

July 11, 2016

Mr. Shahir Haddad Division Chief Schools Evaluation and Brownfields Outreach Branch Brownfields and Environmental Restoration Program California Department of Toxic Substances Control 5796 Corporate Avenue Cypress, California 90630

Subject: Ocean Charter School Proposed New Elementary School at 12870 Panama Street, Los Angeles, California 90066; Submittal of Phase I Environmental Site Assessment (ESA)

Dear Mr. Haddad:

Ocean Charter School (OCS) has retained PlaceWorks to assist with the environmental review and approval process for a property it recently acquired for purposes of constructing a new charter school. The property is located at 12870 Panama Street, Los Angeles, California 90066 ("Site"). OCS intends to construct and operate a span school serving grades K-8 at the Site and, because the project will use State bond funds, is seeking the California Department of Toxic Substances Control's (DTSC's) oversight pursuant to California Education Code (CEC) Section 17210 et seq.

An initial Phase I Environmental Site Assessment (ESA) was prepared for the Site as a due diligence activity for the proposed property acquisition (Alta Environmental, 2015a). Two Phase II investigations were subsequently conducted to further assess the recognized environmental conditions (RECs) identified in the Phase I ESA (Alta Environmental, 2015b; 2015c). Because the original Phase I ESA was more than six months old by the time the property was acquired, an updated Phase I ESA report was prepared to initiate the DTSC approval process (Alta Environmental, 2016). These reports comprise the body of environmental information available for the Site for which we are now requesting the DTSC's review and approval. Per DTSC procedures for the submittal of Phase I ESAs, enclosed please find one hardcopy and one electronic copy (CD with .pdf files) of the following reports/documents:

- Alta Environmental. 2015a. Phase I Environmental Site Assessment Report, 12870 Panama Street, Los Angeles, California 90006. Prepared for McGuireWoods, LLP. Project No. MCGU-15-5327. July 29, 2015 [draft].
- 2. Alta Environmental. 2016. Phase I Environmental Site Assessment Report Update, 12870 Panama Street, Los Angeles, California 90006. Prepared for Ocean Charter School. Project No. OCSC-16-6110. June 30, 2016. [includes the following reports in Appendix F]:
 - Alta Environmental. 2015b. Phase II Environmental Site Assessment, 12870 Panama Street, Los Angeles, California 90006. Project No. MCGU-15-5422. September 9, 2015.
 - Alta Environmental. 2015c. Additional Site Assessment, 12870 Panama Street, Los Angeles, California 90006. Project No. MCGU-15-5506. October 22, 2015.

- 3. Alta Environmental. 2015d. Letter Report to the Los Angeles Fire Department <u>re:</u> Groundwater Assessment Results, Former Underground Storage Tank Site, 12870 Panama Street, Los Angeles, California 90066. December 10, 2015.
- 4. PlaceWorks. 2016. Technical Memorandum <u>re:</u> Methane Testing, 12870 Panama Street, Los Angeles, California 90066. July 5, 2016.
- All Environmental Inc. (AEI). 1996. Underground Storage Tank Closure, Teledyne Electronic Technologies, 12870 Panama Street, Los Angeles, California. Prepared for Teledyne Electronic Technologies. Project No. 96-B011. March 27, 1996.
- 6. Los Angeles City Fire Department. "No Further Action" Letter for UST Closure. April 1, 1996.
- 7. Los Angeles Regional Water Quality Control Board. "No Further Action" Letter for Current Site Conditions. January 7, 2016.

The purpose of this cover letter is to introduce the DTSC to the project and assist in its review. Background information and summaries of the information contained in the above-listed documents are provided in the following sections. PlaceWorks has also provided interpretations of the available data, as appropriate, based on its independent third-party review.

1.0 Site Description and History

The Site is located at 12870 Panama Street, Los Angeles, California 90066. It comprises two Los Angeles County Tax Assessor Parcels (APNs 4223-008-003 and 4223-008-004) that total approximately 2.15 acres in size. The Site is situated in a mixed commercial and residential neighborhood in the community of Del Rey. It is bounded by Panama Street to the north, Teledyne Reynolds to the east, E-Z Storage to the south, and former (now vacant) Teledyne Microelectronic Technologies buildings to the west (Figure 2). The Site is about 700 feet north of State Route 90 (the Marina Freeway) and approximately 0.8 mile east of the Marina Del Rey small-boat harbor (Figure 2). Ballona Creek is about 0.25 mile to the southeast and the Ballona Wetlands Ecological Reserve is about 0.3 mile to the south. Regional access to the Site is from SR-90 via Culver Boulevard. The zoning designations for the Site are M1-1 Limited Industrial and M2-1 Light Industrial.

The Site currently is developed with a 17,178-square-foot one-story administration building, four accessory buildings (including a former facilities maintenance building), and associated storage sheds and storage areas (Figure 3). The remaining areas of the Site are paved with asphalt and concrete and used for parking. The entire Site is surrounded by chain-link fencing and is accessed via four perimeter gates. Teledyne Technologies Incorporated (Teledyne) is in the process of relocating its operations and the Site is currently in transition from a business administration use to that of a vacant property.

According to the Phase I ESA report, the Site was used for agriculture as early as 1928. Between 1954 and the early 1970s, it was occupied by The Sprague Electric Company facility, a business that apparently designed radio noise filters. After this time, a catering company began using the Site for business operations and vehicle maintenance involving a 250-gallon waste oil underground storage tank (UST), two subsurface hydraulic hoists, and a wastewater clarifier. By 1981, the property was owned and operated by Teledyne for business administration and to support its electronics and aerospace manufacturing operations on the adjacent off-site property to the west (12922 Panama Street). General facilities maintenance support for the neighboring facility ceased in 2013 and a

portion of the administration building was repurposed for planned use as a microelectronic circuit prototype laboratory. However, the laboratory was never brought online.

2.0 Project Description

OCS is a Los Angeles Unified School District (LAUSD)-approved charter school serving grades K-8. OCS's student population is currently split between two campuses that are 3 miles apart. Students in grades K-3 are housed on the Mar Vista Campus on Culver Boulevard while grades 4-8 are housed on the Prop 39 Westchester High School Campus. The project would consolidate these existing schools within a newly-constructed campus. As currently envisioned, the new charter school would have 19 classrooms for 532 students, along with an administration/kitchen/multipurpose building, lunch shelters, a turf play field, and an underground parking lot.

3.0 Initial Phase I ESA

Alta Environmental prepared an initial Phase I ESA for the Site, dated July 29, 2015 (Alta Environmental, 2015a). The Phase I ESA was prepared in conformance with the scope and limitations of ASTM E1527-13 and the United States Environmental Protection Agency (USEPA) All Appropriate Inquiries (AAI) standards. Recognized environmental conditions (RECs) that were identified in the Phase I ESA report are summarized below:

Historical Site Uses:

- Former 250-gallon waste oil underground storage tank (UST), which was identified as a historical REC due to the issuance of a "no further action" (NFA) letter from the Los Angeles City Fire Department (LAFD), dated April 1, 1996. [Note: After additional assessment of the waste oil UST in August and September 2015 (see Section 4.0), the Los Angeles Regional Water Quality Control Board (RWQCB) issued a second NFA letter on January 7, 2016.]
- Two former subsurface hydraulic vehicle lifts
- A former wastewater clarifier.

Historical Off-Site Property Use:

• Former electronics and aerospace manufacturing facility on the property that adjoins the Site to the southwest (12922 Panama Street).

