
Bromodichloromethane	ND		1.0	0.21	1.00		
Bromoform	ND		1.0	0.50	1.00		
Bromomethane	ND		10	3.9	1.00		
2-Butanone	ND		10	2.2	1.00		
n-Butylbenzene	ND		1.0	0.23	1.00		
sec-Butylbenzene	ND		1.0	0.25	1.00		
tert-Butylbenzene	ND		1.0	0.28	1.00		
Carbon Disulfide	ND		10	0.41	1.00		
Carbon Tetrachloride	ND		0.50	0.23	1.00		
Chlorobenzene	ND		1.0	0.17	1.00		
Chloroethane	ND		5.0	2.3	1.00		
Chloroform	ND		1.0	0.46	1.00		
Chloromethane	ND		10	1.8	1.00		
2-Chlorotoluene	ND		1.0	0.24	1.00		
4-Chlorotoluene	ND		1.0	0.13	1.00		
Dibromochloromethane	ND		1.0	0.25	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	1.2	1.00		
1,2-Dibromoethane	ND		1.0	0.36	1.00		
Dibromomethane	ND		1.0	0.46	1.00		
1,2-Dichlorobenzene	ND		1.0	0.46	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.43	1.00		
Dichlorodifluoromethane	ND		1.0	0.46	1.00		
1,1-Dichloroethane	ND		1.0	0.28	1.00		
1,2-Dichloroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene	ND		1.0	0.43	1.00		
c-1,2-Dichloroethene	ND		1.0	0.48	1.00		
t-1,2-Dichloroethene	ND		1.0	0.37	1.00		
1,2-Dichloropropane	ND		1.0	0.42	1.00		
1,3-Dichloropropane	ND		1.0	0.30	1.00		

🔅 eurofins

Alta Environmental		Date Rec	eived:		09/24/15
3777 Long Beach Blvd., Annex Building		Work Ord	15-09-1939		
Long Beach. CA 90802-3335		Preparatio	on:		EPA 5030C
3		Method:			EPA 8260B
		l Inits:			
Project: 12870 Panama Street / MCGU-15	-5506	Offito.			Page 11 of 21
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qualifiers
2,2-Dichloropropane	ND	1.0	0.36	1.00	
1,1-Dichloropropene	ND	1.0	0.46	1.00	
c-1,3-Dichloropropene	ND	0.50	0.25	1.00	
t-1,3-Dichloropropene	ND	0.50	0.25	1.00	
Ethylbenzene	ND	1.0	0.14	1.00	
2-Hexanone	ND	10	2.1	1.00	
Isopropylbenzene	ND	1.0	0.58	1.00	
p-Isopropyltoluene	ND	1.0	0.16	1.00	
Methylene Chloride	ND	10	0.64	1.00	
4-Methyl-2-Pentanone	ND	10	4.4	1.00	
Naphthalene	ND	10	2.5	1.00	
n-Propylbenzene	ND	1.0	0.17	1.00	
Styrene	ND	1.0	0.17	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00	
Tetrachloroethene	ND	1.0	0.39	1.00	
Toluene	ND	1.0	0.24	1.00	
1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00	
1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00	
1,1,1-Trichloroethane	ND	1.0	0.30	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00	
1,1,2-Trichloroethane	ND	1.0	0.38	1.00	
Trichloroethene	ND	1.0	0.37	1.00	
Trichlorofluoromethane	ND	10	1.7	1.00	
1,2,3-Trichloropropane	ND	5.0	0.64	1.00	
1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00	
1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00	
Vinyl Acetate	ND	10	2.8	1.00	
Vinyl Chloride	ND	0.50	0.30	1.00	
p/m-Xylene	ND	1.0	0.30	1.00	
o-Xylene	ND	1.0	0.23	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00	
Ethanol	ND	100	50	1.00	

Return to Contents

1,2-Dichloroethane-d4

Toluene-d8

95

99

Alta Environmental	Date Receive	ed:	09/24/15	
3777 Long Beach Blvd., Annex Bu	Beach Blvd., Annex Building Work Order:			
Long Beach, CA 90802-3335		Preparation:		
		Method:		EPA 8260B
		Units:		ug/L
Project: 12870 Panama Street / M	CGU-15-5506			Page 12 of 21
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	92	80-120		
Dibromofluoromethane	102	78-126		

75-135

80-120

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 12870 Panama Street / MCGU-15-5506		Page 13 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B18	15-09-1939-5-A	09/24/15 09:50	Aqueous	GC/MS LL	09/25/15	09/25/15 19:15	150925L007	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
Parameter	Resul	<u>lt</u>	<u>RL</u>	MDL	DF	<u>c</u>	Qualifiers	
Acetone	ND	:	20	10	1.00			
Benzene	ND		0.50	0.14	1.00			
Bromobenzene	ND		1.0	0.30	1.00			
Bromochloromethane	ND		1.0	0.48	1.00			
Bromodichloromethane	ND		1.0	0.21	1.00			
Bromoform	ND		1.0	0.50	1.00			
Bromomethane	ND		10	3.9	1.00			
2-Butanone	ND		10	2.2	1.00			
n-Butylbenzene	ND		1.0	0.23	1.00			
sec-Butylbenzene	ND		1.0	0.25	1.00			
tert-Butylbenzene	ND		1.0	0.28	1.00			
Carbon Disulfide	ND		10	0.41	1.00			
Carbon Tetrachloride	ND		0.50	0.23	1.00			
Chlorobenzene	ND		1.0	0.17	1.00			
Chloroethane	ND	:	5.0	2.3	1.00			
Chloroform	ND		1.0	0.46	1.00			
Chloromethane	ND		10	1.8	1.00			
2-Chlorotoluene	ND		1.0	0.24	1.00			
4-Chlorotoluene	ND		1.0	0.13	1.00			
Dibromochloromethane	ND		1.0	0.25	1.00			
1,2-Dibromo-3-Chloropropane	ND	:	5.0	1.2	1.00			
1,2-Dibromoethane	ND		1.0	0.36	1.00			
Dibromomethane	ND		1.0	0.46	1.00			
1,2-Dichlorobenzene	ND		1.0	0.46	1.00			
1,3-Dichlorobenzene	ND		1.0	0.40	1.00			
1,4-Dichlorobenzene	ND		1.0	0.43	1.00			
Dichlorodifluoromethane	ND		1.0	0.46	1.00			
1,1-Dichloroethane	ND		1.0	0.28	1.00			
1,2-Dichloroethane	ND		0.50	0.24	1.00			
1,1-Dichloroethene	ND		1.0	0.43	1.00			
c-1,2-Dichloroethene	ND		1.0	0.48	1.00			
t-1,2-Dichloroethene	ND		1.0	0.37	1.00			
1,2-Dichloropropane	ND		1.0	0.42	1.00			
1,3-Dichloropropane	ND		1.0	0.30	1.00			

Calscience

Alta Environmental		Date Rec	09/24/15		
3777 Long Beach Blvd., Annex Buildir	Work Ord	15-09-1939 EPA 50300			
Long Beach CA 90802-3335				Preparati	
		Method:			EPA 8260B
		Lipito:			
Drojecti 12870 Denomo Street / MCC		Units.			uy/∟ Dogo 14 of 21
	0-15-5506				Page 14 01 21
Parameter	Result	<u>RL</u>	MDL	DF	<u>Qualifiers</u>
2,2-Dichloropropane	ND	1.0	0.36	1.00	
1,1-Dichloropropene	ND	1.0	0.46	1.00	
c-1,3-Dichloropropene	ND	0.50	0.25	1.00	
t-1,3-Dichloropropene	ND	0.50	0.25	1.00	
Ethylbenzene	ND	1.0	0.14	1.00	
2-Hexanone	ND	10	2.1	1.00	
Isopropylbenzene	ND	1.0	0.58	1.00	
p-Isopropyltoluene	ND	1.0	0.16	1.00	
Methylene Chloride	ND	10	0.64	1.00	
4-Methyl-2-Pentanone	ND	10	4.4	1.00	
Naphthalene	ND	10	2.5	1.00	
n-Propylbenzene	ND	1.0	0.17	1.00	
Styrene	ND	1.0	0.17	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00	
Tetrachloroethene	ND	1.0	0.39	1.00	
Toluene	ND	1.0	0.24	1.00	
1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00	
1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00	
1,1,1-Trichloroethane	ND	1.0	0.30	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00	
1,1,2-Trichloroethane	ND	1.0	0.38	1.00	
Trichloroethene	ND	1.0	0.37	1.00	
Trichlorofluoromethane	ND	10	1.7	1.00	
1,2,3-Trichloropropane	ND	5.0	0.64	1.00	
1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00	
1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00	
Vinyl Acetate	ND	10	2.8	1.00	
Vinyl Chloride	ND	0.50	0.30	1.00	
p/m-Xylene	ND	1.0	0.30	1.00	
o-Xylene	ND	1.0	0.23	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00	
Ethanol	ND	100	50	1.00	