Alta Environmental recommended further investigation of the Site to assess potential impacts associated with the identified RECs. Although not specifically identified as a REC, Alta Environmental also recommended that the subsurface investigation include the eastern, upgradient side of the Site to assess potential impacts associated with the reported historical usage of solvents and tin/lead electroplating activities at the adjoining property to the northeast (12820 Panama Street).

4.0 Phase II ESA

Alta Environmental conducted a Phase II ESA at the Site to assess the RECs identified in the Phase I ESA report, as well as potential impacts from the off-site property to the northeast that had not been specifically identified as a REC (Alta Environmental, 2015b). The assessment involved the

completion of twelve borings (B1 to B12) to depths ranging from 10.5 to 14 feet below ground surface (bgs). Soil samples were collected at depths of 2.5, 5, and 10 feet bgs from each boring and variably analyzed for total petroleum hydrocarbons as gasoline (TPH-g), diesel (TPH-d), and motor oil (TPH-o) by USEPA Method 8015M; volatile organic compounds (VOCs) by USEPA Method 8260B; Title 22 metals by USEPA Methods 6010B/7471A; polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 8310; and/or polychlorinated biphenyls (PCBs) by USEPA Method 8082.

Soil gas probes were installed at depths of 5 and 10 feet bgs in nine of the borings (B4 to B12) and soil gas samples were collected and analyzed for VOCs by USEPA Method 8260B using a mobile laboratory. Groundwater was encountered in five borings at depths ranging from 9.5 to 10.5 feet bgs. Groundwater grab samples were collected from three of the borings (B5, B8, and B11) and analyzed for TPH-g, TPH-d, and TPH-o by USEPA Method 8015M and VOCs by USEPA Method 8260B. Sample location figures and data summary tables for the Phase II ESA investigation are provided in Attachment A.

4.1 Soil Matrix Results

VOCs -- Eight VOCs were detected in soil samples as follows: acetone, benzene, 2-butanone (MEK), carbon disulfide, chloromethane, tetrachloroethene (PCE), trichloroethene (TCE), and tert-butyl alcohol (TBA). The maximum VOC concentrations in soil are compared to various regulatory screening levels for the protection of human health for a conservative residential land use scenario and for the protection of groundwater in the following table:

Comparison o	of Maximum VOC Cor	ncentrations in Sol	to Various Screer	ning Levels
VOC	Maximum Concentration (µg/kg)	USEPA RSL (µg/kg)	DTSC SL (µg/kg)	SF RWQCB ESL (µg/kg)
Acetone	64	6.1E+07		500
Benzene	0.65J	1,200	330	44
MEK	5.7J			4,500
Carbon Disulfide	0.26J			
Chloromethane	0.24J			20,000
PCE	1.2	2,400	600	550
TCE	2.4	940		460
TBA	5.8J			75

Comparison of Maximum VICC Concentrations in Sail to Variaus Coreaning Louds

 μ g/kg = microgram/kilogram

-" Residential screening level not available

USEPA RSL = United States Environmental Protection Agency Regional Screening Level (residential human health), November 2015. DTSC SL = Department of Toxic Substances Control Screening Level (residential human health), HERO Human Health Risk Assessment Note No. 3, October 2015.

SF RWQCB ESL = San Francisco Regional Water Quality Control Board Environmental Screening Level for the protection of human health and groundwater, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table A-1 -Shallow Soil Screening Levels for Residential Land Use, December 2013.

Alta Environmental concluded that the VOCs were detected at trace concentrations below USEPA RSLs for an industrial/commercial land use scenario and below Los Angeles Regional Water Quality Control Board (RWQCB) screening levels for the protection of groundwater. As demonstrated in the preceding table, the VOC concentrations are also below screening levels established for the protection of human health for a residential land use scenario. Therefore, PlaceWorks concurs that the VOCs in soil do not pose a significant risk.

- Metals -- With one exception, metal concentrations in soil appear to be present at naturallyoccurring background concentrations and are below levels of regulatory concern. Arsenic was detected in one 5-foot sample (boring B7) at a concentration of 17.1 mg/kg, which exceeds the screening level of 12 mg/kg currently used by the DTSC for school sites. Arsenic was not detected in the 10-foot bgs sample from the same boring, indicating that the elevated arsenic concentration is vertically bounded and, based on its relatively low concentration, likely is not laterally extensive. The maximum concentration of lead (24.4 mg/kg) was below the screening level of 80 mg/kg currently used by the DTSC for school sites.
- TPH TPH-g was not detected in any of the soil samples. TPH-d and TPH-o were detected at maximum concentrations of 19 and 120 mg/kg, respectively. These concentrations are compared to San Francisco and Los Angeles RWQCB Environmental Screening Levels for the protection of human health and groundwater in the following table:

Compariso	Comparison of Maximum TPH Concentrations in Soil to Various Screening Levels										
	Maximum Concentration	SF RWQCB ESL (Human Health)	SF RWQCB ESL (Groundwater)	LA RWQCB SL (Groundwater)							
TPH	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)							
TPH-g	ND	770	100	100							
TPH-d	19	240	100	100							
TPH-0	120	10,000	100	1,000							
and the second line of the second sec											

mg/kg = milligram/kilogram

SF RWQCB ESL = San Francisco Regional Water Quality Control Board Environmental Screening Level for the protection of human health and groundwater, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table A-1 -Shallow Soil Screening Levels for Residential Land Use, December 2013.

LA RWQCB SL = Los Angeles Regional Water Quality Control Board Screening Level for the protection of groundwater, Interim Site Assessment & Cleanup Guidebook, Table 4-1 – Maximum Screening Levels for TPH, BTEX, and MTBE Above Drinking Water Aquifers, April 27, 2004 [revised]

As indicated in the preceding table, the TPH-o concentration of 120 mg/kg slightly exceeds the San Francisco RWQCB ESL of 100 mg/kg for the protection of groundwater. This concentration was detected in the 5-foot bgs soil sample from boring B4, which was used to investigate the former waste oil UST. The Los Angeles RWQCB reviewed the soil and associated groundwater data and, in its January 7, 2016 NFA letter, concluded that the "residual concentrations of fuel constituents pose a low threat to human health, and soil and groundwater quality beneath the Site" (see Section 8.0).

- <u>PCBs</u> PCBs were not detected in the two soil samples analyzed for this chemical parameter.
- <u>PAHs</u> One PAH, benzo(k)fluoranthene, was detected at a concentration of 38 ug/kg in the 5foot sample from boring B4. When its toxicity equivalency factor (TEQ) of 0.01 is applied, the benzo(a)pyrene equivalent (B[a]P) value of 0.00038 mg/kg is considerably below the concentration of 0.9 mg/kg generally considered to be representative for background soils in Southern California (Environ, 2009). Therefore, PAHs in soil do not pose a significant risk.

4.2 Soil Gas Results

Six VOCs were detected in soil gas samples as follows: benzene, ethylbenzene, PCE, toluene, TCE, and xylenes. In the table on the following page, PlaceWorks has compared the maximum concentrations of VOCs in soil gas to four screening levels used by the USEPA and the State of California for residential development.

Screening levels used for the evaluation of VOCs in soil gas are as follows:

- Residential California Human Health Screening Level (CHHSL) As identified by the Office of Environmental Health Hazard Assessment (OEHHA) in Table 2, "Soil Gas Screening Numbers for Volatile Chemicals Below Buildings Constructed with Engineered Fill Below Sub-Slab Gravel," dated September 23, 2010. Screening levels based on soil gas data collected <5 feet bgs and intended for evaluation of potential vapor intrusion into buildings and subsequent impacts to indoor air.
- Residential San Francisco RWQCB Environmental Screening Level (ESL) -- As identified in Table E-2 of the San Francisco RWQCB publication Screening for Concerns at Sites with Contaminated Soil and Groundwater, dated December 2013. Assumes that soil gas data are collected from a depth <5 feet bgs and that very permeable (e.g., sandy) fill material could be present beneath future buildings following redevelopment.
- Residential Attenuated USEPA Regional Screening Level (RSL) Calculated by dividing the more conservative of either the USEPA's current regional screening level (RSL) for indoor air (November 2015) or the DTSC's screening level (SL) for ambient air (Human and Ecological Risk Office [HERO] Health Risk Assessment Note 3, Table 3, October 2015) by an attenuation factor of 0.001 for future residential buildings to determine corresponding soil gas concentrations, as recommended in Table 2 of DTSC's Vapor Intrusion Guidance Document, dated October 2011.
- Residential Johnson & Ettinger ([&E) Model Screening Level Screening levels resulting from running the J&E vapor intrusion model (USEPA Screen Version 2.0; DTSC Modification December 2014) for soil gas concentrations at 5 feet bgs. Model input relied on conservative default assumptions recommended by the USEPA and DTSC. Model output spreadsheets that support the screening levels are provided in Attachment B.

Comparis	on of Maximum V	OC Concentration	ns in Soil Gas to	various Screenin	g Levels
	Maximum			Attenuated USEPA	
	Concentration	DTSC CHHSL	SF RWQCB ESL	RSL	J&E Model
VOC	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Benzene	0.093	0.085	0.042	0.097	0.073
Ethylbenzene	0.094J	1.1	0.49	1.1	0.97
PCE	0.47	0.47	0.21	0.48	0.49
Toluene	0.37	320	160	310	254
TCE	0.29	1.3	0.30	0.48	0.59
Xylenes	0.27	740	52	100	90
μ g/L = microgram/lite	er				

ricon of Maximum VOC Concentrations in Soil Cas to Various Screening Louels

Concentration in **bold** exceeds one or more screening level.

As indicated in the preceding table, the maximum concentrations of benzene and PCE in soil gas narrowly exceeded one or more of the screening levels used for the protection of human health via the indoor air vapor intrusion pathway. To further assess the significance of these findings, the cumulative human health risk and hazard for all six VOCs in soil gas were calculated using the conservative J&E default model for a residential land use scenario. Model output spreadsheets that contain the results are provided in Attachment B and summarized on the following page.

	Maximum Concentration	Sample Depth		
VOC	(µg/L)	(ft bgs)	Cancer Health Risk	Non-Cancer Health Hazard
Benzene	0.093	5	1.3E-06	4.1E-02
Ethylbenzene	0.094J	5	1.0E-07	1.1E-04
PCE	0.47	5	1.0E-06	1.3E-02
Toluene	0.37	5	NA	1.5E-03
TCE	0.29	5	5.1E-07	1.7E-01
Xylenes	0.27	5	NA	3.1E-03
-		Total	2.9E-06	0.23
Ар	plicable DTSC Thresholds for I	Residential Land Use	1.0E-06	1.0
μ g/L = microgram/liter				
NA = Not applicable; VO	C is not a carcinogen.			

Human Health Risk and Hazard Via the Vapor Intrusion Pathway

As seen in the preceding table, a noncancer hazard index (HI) of 0.23 was estimated for the Site for exposures via the vapor intrusion pathway, which is below the DTSC threshold level of 1.0. Therefore, the human health hazard is less than significant.

A cumulative cancer risk of 2.9 x 10^{-6} was estimated for the Site. This level of risk exceeds the DTSC threshold level of 1.0×10^{-6} , but is within the range of 10^{-4} to 10^{-6} used by the USEPA for health risk evaluation. The main contributors to the estimated cancer risk are benzene (45%), PCE (34%), and TCE (17%). Given that the health risk only slightly exceeds the DTSC threshold for a residential land use scenario, it is virtually certain that the risk would be less than significant for the proposed use of the Site for a school. Based on the following considerations, it can be argued that a residential (i.e., unrestricted) land use would also be acceptable for the Site:

- The maximum benzene concentration in soil gas is below the attenuated USEPA RSL for a residential land use. The maximum PCE concentration in soil gas is equal to or below the DTSC CHHSL, attenuated USEPA RSL, and J&E model results for a residential land use.
- The cumulative health risk was calculated using maximum soil gas concentrations and conservative default assumptions without consideration for site-specific conditions and construction plans. Despite the screening level and conservative nature of the model, the calculated health risk only slightly exceeds the DTSC threshold.
- The only soil gas VOC concentration that corresponded to a health risk greater than $1.0 \ge 10^{-6}$ was the benzene concentration of $0.093 \ \mu g/L$ in the 5-foot sample from boring B8. If this result were not included in the data set, the health risk associated with the next highest benzene concentration (i.e., $0.081 \ \mu g/L$ in the 5-foot sample from boring B9) would only be $8.1 \ge 10^{-7}$ (see Attachment B).

4.3 <u>Groundwater Results</u>

Groundwater is first encountered beneath the Site at depths ranging from 8 to 15 feet bgs and exhibits a west-southwesterly flow direction (Alta Environmental, 2016). One VOC was detected in groundwater – 2-butanone (MEK) at a trace concentration of 4.8J μ g/L. The USEPA and State of California have not published a Maximum Contaminant Level (MCL) or Public Health Goal (PHG) for MEK. The San Francisco RWQCB ESL for MEK in groundwater is 4,900 μ g/L (Table F-1a of the aforementioned publication). The concentration of MEK is orders of magnitude below this

screening level; therefore, VOCs in groundwater do not pose a significant risk to human health or the environment.

TPH-g was not detected in any of the groundwater samples. TPH-d and TPH-o were detected at maximum concentrations of $1,500 \ \mu g/L$ and $190J \ \mu g/L$, respectively. The highest TPH-d and TPH-o concentrations were detected in the groundwater sample from boring B5, which was located in the immediate area of the former waste oil UST. Based on this finding, the Phase II ESA report concluded that a historical release may have occurred from the former waste oil UST and recommended that the impacted groundwater be further investigated (see Section 5.0).

5.0 Additional Site Assessment

Alta Environmental conducted an Additional Site Assessment in September 2015 to assess the extent of groundwater impacts in the vicinity of the former 250-gallon waste oil UST, as documented in the Phase II ESA report (Alta Environmental, 2015c). Seven borings (B13 to B19) were completed in the vicinity of the former UST to depths ranging from 15 to 20 feet bgs. Groundwater was encountered at depths between 12 and 13.5 feet bgs. Upon reaching groundwater, temporary well screens were installed and groundwater grab samples were collected. A groundwater sample could not be collected from boring B16 because of insufficient yield. The groundwater samples were analyzed for TPH-g, TPH-d, and TPH-o by USEPA Method 8015M and VOCs by USEPA Method 8260B. Sample location figures and data summary tables for the Additional Site Assessment are provided in Attachment A.