🔅 eurofins

Toluene-d8

Alta Environmental		Date Receive	ed:	09/24/15
3777 Long Beach Blvd., Annex Building		Work Order:		15-09-1939
Long Beach, CA 90802-3335		Preparation:		EPA 5030C
		Method:		EPA 8260B
		Units:		ug/L
Project: 12870 Panama Street / MCGU-1			Page 15 of 21	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	94	80-120		
Dibromofluoromethane	99	78-126		
1,2-Dichloroethane-d4	96	75-135		

80-120

100

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 12870 Panama Street / MCGU-15-5506		Page 16 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B19	15-09-1939-6-A	09/24/15 12:00	Aqueous	GC/MS LL	09/25/15	09/25/15 19:50	150925L007
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >= t	the MDL (DL	_) but < RL (LO	Q), if found, are	qualified with a	u "J" flag.
Parameter	Resul	<u>lt</u>	<u>RL</u>	MDL	DF	<u>(</u>	Qualifiers
Acetone	ND	:	20	10	1.00		
Benzene	ND		0.50	0.14	1.00		
Bromobenzene	ND		1.0	0.30	1.00		
Bromochloromethane	ND		1.0	0.48	1.00		
Bromodichloromethane	ND		1.0	0.21	1.00		
Bromoform	ND		1.0	0.50	1.00		
Bromomethane	ND		10	3.9	1.00		
2-Butanone	ND		10	2.2	1.00		
n-Butylbenzene	ND		1.0	0.23	1.00		
sec-Butylbenzene	ND		1.0	0.25	1.00		
tert-Butylbenzene	ND		1.0	0.28	1.00		
Carbon Disulfide	ND		10	0.41	1.00		
Carbon Tetrachloride	ND	(0.50	0.23	1.00		
Chlorobenzene	ND		1.0	0.17	1.00		
Chloroethane	ND	:	5.0	2.3	1.00		
Chloroform	ND		1.0	0.46	1.00		
Chloromethane	ND		10	1.8	1.00		
2-Chlorotoluene	ND		1.0	0.24	1.00		
4-Chlorotoluene	ND		1.0	0.13	1.00		
Dibromochloromethane	ND		1.0	0.25	1.00		
1,2-Dibromo-3-Chloropropane	ND	:	5.0	1.2	1.00		
1,2-Dibromoethane	ND		1.0	0.36	1.00		
Dibromomethane	ND		1.0	0.46	1.00		
1,2-Dichlorobenzene	ND		1.0	0.46	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.43	1.00		
Dichlorodifluoromethane	ND		1.0	0.46	1.00		
1,1-Dichloroethane	ND		1.0	0.28	1.00		
1,2-Dichloroethane	ND	(0.50	0.24	1.00		
1,1-Dichloroethene	ND		1.0	0.43	1.00		
c-1,2-Dichloroethene	ND		1.0	0.48	1.00		
t-1,2-Dichloroethene	ND		1.0	0.37	1.00		
1,2-Dichloropropane	ND		1.0	0.42	1.00		
1,3-Dichloropropane	ND		1.0	0.30	1.00		