VOCs were not detected in groundwater above laboratory method detection limits, with the exception of carbon disulfide at a trace concentration of 0.44J μ g/L. Carbon disulfide was also detected in the laboratory method blank at a similar concentration of 0.46J μ g/L. An MCL or agency groundwater screening level has not been established for carbon disulfide. However, given its trace concentration and the quality control anomaly, its detection in groundwater is not considered to be a significant finding.

TPH-g was not detected in any of the groundwater samples. TPH-d and TPH-o were detected at maximum concentrations of 530 μ g/L and 3,800 μ g/L, respectively. A review of the analytical results indicates that groundwater impacts are limited to the near vicinity of the former waste oil UST and that the petroleum hydrocarbons are not migrating off-site. The Los Angeles RWQCB reviewed the groundwater data (Alta Environmental, 2015d) and concluded that no further action was required at the Site (see Section 8.0).

6.0 Updated Phase I ESA

OCS commissioned Alta Environmental to update its Phase I ESA report so that it would be no more than 180 days old at the time of submittal to the DTSC. The updated report included a new Site inspection, acquisition of an updated EDR Radius Report, and re-interpretation of Site conditions based on the results of the Phase II ESA and Additional Site Assessment, which were appended to the Phase I ESA Report Update (Alta Environmental, 2016). Based on the Phase II investigations, Alta Environmental concluded that the RECs identified in the initial Phase I ESA (Section 3.0) were no longer of environmental concern, as explained below:

• "The previous Phase I ESA dated July 27, 2015 identified three onsite RECs: a former 250gallon waste oil UST, two former subsurface hydraulic vehicle lifts, and a former wastewater

clarifier. These potential environmental concerns were further assessed during subsurface investigations conducted in September and October of 2015. The concentrations of volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH), and Title 22 metals in all soil and soil vapor analytical results were reported below their respective industrial/commercial screening levels. The concentrations of VOCs in groundwater were reported below drinking water MCLs for all samples. Low levels of TPH as diesel and TPH as oil were detected in the vicinity of the former UST, however the Los Angeles Regional Water Quality Control Board issued a no further action finding dated January 7, 2016. Based on this information, the three previously identified onsite RECs now meet the definition of a Historical REC and are not considered significant environmental concerns for future industrial/commercial site users.

The previous Phase I ESA dated July 27, 2015 identified one offsite REC: 12922 Panama Street, the southwestern adjoining property. This potential offsite environmental concern was further assessed with two soil and soil vapor boring[s] advanced near the property boundary during the September 2015 subsurface investigation. The concentrations of VOCs, TPH, and Title 22 metals in all soil and soil vapor analytical results were reported below their respective industrial/commercial screening levels. Additionally, Alta has conducted extensive onsite and offsite soil, soil vapor, and groundwater sampling at the 12922 Panama Street site under LARWQCB oversight, has developed an approved draft remedial action plan, and has not identified any significant indications of subsurface impacts along the property boundary with the subject site. Based on this information, the previously identified offsite REC is not considered a significant environmental concern for future industrial/commercial site users."

No RECs that required further investigation were identified in the Phase I ESA Update Report.

7.0 Methane Testing

The Site is located within a Methane Zone, as defined by the City of Los Angeles Department of Building And Safety (LADBS). Accordingly, OCS commissioned PlaceWorks to conduct testing to determine if methane or hydrogen sulfide were present beneath the Site at concentrations that would pose a health or safety risk to future occupants of the Site (PlaceWorks, 2016). Sampling was conducted on April 19-20, 2016 and involved the collection of soil gas samples from nine locations (SG1 to SG9) at depths of 4 and 7 feet bgs. Methane was detected at concentrations ranging from 2.8 to 52.4 parts per million by volume (ppmv) in eight of the nine probe locations; hydrogen sulfide was not detected (<0.003 ppmv). PlaceWorks concluded that hazardous oilfield gases are not present beneath the Site at concentrations that would pose a significant threat to human health or safety.

8.0 UST Closure and Agency No Further Action Determinations

The 250-gallon waste oil UST and two hydraulic lifts identified in the Phase I ESA reports were closed by removal on February 15, 1996, as described in a UST Closure Report prepared by All Environmental Incorporated (AEI, 1996). During the removal, the UST and lifts were described as being in good condition with no signs of corrosion or rupture. One soil sample was collected from beneath the UST and analyzed for TPH (USEPA Method 418.1) and benzene/toluene/-ethylbenzene/xylenes (BTEX; USEPA Method 8020). The TPH concentration was 1,100 mg/kg (duplicate sample concentration of 1,600 mg/kg); BTEX constituents were not detected. Soil beneath the UST was removed to a depth of 10 feet bgs and additional samples were collected from the sidewalls and bottom of the resultant excavation. TPH concentrations in the follow-up samples

were 71 mg/kg or less. The Los Angeles City Fire Department (LAFD) issued a "no further action" (NFA) letter for the UST on April 1, 1996.

After additional information had been gathered regarding subsurface conditions, the case was referred to the Los Angeles RWQCB for further evaluation on December 30, 2015. After reviewing the information from the Phase II ESA (Section 4.0) and the Additional Site Assessment (Section 5.0), the Los Angeles RWQCB issued a second NFA letter, concluding that "residual concentrations of fuel constituents pose a low threat to human health, and soil and groundwater quality beneath the Site." Copies of the LAFD and RWQCB NFA letters are provided in Attachment C.

9.0 Off-Site Property (12922 Panama Street)

One off-site property poses a unique environmental concern due to its proximity to the Site and the documentation of VOC releases that have impacted groundwater. The property adjoins the Site to the southwest, at 12922 Panama Street, and is also owned and historically operated by Teledyne Microelectronics Technologies; it is being actively investigated under RWQCB oversight (GeoTracker File No. T10000004824). Chemicals of concern (COCs) include chlorinated VOCs, particularly PCE, TCE, cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-dichloroethane (1,1-DCA), and vinyl chloride. Several figures that depict environmental conditions at this off-site property are provided in Attachment D and referenced in the following discussion.

Two potential concerns with respect to this off-site property were evaluated by OCS when purchasing the Site:

- 1. Is impacted groundwater flowing toward and beneath the Site?
- 2. Are VOCs in groundwater or soil gas migrating beneath the Site at concentrations that would pose vapor intrusion concerns?

With respect to the first issue, several previous quarters of groundwater monitoring data for the offsite property show a consistent southwest groundwater flow direction, placing the off-site property directly and fully downgradient from the Site (see Figure 13 in Attachment D). Groundwater plume boundaries and elongation patterns prepared for PCE, TCE, and 1,2-DCE show groundwater contaminants clearly downgradient and migrating away from the Site (see Figures 14-16 in Attachment D). Groundwater results for monitoring wells and hydropunch locations nearest the Site have shown negligible or non-detect VOC concentrations. The graphical representations confirm that impacted groundwater beneath the off-site property is not affecting the Site. This conclusion is further supported by the fact that chlorinated VOCs were not detected at on-site groundwater sample location B8 during the Phase II ESA, which was located near the shared property boundary (see Section 4.3).

With respect to the second issue, soil gas data for the off-site property show maximum PCE and TCE concentrations of 0.22 μ g/L and 0.21 μ g/L, respectively, along the shared property boundary (see Figure 12 in Attachment D). These soil gas concentrations are below levels of health risk concern. The absence of detectable concentrations of chlorinated hydrocarbons at on-site soil gas sample locations B8 and B9 during the Phase II ESA (see Section 4.3) further confirms that VOCs from the off-site property are not migrating beneath the Site. In summary, the VOCs in groundwater and soil gas beneath the off-site property are clearly migrating away from, and pose no threat to, the Site.