Calscience

3777 Long Beach Bivd., Annex Building Work Order: 15-09-1939 Long Beach, CA 90802-3335 Preparation: EPA 5030C Project: 128-07-000 Method: ug/L Project: 128-07-000 Preparation: EPA 8260B Units: ug/L Preparation: EPA 8260B Project: 128-07-061 Preparation: Mg 2.2-Dichloropropene ND 1.0 0.36 1.00 -1.3-Dichloropropene ND 0.50 0.25 1.00 -1.3-Dichloropropene ND 1.0 0.46 1.00 -1.3-Dichloropropene ND 1.0 0.46 1.00 Supprophizance ND 1.0 0.44 1.00 -13-Dichloropropene ND 1.0 0.44 1.00 -2Hexanone ND 1.0 0.44 1.00 -2Hexanone ND 1.0 0.17 1.00 -13-Dichloropropane ND 1.0 0.17 1.00 ND 1.0	Alta Environmental		Date Rec	09/24/15		
Long Beach, CA 90802-3335 Preparation: Method: Units: EPA 82608 Units: Project: 128070 Page 170 61 Project: 12870 Parameter 2.2-Dichloropropene ND 1.0 0.36 1.00 1-1.3-Dichloropropene ND 0.50 0.25 1.00 1-1.3-Dichloropropene ND 1.0 0.44 1.00 2-Heinhoropropene ND 1.0 0.58 1.00 Propolytoluene ND 1.0 0.58 1.00 Patroscher ND 1.0 0.68 1.00 Naphtalene ND 1.0 0.44 1.00 Naphtalene ND 1.0 0.17 1.00 1.1,2.2-Terachlorophane ND 1.0 0.39 1.00 1.1,2.2-Terachlorophane ND	3777 Long Beach Blvd., Annex Building	Work Ord	15-09-1939			
Link globble, globble doct Method: Units: EPA 8250B UglL Project: 12870 Panama Street / MCGU-15-5500 Page 17 of 21 Parameter Result RL MDL DE Qualifiers 2-2bibliorporpane ND 1.0 0.46 1.00 - <th>Long Beach CA 90802-3335</th> <th>Preparatio</th> <th>EPA 5030C</th>	Long Beach CA 90802-3335	Preparatio	EPA 5030C			
Interfact Interfact Indicide Indicide			Method:			EPA 8260B
Project: 128/0 Panama Street / MCGU-15-5506 Page 17 of 21 Project: 128/0 Panama Street / MCGU-15-5506 Page 17 of 21 Project: 128/0 Panama Street / MCGU-15-5506 Page 17 of 21 Project: 128/0 Panama Street / MCGU-15-5506 Page 17 of 21 Project: 128/0 Panama Street / MCGU-15-5506 Page 17 of 21 Project: 10 0.36 1.00 1.1-Dichloropropene ND 1.0 0.46 1.00 C13-Dichloropropene ND 0.0 0.25 1.00 Ethylbanzane ND 1.0 0.16 1.00 Pasprophylbanzane ND 1.0 0.58 1.00 Pasprophylbanzane ND 1.0 0.64 1.00 Pasprophylbanzane ND 1.0 0.17 1.00 Syrene ND 1.0 0.17 1.00 1.1,12-Tetrachloroethane ND 1.0 0.39 1.00 1.1,2-Tetrachloroethane ND 1.0 0.39 1.00 1.1,2-Tetrachloroethan			Lipito:			
Holge in table Regult RL MDL DE Qualifiers 2.2 Dichloropropane ND 1.0 0.46 1.00 1.1-Dichloropropane ND 0.50 0.25 1.00 1.3-Dichloropropane ND 0.50 0.25 1.00 Ethylbenzene ND 1.0 0.14 1.00 Spropylbenzene ND 1.0 0.14 1.00 Spropylbenzene ND 1.0 0.58 1.00 Hethylene Chiolde ND 1.0 0.64 1.00 4Methylene Chiolde ND 1.0 0.64 1.00 Propylbenzene ND 1.0 0.17 1.00 Syrane ND 1.0 0.44 1.00 Syrane ND 1.0 0.41 1.00 1.1,1.2-Tetrachloroethane ND 1.0 0.41 1.00 1.1,2.2-Tetrachloroethane ND 1.0 0.41 1.00 1.1,2.2-Tetrachloroethane ND 1	Project: 12870 Panama Street / MCGL	1-15-5506	Units.			ug/∟ Page 17 of 21
ParameterResultRLMDLDEQualifiers2.2.DichloropropeneND1.00.361.00(1.DichloropropeneND0.500.251.00(1.J.DichloropropeneND0.500.251.00(1.J.DichloropropeneND0.500.251.00EthylbenzeneND100.511.002-HexanoneND100.511.00SporopylbenzeneND1.010.581.00PiskoproytolueneND1.010.641.00Methylene ChlorideND1.010.641.00AnghthaleneND1.010.641.00AnghthaleneND1.010.171.00NaphthaleneND1.010.171.00StyreneND1.010.441.00TritackloroethaneND1.010.411.001,1,2.2.TetrackhoroethaneND1.010.411.001,2.3.TichklorobenzeneND1.010.301.011,2.4.TichklorobenzeneND1.010.311.011,2.4.TichklorobenzeneND1.010.311.011,2.4.TichklorophaneND1.010.361.001,2.4.TichklorophaneND1.010.361.001,2.4.TichklorophaneND1.010.361.001,2.4.TichklorophaneND1.011.011.011,2.4.TichklorophaneND1.011.011.		, 10 0000				
2.2-DichloropropaneND1.00.361.001.1-DichloropropaneND0.500.251.001.3-DichloropropaneND0.500.251.002.4bxanoneND1.00.141.002.4bxanoneND1.00.541.001sopropylenzeneND1.00.541.00PisopropyltomeneND1.00.641.00Methylene ChlorideND1.00.641.00Admitylez-PentanoneND1.00.441.00NaphthaleneND1.00.411.00NaphthaleneND1.00.411.00NaphthaleneND1.00.411.00NaphthaleneND1.00.411.001.1.1.2-TetrachloroethaneND1.00.411.001.1.2.2-TetrachloroethaneND1.00.411.001.2.4-TrichlorobenzeneND1.00.411.001.2.4-TrichlorobenzeneND1.00.411.001.2.4-TrichlorobenzeneND1.00.301.001.1.4-TrichlorobenzeneND1.00.301.001.1.2-TetrachloroethaneND1.00.361.001.1.2-TrichlorobenzeneND1.00.361.001.1.2-TrichlorobenzeneND1.00.361.001.2.4-TrinehybenzeneND1.00.361.001.2.4-TrinehybenzeneND1.00.361.00 <td>Parameter</td> <td><u>Result</u></td> <td><u>RL</u></td> <td>MDL</td> <td>DF</td> <td><u>Qualifiers</u></td>	Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	<u>Qualifiers</u>
1.1-DichloropropeneND1.00.461.00<1.3-Dichloropropene	2,2-Dichloropropane	ND	1.0	0.36	1.00	
c-1.3-DichloropropeneND0.500.251.00L-1.3-DichloropropeneND0.500.251.00EthylbenzeneND100.141.002-HexanoneND100.581.00IsopropylbenzeneND1.00.581.00PisopropylbenzeneND100.641.00Methylane ChlorideND100.641.00Amsthyl2-PentanoneND100.641.00NaphhlafonND1.00.171.00N-PropylbenzeneND1.00.171.00StyreneND1.00.411.001,1,1.2-TetrachloroethaneND1.00.411.001,1,2.2-TetrachloroethaneND1.00.391.001,2.3-TrichloroethaneND1.00.241.001,2.4-TrichlorobenzeneND1.00.301.001,1.2-TetrachloroethaneND1.00.301.001,1.2-TrichloroethaneND1.00.381.001,1.2-TrichloroethaneND1.00.381.001,1.2-TrichloroethaneND1.00.311.001,2.4-TrichloroethaneND1.00.311.001,2.4-TrichloroethaneND1.00.321.001,2.4-TrichloroethaneND1.00.321.001,2.4-TrichloroethaneND1.00.311.001,2.4-TrichloroethaneND0.00.28 <t< td=""><td>1,1-Dichloropropene</td><td>ND</td><td>1.0</td><td>0.46</td><td>1.00</td><td></td></t<>	1,1-Dichloropropene	ND	1.0	0.46	1.00	
t-1.3:DichloropropeneND0.500.251.00EthylbenzeneND1.00.141.00SepropylbenzeneND1.02.11.00IsopropylbenzeneND1.00.641.00PisopropylbenzeneND106.441.00Methylene ChlorideND106.441.00NaphthaleneND102.51.00-PropylbenzeneND1.00.171.00StyreneND1.00.411.00StyreneND1.00.411.001.1.2.2-TetrachloroethaneND1.00.411.001.2.2-TetrachloroethaneND1.00.411.001.2.2-TetrachloroethaneND1.00.411.001.2.2-TetrachloroethaneND1.00.411.001.2.2-TrichloroethaneND1.00.511.001.2.3-TrichloroethaneND1.00.511.001.1.2-TrichloroethaneND1.00.371.001.1.2-TrichloroethaneND1.00.361.001.2.3-TrichloroethaneND1.00.361.001.2.3-TrichloroethaneND1.00.361.001.2.4-TrichloroethaneND1.00.361.001.2.4-TrichloroethaneND1.00.361.001.2.4-TrichloroethaneND1.00.361.001.2.4-TrichloroethaneND1.00.361.00 </td <td>c-1,3-Dichloropropene</td> <td>ND</td> <td>0.50</td> <td>0.25</td> <td>1.00</td> <td></td>	c-1,3-Dichloropropene	ND	0.50	0.25	1.00	
EthylenzeneND1.00.141.002-HexanoneND102.11.00DeploprophenzeneND1.00.581.00ploprophylloueneND1.00.161.00Methylene ChlorideND104.41.00NaphhaleneND104.41.00NaphhaleneND104.41.00NaphhaleneND1.00.171.00StyreneND1.00.401.001,1,2-TeitachloroethaneND1.00.401.001,1,2-TeitachloroethaneND1.00.411.00TeitachloroethaneND1.00.411.001,2.2-TritichloroethaneND1.00.411.001,2.2-TritichloroethaneND1.00.241.001,2.3-TrichloroethaneND1.00.511.001,2.3-TrichloroethaneND1.00.301.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.311.001,1,2-TrichloroethaneND1.00.301.001,1	t-1,3-Dichloropropene	ND	0.50	0.25	1.00	
2-HexanoneND102.11.00lsapropylbenzeneND1.00.581.00P-lsapropylbuleneND1.00.641.00Methylene ChlorideND100.641.00A-Methyl-2-PantanoneND102.51.00NaphthaleneND1.00.171.00NaphthaleneND1.00.171.00StyreneND1.00.171.001,1,2,2-TetrachloroethaneND1.00.441.001,1,2,2-TetrachloroethaneND1.00.411.00TetrachloroethaneND1.00.391.001,2,2-TrichloroethaneND1.00.241.001,2,2-TrichloroethaneND1.00.501.001,1,2-TrichloroethaneND1.00.301.001,1,2-TrichloroethaneND1.00.331.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,1,2-TrichloroethaneND1.00.361.001,2,3-TrichloropapaneND1.00.281.001,3,5-TrimethylbenzeneND1.02.81.001,3,5-TrimethylbenzeneND1.02.31.001,4-StrimethylbenzeneND1.02.3	Ethylbenzene	ND	1.0	0.14	1.00	
IsopropylbenzeneND1.00.581.00plsopropylblueneND1.00.641.00Methylene ChlorideND100.641.00Mathylene ChlorideND102.51.00n-PropylbenzeneND1.00.171.00StyreneND1.00.171.001,1,2-TetrachloroethaneND1.00.401.001,1,2-TetrachloroethaneND1.00.391.00TolueneND1.00.241.001,2-TrichlorobenzeneND1.00.501.001,1-TrichloroethaneND1.00.511.001,2-TrichloroethaneND1.00.501.001,2-TrichloroethaneND1.00.301.001,1-TrichloroethaneND1.00.301.001,1-TrichloroethaneND1.00.301.001,1-TrichloroethaneND1.00.371.001,1-TrichloroethaneND1.00.371.001,1-TrichloroethaneND1.00.341.001,1-TrichloroethaneND1.00.301.001,1-TrichloroethaneND1.00.361.001,2-TrichloroethaneND1.00.361.001,2-TrichloroethaneND1.00.301.001,2-TrichloroethaneND1.00.301.001,2-TrichloroethaneND1.00.301.00 <trr< td=""><td>2-Hexanone</td><td>ND</td><td>10</td><td>2.1</td><td>1.00</td><td></td></trr<>	2-Hexanone	ND	10	2.1	1.00	
p-IsopropylolueneND1.00.161.00Methylene ChlorideND104.41.00NaphthaleneND102.51.00n-PropylbenzeneND1.00.171.00StyreneND1.00.441.001,1,1.2-TetrachloroethaneND1.00.401.001,1,2.2-TetrachloroethaneND1.00.401.001,1,2.2-TetrachloroethaneND1.00.411.00TolueneND1.00.241.001,2.3-TichlorobenzeneND1.00.511.001,2.3-TichlorobenzeneND1.00.501.001,1.2-TichloroethaneND1.00.511.001,2.3-TichlorobenzeneND1.00.331.001,1.2-TichloroethaneND1.00.331.001,1.2-TichloroethaneND1.00.331.001,1.2-TichloroethaneND1.00.331.001,1.2-TichloroethaneND1.00.331.001,2.3-TichloroptopaneND1.00.361.001,2.3-TichloroptopaneND1.00.361.001,3.5-TimethylbenzeneND1.00.361.001,3.5-TimethylbenzeneND1.00.301.00Vinyl ChlorideND1.00.311.00Vinyl ChlorideND1.00.311.00yinyl ChlorideND1.00.311.00	Isopropylbenzene	ND	1.0	0.58	1.00	
Methylene Chloride ND 10 0.64 1.00 4-Methyls-Pentanone ND 10 4.4 1.00 Naphthalene ND 1.0 2.5 1.00 -Propylbenzene ND 1.0 0.17 1.00 Styrene ND 1.0 0.40 1.00 1,1,2.2-Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.39 1.00 Tetrachloroethane ND 1.0 0.24 1.00 1,2.3-Trichlorobenzene ND 1.0 0.51 1.00 1,1.1-Trichloroethane ND 1.0 0.38 1.00 1,1.2-Trichloroethane ND 1.0 0.36 1.00 1,1.2-Trichloroethane ND 1.0 0.36 1.00 1,1.2-Trichloroethane ND 1.0 0.36 1.00 1,2.3-Trichlororopane ND 1.0	p-Isopropyltoluene	ND	1.0	0.16	1.00	
4-Methyl-2-PentanoneND104.41.00NaphthaleneND102.51.00n-PropylbenzeneND1.00.171.00StyreneND1.00.411.001,1,2TetrachloroethaneND1.00.401.001,1,2TetrachloroethaneND1.00.411.00TetrachloroethaneND1.00.411.00TolueneND1.00.241.001,2.3-TrichlorobenzeneND1.00.511.001,2.4-TrichlorobenzeneND1.00.511.001,1.2-TrichloroethaneND1.00.301.001,1.2-TrichloroethaneND1.00.301.001,1.2-TrichloroethaneND1.00.381.001,1.2-TrichloroethaneND1.00.371.001,1.2-TrichloroethaneND1.00.361.001,2.3-TrichloroethaneND1.00.361.001,2.3-TrichloroethaneND1.00.361.001,2.3-TrichloroethaneND1.00.361.001,2.3-TrichloroethaneND1.00.281.001,2.3-TrichloroethaneND1.00.301.001,2.4-TrimethylbenzeneND1.00.301.001,3.5-TrimethylbenzeneND1.00.301.00ynyl AcetateND1.00.311.00ynyl AcetateND1.00.311	Methylene Chloride	ND	10	0.64	1.00	
NaphthaleneND102.51.00n-ProgNbenzeneND1.00.171.00StyreneND1.00.171.001,1,1.2-TetrachloroethaneND1.00.411.001,1,2.2-TetrachloroethaneND1.00.411.00TetrachloroethaneND1.00.411.001,2.3-TichlorobenzeneND1.00.241.001,2.4-TrichloroethaneND1.00.511.001,2.4-TrichloroethaneND1.00.301.001,1.2-TrichloroethaneND1.00.301.001,1.2-TrichloroethaneND1.00.301.001,1.2-TrichloroethaneND1.00.371.001,1.2-TrichloroethaneND1.00.371.001,1.2-TrichloroethaneND1.00.361.001,1.2-TrichloroethaneND1.00.361.001,1.2-TrichloroethaneND1.00.371.001,2.3-TrichloropapaneND1.00.241.001,3.5-TrimethylbenzeneND1.00.301.001,3.5-TrimethylbenzeneND1.00.301.001,3.5-TrimethylbenzeneND1.00.311.001,3.5-TrimethylbenzeneND1.00.311.001,3.5-TrimethylbenzeneND1.00.311.001,3.5-TrimethylbenzeneND1.00.311.001,3.5-Trimethylbenzene <t< td=""><td>4-Methyl-2-Pentanone</td><td>ND</td><td>10</td><td>4.4</td><td>1.00</td><td></td></t<>	4-Methyl-2-Pentanone	ND	10	4.4	1.00	
n-PropylbenzeneND1.00.171.00StyreneND1.00.171.001,1,1,2-TetrachloroethaneND1.00.401.001,1,2,2-TetrachloroethaneND1.00.411.00TetrachloroethaneND1.00.391.00TolueneND1.00.241.001,2,4-TrichlorobenzeneND1.00.501.001,1,1-TrichloroethaneND1.00.301.001,1,2-TrichloroethaneND1.00.301.001,1,2-TrichloroethaneND1.00.301.001,1,2-TrichloroethaneND1.00.381.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.361.001,2,3-TrichloroethaneND1.00.361.001,2,3-TrichloroethaneND1.00.361.001,2,3-TrichloroethaneND1.00.361.001,2,3-TrichloroppaneND1.00.301.001,3,5-TrimethylbenzeneND1.00.301.00Vinyl AcetateND1.00.311.00Vinyl ChorideND1.00.311.00p/m-XyleneND1.00.331.00Vinyl ChorideND1.00.331.00Prot-Bulyl Ether (MTBE)ND1.00.331.	Naphthalene	ND	10	2.5	1.00	
Styrene ND 1.0 0.17 1.00 1,1,2-Tetrachloroethane ND 1.0 0.40 1.00 1,1,2-Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.51 1.00 1,2,4-Trichlorobenzene ND 1.0 0.50 1.00 1,1,2-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,1,2-Trichloroethane ND 1.0 0.36 1.00 1,2,3-Trichloropopane ND 1.0 0.36 1.00 1,3,5-Trimethylbenzene ND 1.0 0.30 1.00 Yinyl Acetate ND <td>n-Propylbenzene</td> <td>ND</td> <td>1.0</td> <td>0.17</td> <td>1.00</td> <td></td>	n-Propylbenzene	ND	1.0	0.17	1.00	
1,1,2-Tetrachloroethane ND 1.0 0.40 1.00 1,1,2-Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.39 1.00 Toluene ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.51 1.00 1,2,4-Trichlorobenzene ND 1.0 0.50 1.00 1,1,1-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,2,3-Trichloroethane ND 1.0 0.36 1.00 1,2,3-Trichloroethane ND 1.0 0.36 1.00 1,2,3-Trichloroethane ND 1.0 0.36 1.00 1,3,5-Trimethylbenzene ND 1.0 0.30 1.00 Vinyl Chloride N	Styrene	ND	1.0	0.17	1.00	
1,1,2,2-Tetrachloroethane ND 1.0 0.41 1.00 Tetrachloroethane ND 1.0 0.39 1.00 Toluene ND 1.0 0.24 1.00 1,2,3-Trichlorobenzene ND 1.0 0.51 1.00 1,2,4-Trichlorobenzene ND 1.0 0.50 1.00 1,1,1-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 1,1,2-Trichloroethane ND 1.0 0.37 1.00 1,2,3-Trichloropthane ND 1.0 0.37 1.00 1,2,3-Trichloroptopane ND 1.0 0.37 1.00 1,2,3-Trichloroptopane ND 1.0 0.36 1.00 1,2,3-Trinethylbenzene ND 1.0 0.28 1.00 1,3,5-Trimethylbenzene ND 1.0 0.30 1.00 Vinyl Acetate ND 0.0 0.30 1.00 Vinyl Choirde ND <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>1.00</td> <td></td>	1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00	
TetrachloroetheneND1.00.391.00TolueneND1.00.241.001.2,3-TrichlorobenzeneND1.00.511.001.2,4-TrichloroethaneND1.00.301.001,1,1-TrichloroethaneND1.00.331.001,1,2-TrichloroethaneND1.00.381.001,1,2-TrichloroethaneND1.00.371.001,1,2-TrichloroethaneND1.00.371.00TrichloroethaneND1.00.371.00TrichloroethaneND1.00.371.001,2-TrichloroethaneND1.00.361.001,3-TrichloroethaneND1.00.361.001,2-TrichloroethaneND1.00.361.001,2-TrichloroethaneND1.00.361.001,2-TrichloroethaneND1.00.361.001,2-TrichloroethaneND1.00.281.001,3-TrimethylbenzeneND1.00.301.001,3-TrimethylbenzeneND1.00.311.001,3-TrimethylbenzeneND1.00.311.001,3-TrimethylbenzeneND1.00.311.001,3-TrimethylbenzeneND1.00.311.001,3-TrimethylbenzeneND1.00.311.001,3-TrimethylbenzeneND1.00.311.001,3-TrimethylbenzeneND1.00.	1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00	