10.0 Conclusions and Recommendations

Based on the available information, it is PlaceWorks' opinion that all potential on-site and off-site RECs associated with the Site have been identified and adequately investigated. The investigation results demonstrate that the potential threats to human health and the environment are less than significant for an unrestricted land use and support a "no further action" determination for the Site. On behalf of OCS, we look forward to the DTSC's concurrence and response. Please note that a check in the amount of \$1,500 has been submitted to the DTSC Accounting/Cashier in Sacramento, California as payment for the DTSC's review of this Phase I ESA.

If you have any questions regarding the contents of this transmittal, please do not hesitate to contact either of the undersigned.

Respectfully submitted,

PLACEWORKS

lave to

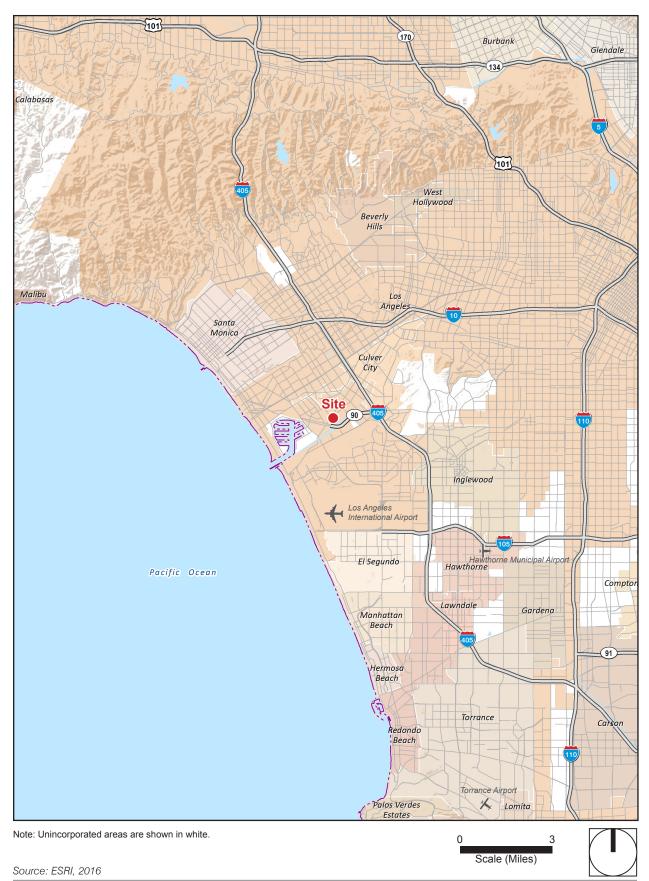
Ron Cavagrotti, D. Env. Senior Project Manager

White C Han

William C. Hass, P.E. Principal, Senior Engineer

<u>Figures:</u> Figure 1 – Regional Location Figure 2 -- Local Vicinity Figure 3 – Aerial Photograph

Attachments:


Attachment A – Previous Site Investigation Sample Locations and Analytical Results Attachment B – Health Risk Analysis Model Spreadsheets Attachment C – Agency NFA Letters Attachment D – Off-Site Soil Gas Sample Locations and Results (12922 Panama Street)

cc: Kristy Mack Fett, OCS Jim Bush Andrew Fowler, LAUSD-OEHS Dwayne Mears, PlaceWorks OCCD-04.0 Project File

Figures

Figure 1 - Regional Location



Figure 2 - Local Vicinity

PlaceWorks

Figure 3 - Aerial Photograph

Attachment A -- Previous Site Investigation Sample Locations and Analytical Results

			Sample ID:	B1-10	B2-10	B3-5	B3-10	B4-5	B5-10
			Date:	8/6/2015	8/6/2015	8/6/2015	8/6/2015	8/6/2015	8/6/2015
VOCs in Soil			RSL						
by EPA Method 8260B	MDL (µg/kg):	RL (µg/kg):	(µg/kg):			OC Concent			
Acetone Benzene	0.15-6.7	33-60 0.67-1.2	6.70E+08 5.10E+03	11J ND	9.9J ND	5.1J ND	13J 0.13J	26J ND	11J 0.18J
Bromobenzene	0.14-0.82	0.67-1.2	J.10L+03	ND	ND	ND	ND	ND	ND
Bromochloromethane	0.28-0.75	1.3-2.4		ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.16-0.95	0.67-1.2		ND	ND	ND	ND	ND	ND
Bromoform Bromomethane	0.53-11 4.5-10	3.3-6 13-24		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Butanone (MEK)	0.19-4.1	13-24	1.90E+08	ND	ND	ND	ND	ND	ND
n-Butylbenzene	0.1-0.69	0.67-1.2		ND	ND	ND	ND	ND	ND
sec-Butylbenzene	0.18-0.62	0.67-1.2		ND	ND	ND	ND	ND	ND
tert-Butylbenzene	0.1-0.36	0.67-1.2	0.505.00	ND	ND	ND	ND	ND	ND
Carbon Disulfide Carbon Tetrachloride	0.2-0.34 0.19-0.31	6.7-12 0.67-1.2	3.50E+06	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	0.15-1.8	0.67-1.2		ND	ND	ND	ND	ND	ND
Chloroethane	0.28-1.6	1.3-2.4		ND	ND	ND	ND	ND	ND
Chloroform	0.16-0.36	0.67-1.2		ND	ND	ND	ND	ND	ND
Chloromethane 2-Chlorotoluene	0.2-0.33	13-24 0.67-1.2	4.60E+05	ND ND	0.22J ND	ND ND	ND ND	ND ND	ND ND
4-Chlorotoluene	0.15-0.25	0.67-1.2		ND	ND	ND ND	ND	ND	ND
Dibromochloromethane	0.38-2.1	1.3-2.4		ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	0.3-1.9	3.3-6		ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.17-0.92	0.67-1.2		ND	ND	ND	ND	ND	ND
Dibromomethane 1,2-Dichlorobenzene	0.27-0.84 0.15-0.25	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	0.12-0.26	0.67-1.2		ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.15-0.53	0.67-1.2		ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.25-0.48	1.3-2.4		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane 1,2-Dichloroethane	0.14-0.37 0.21-0.41	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethene	0.21-0.41	0.67-1.2		ND	ND	ND	ND	ND	ND
c-1,2-Dichloroethene	0.19-0.6	0.67-1.2		ND	ND	ND	ND	ND	ND
t-1,2-Dichloroethene	0.34-0.55	0.67-1.2		ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.29-0.47	0.67-1.2		ND	ND	ND	ND	ND	ND
1,3-Dichloropropane 2,2-Dichloropropane	0.17-0.39 0.22-0.39	0.67-1.2 3.3-6		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloropropene	0.22-0.35	1.3-2.4		ND	ND	ND	ND	ND	ND
c-1,3-Dichloropropene	0.17-0.72	0.67-1.2		ND	ND	ND	ND	ND	ND
t-1,3-Dichloropropene	0.18-0.65	1.3-2.4		ND	ND	ND	ND	ND	ND
Ethylbenzene 2-Hexanone	0.1-2.1 0.65-1.9	0.67-1.2 13-24		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	0.37-0.75	0.67-1.2		ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	0.42-1.6	0.67-1.2		ND	ND	ND	ND	ND	ND
Methylene Chloride	0.9-5.1	6.7-12		ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	0.97-4.7	13-24		ND ND	ND ND	ND ND	ND	ND	ND ND
Naphthalene n-Propylbenzene	0.54-0.88	0.67-1.2		ND	ND	ND	ND ND	ND ND	ND
Styrene	0.29-0.65	0.67-1.2		ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	0.16-0.41	0.67-1.2		ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.23-0.37	1.3-2.4	4.005.05	ND	ND	ND	ND	ND	ND
Tetrachloroethene Toluene	0.14-0.61	0.67-1.2	1.00E+05	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichlorobenzene	0.37-0.99	1.3-2.4		ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.21-0.34	1.3-2.4		ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.15-0.42	0.67-1.2		ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane	0.24-0.42	0.67-1.2 6.7-12		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethene	0.24-0.38	1.3-2.4	6.00E+03	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	0.25-0.99	6.7-12		ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.56-0.9	1.3-2.4		ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.39-0.65	1.3-2.4		ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene Vinyl Acetate	0.37-5.7 0.6-5.1	1.3-2.4 6.7-12		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl Chloride	0.32-0.54	0.67-12		ND	ND	ND	ND	ND	ND
p/m-Xylene	0.18-0.66	1.3-2.4		ND	ND	ND	ND	ND	ND
o-Xylene	0.35-0.6	0.67-1.2		ND	ND	ND	ND	ND	ND
Methyl-t-Butyl Ether (MTBE)	0.2-6.2	1.3-2.4		ND	ND	ND	ND 5.4.1	ND	ND
Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE)	0.57-5.6 0.32-0.6	13-21 0.67-1.2		ND ND	ND ND	ND ND	5.4J ND	4.7J ND	ND ND
Ethyl-t-Butyl Ether (ETBE)	0.32-0.0	0.67-1.2		ND	ND	ND	ND	ND	ND
Tert-Amyl-Methyl Ether (TAME)	0.24-100	0.67-1.2		ND	ND	ND	ND	ND	ND
Ethanol	56-90	330-600		ND	ND	ND	ND	ND	ND
		Dilut	ion Factor:	1	1	1	1	1	1