TolueneND1.00.241.001,2,3-TrichlorobenzeneND1.00.511.001,2,4-TrichlorobenzeneND1.00.501.001,1,1-TrichlorobenzeneND1.00.301.001,1,2-TrifhlorobenzeneND1.00.301.001,1,2-TrichlorobenzeneND1.00.381.001,1,2-TrichlorobenzeneND1.00.371.00TrichlorobenzeneND1.00.371.00TrichlorobenzeneND1.00.361.001,2,3-TrichloropropaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.281.001,3-TrinhylbenzeneND1.00.281.00Vinyl AcetateND0.500.301.00vinyl-ChoirdeND1.00.301.00p/m-XyleneND1.00.311.00o-XyleneND1.00.311.00Tet-Butyl Alcohol (TBA)ND1.00.331.00Disoropyl Ether (MTBE)ND1.00.331.00Disoropyl Ether (ETBE)ND2.00.331.00Ethyl-Butyl Ether (TAME)ND2.00.221.00Ethyl-Hethyl Lether (TAME)ND2.00.221.00Ethyl-Butyl Ether (ETBE)ND2.00.221.00EthanolND2.00.241.00Tet-Mayl-Methyl Ether (TAME)ND2.00.2	Tetrachloroethene	ND	1.0	0.39	1.00	
1,2,3-TrichlorobenzeneND1.00.511.001,2,4-TrichlorobenzeneND1.00.501.001,1,1-TrichloroethaneND1.00.301.001,1,2-Trichloro-1,2,2-TrifluoroethaneND1.00.781.001,1,2-TrichloroethaneND1.00.381.00TrichloroethaneND1.00.371.00TrichloroethaneND1.00.371.00TrichloroethaneND1.00.371.00TrichloroethaneND5.00.641.001,2,3-TrichloropropaneND1.00.361.001,3,5-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.301.00Vinyl AcetateND1.00.301.00Vinyl AcetateND1.00.301.00Vinyl ChorideND1.00.311.00p/m-XyleneND1.00.311.00o-XyleneND1.00.311.00Tert-Butyl Acohol (TBA)ND1.00.331.00Diisopropyl Ether (NTBE)ND2.00.331.00Diisopropyl Ether (INTBE)ND2.00.331.00Diisopropyl Ether (INTBE)ND2.00.341.00Diisopropyl Ether (INTBE)ND2.00.341.00Diisopropyl Ether (INTBE)ND2.00.341.00Diisopropyl Ether (INTBE)ND	Toluene	ND	1.0	0.24	1.00	
1,2,4-TrichlorobenzeneND1.00.501.001,1,1-TrichloroethaneND1.00.301.001,1,2-Trichloro-1,2,2-TrifluoroethaneND100.781.001,1,2-TrichloroethaneND1.00.371.00TrichloroethaneND1.00.371.00TrichloroethaneND1.00.371.00TrichloroptopaneND1.01.71.001,2,3-TrichloroptopaneND1.00.361.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND1.00.301.00Vinyl ChlorideND0.500.301.00vinyl ChlorideND1.00.311.00vinyl ChlorideND1.00.311.00vinyl ChlorideND1.00.311.00vinyl ChlorideND1.00.311.00vinyl ChlorideND1.00.311.00vinyl ChlorideND1.00.331.00vinyl ChlorideND1.00.331.00vinyl ChlorideND1.00.331.00vinyl ChlorideND2.00.331.00Vinyl ChlorideND2.00.331.00Vinyl ChlorideND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00	1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00	
1,1,1-Trichloroethane ND 1.0 0.30 1.00 1,1,2-Trichloroethane ND 1.0 0.78 1.00 1,1,2-Trichloroethane ND 1.0 0.38 1.00 Trichloroethane ND 1.0 0.37 1.00 Trichloroethane ND 1.0 0.37 1.00 1,2,3-Trichloropropane ND 1.0 1.7 1.00 1,2,4-Trimethylbenzene ND 1.0 0.36 1.00 1,3,5-Trimethylbenzene ND 1.0 0.28 1.00 Vinyl Acetate ND 1.0 0.30 1.00 Vinyl Chloride ND 0.50 0.30 1.00 Vinyl Chloride ND 1.0 0.30 1.00 Vinyl Chloride ND 1.0 0.30 1.00 vinyl Chloride ND 1.0 0.31 1.00 vinyl Chloride ND 1.0 0.31 1.00 vinyl Chloride ND 1.0 0.31 1.00 o-Xylene ND 1.0 0.33 <t< td=""><td>1,2,4-Trichlorobenzene</td><td>ND</td><td>1.0</td><td>0.50</td><td>1.00</td><td></td></t<>	1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00	
1,1,2-Trichloro-1,2,2-TrifluoroethaneND100.781.001,1,2-TrichloroethaneND1.00.381.00TrichloroethaneND1.00.371.00TrichloropthaneND101.71.001,2,3-TrichloroptopaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.321.00o-XyleneND1.00.311.00Tert-Butyl Alcohol (TBA)ND1.00.331.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00	1,1,1-Trichloroethane	ND	1.0	0.30	1.00	
1,1,2-TrichloroethaneND1.00.381.00TrichloroethaneND1.00.371.00TrichlorofluoromethaneND101.71.001,2,3-TrichloropopaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND1.02.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.331.00o-XyleneND1.00.311.00Tert-Butyl Alcohol (TBA)ND102.00.331.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND2.00.221.00	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00	
Trichloroethene ND 1.0 0.37 1.00 Trichlorofluoromethane ND 10 1.7 1.00 1,2,3-Trichloropropane ND 5.0 0.64 1.00 1,2,4-Trimethylbenzene ND 1.0 0.36 1.00 1,3,5-Trimethylbenzene ND 1.0 0.28 1.00 Vinyl Acetate ND 0.50 0.30 1.00 Vinyl Chloride ND 0.50 0.30 1.00 p/m-Xylene ND 1.0 0.30 1.00 o-Xylene ND 1.0 0.31 1.00 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.31 1.00 Tert-Butyl Alcohol (TBA) ND 1.0 0.33 1.00 Disopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (TAME) ND 2.0 0.44 1.00 Ethanol ND 2.0 0.22 1.00	1,1,2-Trichloroethane	ND	1.0	0.38	1.00	
TrichlorofluoromethaneND101.71.001,2,3-TrichloropropaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND0.500.301.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Disopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00EthanolND2.00.221.00	Trichloroethene	ND	1.0	0.37	1.00	
1,2,3-TrichloropropaneND5.00.641.001,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Disopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND1.000.221.00	Trichlorofluoromethane	ND	10	1.7	1.00	
1,2,4-TrimethylbenzeneND1.00.361.001,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Disopropyl Ether (DIPE)ND104.61.00Ethyl-t-Butyl Ether (TAME)ND2.00.331.00EthanolND2.00.441.00	1,2,3-Trichloropropane	ND	5.0	0.64	1.00	
1,3,5-TrimethylbenzeneND1.00.281.00Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Fert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.00	1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00	
Vinyl AcetateND102.81.00Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Fert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.00	1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00	
Vinyl ChlorideND0.500.301.00p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.00	Vinyl Acetate	ND	10	2.8	1.00	
p/m-XyleneND1.00.301.00o-XyleneND1.00.231.00Methyl-t-Butyl Ether (MTBE)ND1.00.311.00Tert-Butyl Alcohol (TBA)ND104.61.00Diisopropyl Ether (DIPE)ND2.00.331.00Ethyl-t-Butyl Ether (TAME)ND2.00.441.00Tert-Amyl-Methyl Ether (TAME)ND2.00.221.00EthanolND100501.00	Vinyl Chloride	ND	0.50	0.30	1.00	
o-Xylene ND 1.0 0.23 1.00 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.31 1.00 Tert-Butyl Alcohol (TBA) ND 10 4.6 1.00 Diisopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	p/m-Xylene	ND	1.0	0.30	1.00	
Methyl-t-Butyl Ether (MTBE) ND 1.0 0.31 1.00 Tert-Butyl Alcohol (TBA) ND 10 4.6 1.00 Diisopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	o-Xylene	ND	1.0	0.23	1.00	
Tert-Butyl Alcohol (TBA) ND 10 4.6 1.00 Diisopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00	
Disopropyl Ether (DIPE) ND 2.0 0.33 1.00 Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00	
Ethyl-t-Butyl Ether (ETBE) ND 2.0 0.44 1.00 Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00	
Tert-Amyl-Methyl Ether (TAME) ND 2.0 0.22 1.00 Ethanol ND 100 50 1.00	Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00	
Ethanol ND 100 50 1.00	Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00	
	Ethanol	ND	100	50	1.00	

Alta Environmental		Date Receive	ed:	09/24/15		
3777 Long Beach Blvd., Annex Bui	Work Order:		15-09-1939 EPA 5030C EPA 8260B			
Long Beach, CA 90802-3335		Preparation:				
		Method:				
		Units:		ug/L		
Project: 12870 Panama Street / MC			Page 18 of 21			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	92	80-120				
Dibromofluoromethane	99	78-126				
1,2-Dichloroethane-d4	96	75-135				
Toluene-d8	97	80-120				

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 12870 Panama Street / MCGU-15-5506	Page 19 of 21	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-001-18274	N/A	Aqueous	GC/MS LL	09/25/15	09/25/15 13:55	150925L007
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >=	to the MDL (DL	_) but < RL (LO	Q), if found, are o	qualified with a	a "J" flag.
Parameter	Result	<u>t</u>	<u>RL</u>	MDL	DF	<u>(</u>	Qualifiers
Acetone	ND		20	10	1.00		
Benzene	ND		0.50	0.14	1.00		
Bromobenzene	ND		1.0	0.30	1.00		
Bromochloromethane	ND		1.0	0.48	1.00		
Bromodichloromethane	ND		1.0	0.21	1.00		
Bromoform	ND		1.0	0.50	1.00		
Bromomethane	ND		10	3.9	1.00		
2-Butanone	ND		10	2.2	1.00		
n-Butylbenzene	ND		1.0	0.23	1.00		
sec-Butylbenzene	ND		1.0	0.25	1.00		
tert-Butylbenzene	ND		1.0	0.28	1.00		
Carbon Disulfide	0.46		10	0.41	1.00		I
Carbon Tetrachloride	ND		0.50	0.23	1.00		
Chlorobenzene	ND		1.0	0.17	1.00		
Chloroethane	ND		5.0	2.3	1.00		
Chloroform	ND		1.0	0.46	1.00		
Chloromethane	ND		10	1.8	1.00		
2-Chlorotoluene	ND		1.0	0.24	1.00		
4-Chlorotoluene	ND		1.0	0.13	1.00		
Dibromochloromethane	ND		1.0	0.25	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	1.2	1.00		
1,2-Dibromoethane	ND		1.0	0.36	1.00		
Dibromomethane	ND		1.0	0.46	1.00		
1,2-Dichlorobenzene	ND		1.0	0.46	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.43	1.00		
Dichlorodifluoromethane	ND		1.0	0.46	1.00		
1,1-Dichloroethane	ND		1.0	0.28	1.00		
1,2-Dichloroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene	ND		1.0	0.43	1.00		
c-1,2-Dichloroethene	ND		1.0	0.48	1.00		
t-1,2-Dichloroethene	ND		1.0	0.37	1.00		
1,2-Dichloropropane	ND		1.0	0.42	1.00		
1,3-Dichloropropane	ND		1.0	0.30	1.00		

Calscience

Alta Environmental		Date Rec	eived:	09/24/15	
3777 Long Beach Blvd., Annex Building	Work Ord	15-09-193			
Long Beach. CA 90802-3335	Preparati	on:	EPA 5030C		
		Method:			EPA 8260B
		Linits:			
Project: 12870 Panama Street / MCGU-15	-5506	ormo.	Page 20 of 21		
Parameter	Result	RL	MDL	DF	Qualifiers
2,2-Dichloropropane	ND	1.0	0.36	1.00	
1,1-Dichloropropene	ND	1.0	0.46	1.00	
c-1,3-Dichloropropene	ND	0.50	0.25	1.00	
t-1,3-Dichloropropene	ND	0.50	0.25	1.00	
Ethylbenzene	ND	1.0	0.14	1.00	
2-Hexanone	ND	10	2.1	1.00	
Isopropylbenzene	ND	1.0	0.58	1.00	
p-Isopropyltoluene	ND	1.0	0.16	1.00	
Methylene Chloride	ND	10	0.64	1.00	
4-Methyl-2-Pentanone	ND	10	4.4	1.00	
Naphthalene	ND	10	2.5	1.00	
n-Propylbenzene	ND	1.0	0.17	1.00	
Styrene	ND	1.0	0.17	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	0.40	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	0.41	1.00	
Tetrachloroethene	ND	1.0	0.39	1.00	
Toluene	ND	1.0	0.24	1.00	
1,2,3-Trichlorobenzene	ND	1.0	0.51	1.00	
1,2,4-Trichlorobenzene	ND	1.0	0.50	1.00	
1,1,1-Trichloroethane	ND	1.0	0.30	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.78	1.00	
1,1,2-Trichloroethane	ND	1.0	0.38	1.00	
Trichloroethene	ND	1.0	0.37	1.00	
Trichlorofluoromethane	ND	10	1.7	1.00	
1,2,3-Trichloropropane	ND	5.0	0.64	1.00	
1,2,4-Trimethylbenzene	ND	1.0	0.36	1.00	
1,3,5-Trimethylbenzene	ND	1.0	0.28	1.00	
Vinyl Acetate	ND	10	2.8	1.00	
Vinyl Chloride	ND	0.50	0.30	1.00	
p/m-Xylene	ND	1.0	0.30	1.00	
o-Xylene	ND	1.0	0.23	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	4.6	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	0.33	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.44	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	0.22	1.00	
Ethanol	ND	100	50	1.00	

1,2-Dichloroethane-d4

Toluene-d8

0			
1.2	CCI	on	00
Ua.	1301	CII	CC

Alta Environmental	Date Receive	ed:	09/24/15 15-09-1939		
3777 Long Beach Blvd., Annex Buildin	Work Order:				
Long Beach, CA 90802-3335	Preparation:		EPA 5030C		
		Method:		EPA 8260E	
		Units:		ug/L	
Project: 12870 Panama Street / MCGL			Page 21 of 21		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	94	80-120			
Dibromofluoromethane	78-126				

75-135

80-120

90

97

Return to Contents

Quality Control - Spike/Spike Duplicate

Alta Environmental		I	Date Received	1:		09/24/15	
3777 Long Beach Blvd., Annex Building			Work Order:			15-09-1939	
Long Beach, CA 90802-3335		Preparation:			EPA 5030C		
			Method:			EPA 8015B (M)	
Project: 12870 Panama S	reet / MCGU-15-5506					Page 1 of 2	
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number	
15-09-1955-5	Sample	Aqueous	GC 1	09/25/15	09/25/15 15:19	150925S014	
15-09-1955-5	Matrix Spike	Aqueous	GC 1	09/25/15	09/25/15 15:54	150925S014	