NOTES:

VOC = Volatile Organic Compound

RL = Reporting Limit

MDL = Method Detection Limit

 $\mathsf{ND}=\mathsf{Indicated}$ constituents not detected above the MDL

 $\mu g I_{\rm I}$ = micrograms per liter J = Analyte detected; However result is an estimated value between the MDL and the RL

			Sample ID:	B6-5	B6-10	B7-5	B7-10	B8-2.5	B8-5
			Date:	8/5/2015	8/5/2015	8/5/2015	8/5/2015	8/5/2015	8/5/2015
VOCs in Soil			RSL						
by EPA Method 8260B Acetone	MDL (µg/kg): 0.15-6.7	RL (µg/kg): 33-60	(µg/kg): 6.70E+08	7.9J	6.3J	OC Concent 5.5J	5.4J	g) 19J	11.0J
Benzene	0.087-0.25	0.67-1.2	5.10E+03	ND	0.17J	ND	0.12J	0.54J	ND
Bromobenzene	0.14-0.82	0.67-1.2		ND	ND	ND	ND	ND	ND
Bromochloromethane	0.28-0.75	1.3-2.4		ND	ND	ND	ND	ND	ND
Bromodichloromethane Bromoform	0.16-0.95 0.53-11	0.67-1.2 3.3-6		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane	4.5-10	13-24		ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.19-4.1	13-24	1.90E+08	ND	ND	ND	ND	ND	ND
n-Butylbenzene	0.1-0.69	0.67-1.2		ND	ND	ND	ND	ND	ND
sec-Butylbenzene	0.18-0.62	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
tert-Butylbenzene Carbon Disulfide	0.1-0.36	0.67-1.2	3.50E+06	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	0.19-0.31	0.67-1.2	0.002.00	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.15-1.8	0.67-1.2		ND	ND	ND	ND	ND	ND
Chloroethane	0.28-1.6	1.3-2.4		ND	ND	ND	ND	ND	ND
Chloroform Chloromethane	0.16-0.36	0.67-1.2 13-24	4.60E+05	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chlorotoluene	0.15-0.25	0.67-1.2	4.002+03	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	0.14-0.68	0.67-1.2		ND	ND	ND	ND	ND	ND
Dibromochloromethane	0.38-2.1	1.3-2.4		ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	0.3-1.9	3.3-6		ND	ND	ND	ND	ND	ND
1,2-Dibromoethane Dibromomethane	0.17-0.92	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	0.15-0.25	0.67-1.2		ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0.12-0.26	0.67-1.2		ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.15-0.53	0.67-1.2		ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.25-0.48	1.3-2.4		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane 1,2-Dichloroethane	0.14-0.37	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.1-Dichloroethene	0.23-0.37	0.67-1.2		ND	ND	ND	ND	ND	ND
c-1,2-Dichloroethene	0.19-0.6	0.67-1.2		ND	ND	ND	ND	ND	ND
t-1,2-Dichloroethene	0.34-0.55	0.67-1.2		ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.29-0.47	0.67-1.2		ND	ND	ND	ND	ND	ND
1,3-Dichloropropane 2,2-Dichloropropane	0.17-0.39 0.22-0.39	0.67-1.2 3.3-6		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloropropene	0.22-0.35	1.3-2.4		ND	ND	ND	ND	ND	ND
c-1,3-Dichloropropene	0.17-0.72	0.67-1.2		ND	ND	ND	ND	ND	ND
t-1,3-Dichloropropene	0.18-0.65	1.3-2.4		ND	ND	ND	ND	ND	ND
Ethylbenzene	0.1-2.1	0.67-1.2		ND	ND	ND	ND	ND	ND
2-Hexanone Isopropylbenzene	0.65-1.9	13-24 0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
p-Isopropyltoluene	0.42-1.6	0.67-1.2		ND	ND	ND	ND	ND	ND
Methylene Chloride	0.9-5.1	6.7-12		ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	0.97-4.7	13-24		ND	ND	ND	ND	ND	ND
Naphthalene	0.54-0.88	0.67-1.2		ND	ND	ND	ND	ND	ND
n-Propylbenzene Styrene	0.34-0.72	1.3-2.4 0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.1.1.2-Tetrachloroethane	0.16-0.41	0.67-1.2		ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.23-0.37	1.3-2.4		ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.14-0.61	0.67-1.2	1.00E+05	ND	ND	ND	ND	ND	ND
Toluene	0.34-1.1	0.67-1.2		ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	0.37-0.99	1.3-2.4 1.3-2.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1-Trichloroethane	0.15-0.42	0.67-1.2		ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.24-0.42	0.67-1.2		ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.24-0.38	6.7-12	0.005	ND	ND	ND	ND	ND	ND
Trichloroethene	0.2-0.45	1.3-2.4	6.00E+03	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichlorofluoromethane 1,2,3-Trichloropropane	0.25-0.99 0.56-0.9	6.7-12 1.3-2.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-Trimethylbenzene	0.39-0.65	1.3-2.4		ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.37-5.7	1.3-2.4		ND	ND	ND	ND	ND	ND
Vinyl Acetate	0.6-5.1	6.7-12		ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.32-0.54	0.67-1.2		ND	ND	ND	ND	ND	ND
p/m-Xylene o-Xylene	0.18-0.66	1.3-2.4 0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl-t-Butyl Ether (MTBE)	0.2-6.2	1.3-2.4		ND	ND	ND	ND	ND	ND
Tert-Butyl Alcohol (TBA)	0.57-5.6	13-21		ND	4.5J	ND	ND	ND	ND
Diisopropyl Ether (DIPE)	0.32-0.6	0.67-1.2		ND	ND	ND	ND	ND	ND
Ethyl-t-Butyl Ether (ETBE)	0.34-0.55	0.67-1.2		ND	ND	ND	ND	ND	ND
Tert-Amyl-Methyl Ether (TAME) Ethanol	0.24-100 56-90	0.67-1.2 330-600		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

NOTES:

VOC = Volatile Organic Compound

RL = Reporting Limit

MDL = Method Detection Limit

 $\mathsf{ND}=\mathsf{Indicated}$ constituents not detected above the MDL

 $\mu g I_{\rm I}$ = micrograms per liter J = Analyte detected; However result is an estimated value between the MDL and the RL

			Sample ID:	B8-10	B9-2.5	B9-5	B9-10	B10-2.5	B10-5
			Date:	8/5/2015	8/5/2015	8/5/2015	8/5/2015	8/6/2015	8/6/2015
VOCs in Soil			RSL						
by EPA Method 8260B	MDL (µg/kg):	RL (µg/kg):	(µg/kg):	ND		OC Concent			451
Acetone Benzene	0.15-6.7	33-60 0.67-1.2	6.70E+08 5.10E+03	ND 0.15J	20J 0.65J	6.8J ND	5.8J 0.15J	64 0.40J	15J ND
Bromobenzene	0.14-0.82	0.67-1.2	0.102100	ND	ND	ND	ND	ND	ND
Bromochloromethane	0.28-0.75	1.3-2.4		ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.16-0.95	0.67-1.2		ND	ND	ND	ND	ND	ND
Bromoform	0.53-11	3.3-6		ND	ND	ND	ND	ND	ND
Bromomethane 2-Butanone (MEK)	4.5-10 0.19-4.1	13-24 13-24	1.90E+08	ND ND	ND ND	ND ND	ND ND	ND 3.3J	ND ND
n-Butylbenzene	0.19-4.1	0.67-1.2	1.90E+08	ND	ND ND	ND ND	ND ND	3.3J ND	ND
sec-Butylbenzene	0.18-0.62	0.67-1.2		ND	ND	ND	ND	ND	ND
tert-Butylbenzene	0.1-0.36	0.67-1.2		ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.2-0.34	6.7-12	3.50E+06	ND	ND	ND	ND	0.26J	ND
Carbon Tetrachloride	0.19-0.31	0.67-1.2		ND	ND	ND	ND	ND	ND
Chlorobenzene	0.15-1.8	0.67-1.2		ND	ND	ND	ND	ND	ND
Chloroethane Chloroform	0.28-1.6	1.3-2.4 0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane	0.2-0.33	13-24	4.60E+05	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	0.15-0.25	0.67-1.2	4.002100	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	0.14-0.68	0.67-1.2		ND	ND	ND	ND	ND	ND
Dibromochloromethane	0.38-2.1	1.3-2.4		ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	0.3-1.9	3.3-6		ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.17-0.92	0.67-1.2		ND	ND	ND	ND	ND	ND
Dibromomethane 1,2-Dichlorobenzene	0.27-0.84 0.15-0.25	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	0.15-0.25	0.67-1.2		ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.15-0.53	0.67-1.2		ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.25-0.48	1.3-2.4		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.14-0.37	0.67-1.2		ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.21-0.41	0.67-1.2		ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.23-0.37	0.67-1.2		ND ND	ND ND	ND ND	ND	ND ND	ND
c-1,2-Dichloroethene t-1,2-Dichloroethene	0.19-0.6	0.67-1.2		ND	ND ND	ND ND	ND ND	ND	ND ND
1,2-Dichloropropane	0.29-0.47	0.67-1.2		ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	0.17-0.39	0.67-1.2		ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	0.22-0.39	3.3-6		ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	0.22-0.35	1.3-2.4		ND	ND	ND	ND	ND	ND
c-1,3-Dichloropropene	0.17-0.72	0.67-1.2		ND	ND	ND	ND	ND	ND
t-1,3-Dichloropropene Ethylbenzene	0.18-0.65	1.3-2.4 0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Hexanone	0.65-1.9	13-24		ND	ND	ND	ND	ND	ND
Isopropylbenzene	0.37-0.75	0.67-1.2		ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	0.42-1.6	0.67-1.2		ND	ND	ND	ND	ND	ND
Methylene Chloride	0.9-5.1	6.7-12		ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	0.97-4.7	13-24		ND	ND	ND	ND	ND	ND
Naphthalene	0.54-0.88	0.67-1.2		ND	ND	ND	ND	ND	ND
n-Propylbenzene Styrene	0.34-0.72 0.29-0.65	1.3-2.4 0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1,2-Tetrachloroethane	0.16-0.41	0.67-1.2		ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.23-0.37	1.3-2.4		ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.14-0.61	0.67-1.2	1.00E+05	ND	ND	ND	ND	ND	ND
Toluene	0.34-1.1	0.67-1.2		ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	0.37-0.99	1.3-2.4		ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.21-0.34	1.3-2.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1-Trichloroethane 1,1,2-Trichloroethane	0.15-0.42	0.67-1.2		ND	ND ND	ND ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.24-0.42	6.7-12		ND	ND	ND	ND	ND	ND
Trichloroethene	0.2-0.45	1.3-2.4	6.00E+03	ND	ND	ND	ND	2.4	ND
Trichlorofluoromethane	0.25-0.99	6.7-12		ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.56-0.9	1.3-2.4		ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.39-0.65	1.3-2.4		ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene Vinyl Acetate	0.37-5.7	1.3-2.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl Acetate Vinyl Chloride	0.6-5.1 0.32-0.54	6.7-12 0.67-1.2		ND	ND ND	ND ND	ND	ND	ND
p/m-Xylene	0.32-0.54	1.3-2.4		ND	ND	ND	ND	ND	ND
o-Xylene	0.35-0.6	0.67-1.2		ND	ND	ND	ND	ND	ND
Methyl-t-Butyl Ether (MTBE)	0.2-6.2	1.3-2.4		ND	ND	ND	ND	ND	ND
Tert-Butyl Alcohol (TBA)	0.57-5.6	13-21		ND	ND	ND	ND	ND	ND
Diisopropyl Ether (DIPE)	0.32-0.6	0.67-1.2		ND	ND	ND	ND	ND	ND
Ethyl-t-Butyl Ether (ETBE)	0.34-0.55	0.67-1.2		ND	ND	ND	ND	ND	ND
Tert-Amyl-Methyl Ether (TAME) Ethanol	0.24-100	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND
E LUAUUI	56-90	330-600					עאו ו	עמו ו	ND

NOTES:

VOC = Volatile Organic Compound

RL = Reporting Limit

MDL = Method Detection Limit

 $\mathsf{ND}=\mathsf{Indicated}$ constituents not detected above the MDL

 $\mu g I_{\rm I}$ = micrograms per liter J = Analyte detected; However result is an estimated value between the MDL and the RL