15-09-1955-5	Matrix Spike		Aqueous	GC	•	09/25/15	09/25/15	15.54	1509255014	
15-09-1955-5	Matrix Spike	Duplicate	Aqueous	GC	1	09/25/15	09/25/15	16:3 0	150925S014	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	ND	2000	1630	81	1660	83	68-122	2	0-18	

Return to Contents

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: 12870 Panama Street / MCGU-15-5506		Page 2 of 2

Quality Control Sample ID	Туре		Matrix	I	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-09-1941-1	Sample		Aqueous	; (GC/MS LL	09/25/15	09/25/15	14:31	150925S008	
15-09-1941-1	Matrix Spike		Aqueous	. (GC/MS LL	09/25/15	09/25/15	11:34	150925S008	
15-09-1941-1	Matrix Spike	Duplicate	Aqueous	. (GC/MS LL	09/25/15	09/25/15	12:09	150925S008	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec	<u>MSD</u> <u>Conc.</u>	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	ND	50.00	51.84	104	49.26	99	74-122	5	0-21	
Carbon Tetrachloride	ND	50.00	46.94	94	45.53	91	60-144	3	0-21	
Chlorobenzene	ND	50.00	53.79	108	52.80	106	73-120	2	0-22	
1,2-Dibromoethane	ND	50.00	50.36	101	50.72	101	80-122	1	0-20	
1,2-Dichlorobenzene	ND	50.00	54.64	109	55.35	111	70-120	1	0-26	
1,2-Dichloroethane	ND	50.00	45.77	92	44.33	89	64-142	3	0-20	
1,1-Dichloroethene	ND	50.00	48.68	97	47.09	94	52-136	3	0-21	
Ethylbenzene	ND	50.00	56.78	114	56.06	112	77-125	1	0-24	
Toluene	ND	50.00	56.27	113	53.67	107	72-126	5	0-23	
Trichloroethene	ND	50.00	51.30	103	50.26	101	74-128	2	0-22	
Vinyl Chloride	ND	50.00	57.70	115	56.20	112	67-133	3	0-20	
p/m-Xylene	ND	100.0	110.6	111	108.7	109	63-129	2	0-25	
o-Xylene	ND	50.00	55.74	111	54.89	110	62-128	2	0-24	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	50.26	101	50.43	101	68-134	0	0-21	
Tert-Butyl Alcohol (TBA)	ND	250.0	260.5	104	237.6	95	65-143	9	0-30	
Diisopropyl Ether (DIPE)	ND	50.00	55.06	110	54.79	110	61-139	0	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	52.75	105	50.98	102	64-136	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	52.87	106	51.26	103	67-133	3	0-20	
Ethanol	ND	500.0	529.9	106	525.2	105	34-178	1	0-58	

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)
Project: 12870 Panama Street / MCGU-15-5506		Page 1 of 4

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-15-278-1003	LCS	Aqu	ieous	GC 47	09/25/15	09/2	5/15 19:33	150925B13	
099-15-278-1003	LCSD	Αqι	ieous	GC 47	09/25/15	09/2	5/15 19:50	150925B13	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	2000	1893	95	1939	97	75-117	2	0-13	

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)
Project: 12870 Panama Street / MCGU-15-5506		Page 2 of 4

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-304-1175	LCS	Aqu	leous	GC 47	09/25/15	09/2	5/15 18:57	150925B12	
099-15-304-1175	LCSD	Αqι	leous	GC 47	09/25/15	09/2	5/15 19:15	150925B12	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Diesel	2000	1801	90	1814	91	75-117	1	0-13	

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: 12870 Panama Street / MCGU-15-5506		Page 3 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-436-10337	LCS	Aqueous	GC 1	09/25/15	09/25/15 14:08	150925L022
Parameter		Spike Added	Conc. Recover	ed LCS %Re	<u>ec. %Rec</u>	. CL Qualifiers
TPH as Gasoline		2000	1861	93	78-120	D

🛟 eurofins

Calscience

Alta Environmental	Date Received:	09/24/15
3777 Long Beach Blvd., Annex Building	Work Order:	15-09-1939
Long Beach, CA 90802-3335	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: 12870 Panama Street / MCGU-15-5506		Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
099-14-001-18274	LCS	Aqueous	GC/MS LL	09/25/15	09/25/15 10:56	150925L007	
Parameter	Spike Ac	ded <u>Conc.</u>	Recovered LCS	<u>%Rec.</u> %Re	ec. CL ME	<u>E CL</u>	Qualifiers
Benzene	50.00	45.45	91	80-1	20 73	-127	
Carbon Tetrachloride	50.00	39.83	80	67-1	39 55	-151	
Chlorobenzene	50.00	49.55	99	78-1	20 71	-127	
1,2-Dibromoethane	50.00	48.62	97	80-1	20 73	-127	
1,2-Dichlorobenzene	50.00	50.09	100	63-1	29 52	-140	
1,2-Dichloroethane	50.00	42.85	86	70-1	30 60	-140	
1,1-Dichloroethene	50.00	41.04	82	66-1	26 56	-136	
Ethylbenzene	50.00	50.33	101	80-1	23 73	-130	
Toluene	50.00	49.07	98	80-1	20 73	-127	
Trichloroethene	50.00	45.56	91	80-1	22 73	-129	
Vinyl Chloride	50.00	47.66	95	70-1	30 60	-140	
p/m-Xylene	100.0	98.71	99	75-1	23 67	-131	
o-Xylene	50.00	50.17	100	74-1	22 66	-130	
Methyl-t-Butyl Ether (MTBE)	50.00	47.52	95	69-1	29 59	-139	
Tert-Butyl Alcohol (TBA)	250.0	226.4	91	69-1	29 59	-139	
Diisopropyl Ether (DIPE)	50.00	50.84	102	68-1	28 58	-138	
Ethyl-t-Butyl Ether (ETBE)	50.00	48.84	98	63-1	35 51	-147	
Tert-Amyl-Methyl Ether (TAME)	50.00	49.26	99	67-1	33 56	-144	
Ethanol	500.0	489.6	98	42-1	68 21	-189	

Total number of LCS compounds: 19 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Calscience

Work Order: 15-09-1939	Page 1 of 1			
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 8015B (M)	EPA 3510C	682	GC 47	1
EPA 8015B (M)	EPA 5030C	902	GC 1	2
EPA 8260B	EPA 5030C	486	GC/MS LL	2

Return to Contents

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Calscience

Work Order: 15-09-1939

Glossary of Terms and Qualifiers

Nork Order:	15-09-1939	Page 1 of 1
<u>Qualifiers</u>	Definition	
*	See applicable analysis comment.	
<	Less than the indicated value.	
>	Greater than the indicated value.	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample di clarification.	ata was reported without further
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank s in control and, therefore, the sample data was reported without further clarification.	urrogate spike compound was
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to susp associated LCS recovery was in control.	pected matrix interference. The
4	The MS/MSD RPD was out of control due to suspected matrix interference.	
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected ma	trix interference.
6	Surrogate recovery below the acceptance limit.	
7	Surrogate recovery above the acceptance limit.	
В	Analyte was present in the associated method blank.	
BU	Sample analyzed after holding time expired.	
BV	Sample received after holding time expired.	
CI	See case narrative.	
Е	Concentration exceeds the calibration range.	
ET	Sample was extracted past end of recommended max. holding time.	
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.	
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard were also present (or detected).	but heavier hydrocarbons
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard also present (or detected).	l but lighter hydrocarbons were
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection estimated.	limit. Reported value is
JA	Analyte positively identified but quantitation is an estimate.	
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean)).
ND	Parameter not detected at the indicated reporting limit.	
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample concentration by a factor of four or greater.	exceeding the spike
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.	
Х	% Recovery and/or RPD out-of-range.	
Z	Analyte presence was not confirmed by second column or GC/MS analysis.	
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % n reported on a wet weight basis.	noisture. All QC results are
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a hol (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as be stated holding time unless received at the laboratory within 15 minutes of the collection time.	ding time of <= 15 minutes ing received outside of the

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

ofins		WO NO / LAB	USE ONLY						GH	AIN-C	P-CU ₽-CU	STOD 3hd	Y REC	SORI	_
Calscience		Ļ			Ģ					DA	۹ Ш	text	<u>د</u> ہ	-	I
2841-1427 • (714) 895-5494 mation, contact us26_sales@eurofinsus.com or call us.		-0	- <u>P</u>	r	R					PA(ij		P P	\downarrow	1
1+1		CLIENT PROJE	ECT NAME / N	:0		(•		.0, NO.:					
0 01 1 A 211		1267	0 t3A	BMC	5	5	5 d	Ŕ			SCI OR OIL		2506		<u>%</u>
A LOW THINK AND	t	R H	мДас		ľk,	Draj									
EMMISSIONATHAN, BUCKMAN CALTA-N	(CON. CONL	GLOBAL ID:				LOG CODE				SAMPLER(S): (PRINT)	1			1
ppl to any TAT for "STANDARD"):										Ý	DRZ	R	4		
	٥				đ	REQU ease che	IESTE ck box o		ALYSI ank as n	Si Seded.					
vissing the preservation		(0)#d									ļ				T
JEVER HUL VUM PIRESCUE	1042) EV	1-030-1	244	E				ungengengengengengen met er die bestellte		WIS	D 518'6				
	° €774 871¥ p	- ова сво	-636 🗆 C6-	3E 🗆 8560 1	(0	(8260)		(1808	(7	0228 🗆 022	6612 D 961				
SAMPLING	eserve erved Filtere	(p)Ha (ɓ)Ha	90 🗆	TM/)	928) s	enate:	(ceoc)) sepio	(808) s	8 🗆 s	2 🗆 (I				
DATE TIME CONT.	Unpr Pres Field		НЧТ	нчт Этв	200	5áxo		pest	вся	HA٩					
7/24/5+ 0840 WATER 9	1 8	X			X										
1, 1045 1 1	•	X			X		-								T
1025		X			X										- 1
		X X			X	P	9					Z	2	N N	
1/05		X		`	X X						_				
0350		X			Ż									-	
V 1200 1 1		X			Ź										
														_	
			+	╞		$\frac{1}{1}$	<u> </u> .			-					
	Received by: (Shunat	ure/Affiliation)	CJ -			7			Date:	24/	5	Time:	KV2		age 4
عمدال	Received by: (Signat	ure/Affiliation)	•			T AN	6	,		10	/11	Time:	¥		1 of 4
	Received by: (Signat	ure/Affiliation)							Date:			Time:			14 T
		•				ŀ							2015-05-	13 Revisi	1 g

and the second second

Return to Contents

🐝 eurofins 🛛			WORK ORDER	NUMBER: '	Рад 15-0	9– (<u>9</u>	19
	Calscience	SAMPLE RECEIPT	CHECKLIST	C	OOLEF	κ_ <u>′</u> ο) DF <u>/</u>
CLIENT: AL	TA ENUI,	NON MENTAL		DAT	E: 09	1 24	/ 2015
TEMPERATURE: (Ci Thermometer ID: SC Sample(s) outsi Sample(s) outsi Sample(s) received Ambient Temperature	riteria: 0.0°C – 6. 5 (CF:-0.2°C); Te ide temperature c ide temperature c d at ambient temp e: □ Air □ Filter	0°C, not frozen except sedim mperature (w/o CF): <u>2.3</u> criteria (PM/APM contacted b criteria but received on ice/ch perature; placed on ice for tra	ent/tissue) C (w/ CF): y:) illed on same day o ansport by courier	2 , / _ °C; _⊅ If sampling	Blank Check	□ Samp ed by:	le SJT
CUSTODY SEAL: Cooler	sent and Intact sent and Intact	□ Present but Not Intact □ Present but Not Intact	Not Present	□ N/A □ N/A	Check Check	ed by:	520 017
SAMPLE CONDITIO Chain-of-Custody (Co COC document(s) rea Sampling date	N: OC) document(s) ceived complete □ Sampling time	received with samples e □ Matrix □ Number of c	ontainers		Yes I I I	No □ □	N/A
□ No analysis req Sampler's name indic Sample container lab Sample container(s) Proper containers for	uested ☐ Not re cated on COC el(s) consistent w intact and in good r analyses reques	elinquished D No relinquish vith COC d condition	ed date □ No relir	nquished time			
Sufficient volume/ma Samples received wit Aqueous samples	ss for analyses re thin holding time for certain analys	equested	e holding time				
□ pH □ Residua Proper preservation o Unpreserved aque	al Chlorine □ Dis chemical(s) noted eous sample(s) re	ssolved Sulfide □ Dissolved I on COC and/or sample con eceived for certain analyses	d Oxygen		u Ø		
Container(s) for certa	ain analysis free c cs □ Dissolved e (SM 4500) □ F	f headspace Gases (RSK-175) □ Dissol [·] Ferrous Iron (SM 3500) □ H	ved Oxygen (SM 45 lydrogen Sulfide (Ha	500) ach)	Ø		
Tedlar™ bag(s) free	of condensation						ø
CONTAINER TYPE: Aqueous: \Box VOA \Box \Box 125PBznna \Box 250 \Box 500PB \Box 1AGB Solid: \Box 4ozCGJ \Box Air: \Box Tedlar TM \Box C Container: A = Amber, Preservative: b = buffer	\mathbf{VOAh} \Box $VOAn$ $DAGB$ \Box $250CGE$ \Box $1AGBna_2$ \Box $BozCGJ$ \Box $16oz$ $anister$ \Box $Sorber$ \mathbf{B} $=$ $Bottle, \mathbf{C}$ $=$ \mathbf{R} $=$ $Bottle, \mathbf{C}$ $=$ \mathbf{R} $=$ $Bottle, \mathbf{C}$ $=$	a ₂ \Box 100PJ \Box 100PJ na ₂ \Box 3 \Box 250CGBs \Box 250PB \Box AGBs \Box 1PB \Box 1PB na \Box CGJ \Box Sleeve () \Box E nt Tube \Box PUF \Box ar, E = Envelope, G = Glass, J = HCl, n = HNO ₃ , na = NaOH, na	(Trip Blar ☐ 125AGB □ 125A ☐ 250PBn □ 500AG □ inCores [®] () □ Other Matrix (= Jar, P = Plastic, and a ₂ = Na ₂ S ₂ O ₃ , p = H ₃ P	Image: Arrow of the state of the s	er: GBp GBp 500 500 (() ealable f d/Check	125PB)AGJ s] Bag (ed by:)

- - -
WORK ORDER NUMBER: 15-09- 1939

Page 43 of 44

Calscience

🔅 eurofins

SAMPLE ANOMALY REPORT

DATE: 09 / 24 / 2015 SAMPLES, CONTAINERS, AND LABELS: Comments □ Sample(s) NOT RECEIVED but listed on COC □ Sample(s) received but NOT LISTED on COC □ Holding time expired (list client or ECI sample ID and analysis) □ Insufficient sample amount for requested analysis (list analysis) Improper container(s) used (list analysis) □ Improper preservative used (list analysis) □ No preservative noted on COC or label (list analysis and notify lab) □ Sample container(s) not labeled □ Client sample label(s) illegible (list container type and analysis) (-6) Received 8 containers instead Z Client sample label(s) do not match COC (comment) 0F9. 1×500 AGJ □ Project information TX VOAh. Client sample ID □ Sampling date and/or time Number of container(s) Requested analysis □ Sample container(s) compromised (comment) Broken Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar[™] bags^{*}) □ Leaking (transferred into client's Tedlar[™] bags*) * Transferred at client's request. Comments

MISCELLANEOUS: (Describe)

HEADSPACE:

(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)

ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**

Со	m	m	en	ts
~~			••••	•••

** Record the total number of containers (i.e., vials or bottles) for the affected sample.

(Containers with bubble for other analysis)

ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
		[

Reported by: 1017 Reviewed by: 681

2015-03-16 Revision

Page 1 of 1

🛟 eurofins

Calscience

Subcontractor Analysis Report

Work Order: 15-09-1939

One or more samples in this work order have tests that were subcontracted. The subcontract report(s) follows.

For subcontracted tests, please reference the laboratory information noted below.