			Sample ID:	B10-10	B11-2.5	B11-5	B11-10	B12-2.5	B12-5	B12-10
			Date:	8/6/2015	8/5/2015	8/5/2015	8/5/2015	8/5/2015	8/5/2015	8/5/2015
VOCs in Soil			RSL	0,0,2010						
by EPA Method 8260B	MDL (µg/kg):	RL (µg/kg):	(µg/kg):			VOC Co	oncentration	(µg/kg)		
Acetone	0.15-6.7	33-60	6.70E+08	24J	24J	35J	11J	55	7.5J	6.1J
Benzene	0.087-0.25	0.67-1.2	5.10E+03	0.14J	ND	0.19J	ND	0.29J	ND	0.14J
Bromobenzene Bromochloromethane	0.14-0.82	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromodichloromethane	0.16-0.95	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
Bromoform	0.53-11	3.3-6		ND	ND	ND	ND	ND	ND	ND
Bromomethane	4.5-10	13-24		ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.19-4.1	13-24	1.90E+08	ND	ND	5.7J	ND	ND	ND	ND
n-Butylbenzene	0.1-0.69	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene tert-Butylbenzene	0.18-0.62	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Disulfide	0.1-0.36 0.2-0.34	6.7-12	3.50E+06	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	0.19-0.31	0.67-1.2	3.30E100	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.15-1.8	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.28-1.6	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
Chloroform	0.16-0.36	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.2-0.33	13-24	4.60E+05	ND	ND	ND	ND	ND	0.24J	ND
2-Chlorotoluene 4-Chlorotoluene	0.15-0.25	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane	0.14-0.68	1.3-2.4		ND ND	ND	ND ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	0.36-2.1	3.3-6		ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.17-0.92	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
Dibromomethane	0.27-0.84	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.15-0.25	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0.12-0.26	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene Dichlorodifluoromethane	0.15-0.53 0.25-0.48	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane	0.14-0.37	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.21-0.41	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.23-0.37	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
c-1,2-Dichloroethene	0.19-0.6	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
t-1,2-Dichloroethene	0.34-0.55	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.29-0.47	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichloropropane 2,2-Dichloropropane	0.17-0.39	3.3-6		ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	0.22-0.35	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
c-1,3-Dichloropropene	0.17-0.72	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
t-1,3-Dichloropropene	0.18-0.65	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.1-2.1	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.65-1.9	13-24		ND ND	ND	ND ND	ND	ND ND	ND	ND ND
Isopropylbenzene p-Isopropyltoluene	0.37-0.75	0.67-1.2		ND ND	ND ND	ND	ND ND	ND	ND ND	ND
Methylene Chloride	0.9-5.1	6.7-12		ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	0.97-4.7	13-24		ND	ND	ND	ND	ND	ND	ND
Naphthalene	0.54-0.88	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	0.34-0.72	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
Styrene	0.29-0.65	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	0.16-0.41 0.23-0.37	0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-1 etrachioroethane Tetrachloroethene	0.23-0.37	1.3-2.4	1.00E+05	ND ND	ND ND	ND ND	ND ND	ND 1.2	ND ND	ND ND
Toluene	0.34-1.1	0.67-1.2	1.002103	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	0.37-0.99	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.21-0.34	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.15-0.42	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.24-0.42	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane Trichloroethene	0.24-0.38 0.2-0.45	6.7-12 1.3-2.4	6.00E+03	ND 0.57J	ND ND	ND ND	ND ND	ND 0.56J	ND ND	ND ND
Trichlorofluoromethane	0.25-0.45	6.7-12	0.00E+03	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.56-0.9	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.39-0.65	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.37-5.7	1.3-2.4		ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	0.6-5.1	6.7-12		ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.32-0.54	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
p/m-Xylene o-Xvlene	0.18-0.66	1.3-2.4 0.67-1.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-xylene Methyl-t-Butyl Ether (MTBE)	0.35-0.6	1.3-2.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tert-Butyl Alcohol (TBA)	0.2-0.2	13-21		ND	4.8J	ND	ND	5.8J	ND	ND
Diisopropyl Ether (DIPE)	0.32-0.6	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
Ethyl-t-Butyl Ether (ETBE)	0.34-0.55	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
Tert-Amyl-Methyl Ether (TAME)	0.24-100	0.67-1.2		ND	ND	ND	ND	ND	ND	ND
Ethanol	56-90	330-600		ND	ND	ND	ND	ND	ND	ND
		Dilut	ion Factor:	1	1	1	1	1	1	1

NOTES:

VOC = Volatile Organic Compound RL = Reporting Limit

MDL = Method Detection Limit

ND = Indicated constituents not detected above the MDL

$$\label{eq:gamma-state} \begin{split} &\mu g/L = micrograms per liter \\ J = Analyte detected; However result is an estimated value between the MDL and the RL \\ \end{split}$$

TABLE 2 Soil Matrix Sample Results for Title 22 Metals Phase II Panama Street 12870 Panama Street Los Angeles, California

		Title 22 Metals by EPA Method 6010B/7471A (mg/kg) and Mecury by EPA Method 7471 (mg/kg) in Soil																
Sample ID	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury (By EPA 7471)
	MDL (mg/kg):	0.143-0.154	0.249-0.269	0.148-0.16	0.132-0.142	0.13-0.14	0.137-0.147	0.142-0.153	0.13-0.14	0.127-0.136	0.127-0.137	0.139-0.15	0.288-0.31	0.0824-0.0888	0.146-0.157	0.136-0.146	0.171-0.184	0.00559-0.00618
		0.721-0.777	0.721-0.777	0.481-0.518	0.24-0.259	0.481-0.518	0.24-0.259	0.24-0.259	0.481-0.518	0.481-0.518	0.24-0.259	0.24-0.259	0.721-0.777	0.24-0.259	0.721-0.777	0.24-0.259	0.962-1.04	0.0794-0.0877
	HSLs Ind (mg/kg):		0.24	63,000	190.0	7.5	100,000	3,200	38,000	320	4,800	16,000	4,800	4,800	63	6,700	100,000	180
B4-5	8/6/2015	ND	10.2	172	0.803	1.35	51.6	16.2	47.2	10.7	ND	42.3	ND	ND	0.391J	62.1	96.6	0.0235J
B5-10	8/6/2015	ND	5.48	93.4	0.385	0.963	28.3	7.66	28.8	8.28	0.707	22.4	ND	ND	0.281J	40.5	62.1	0.0168J
B6-5	8/5/2015	ND	8.31	168	0.771	1.56	42.6	10.8	34.2	19.8	ND	32	ND	ND	ND	51.2	76.7	0.0313J
B6-10	8/5/2015	ND	4.07	51.4	0.326	1.03	20.3	5.38	13	10.4	ND	17.3	ND	ND	0.295J	33.4	34.5	0.00749J
B7-5	8/5/2015	ND	17.1	167	0.73	1.85	38	11.4	28.1	20.1	ND	31	ND	ND	ND	58.1	69	0.0277J
B7-10	8/5/2015	ND	ND	66.5	0.374	1.01	23.1	6.72	14.6	11.2	ND	20.3	ND	ND	ND	34.5	39.9	0.0171J
B8-2.5	8/5/2015	ND	2.95	92.8	0.356	1.2	26.4	8.68	21.8	3.75	ND	18.1	ND	ND	0.638J	36.6	46.1	ND
B9-2.5	8/5/2015	ND	7.39	96.1	0.463	1.41	31.8	7.29	125	17.4	ND	16.1	ND	ND	0.486J	39.2	65.9	0.0511J
B10-2.5	8/6/2015	ND	4.04	111	0.444	1.62	38.6	9.38	172	24.4	ND	22.4	ND	ND	0.722J	44.3	91.9	0.0375J
B11-2.5	8/5/2015	ND	4.76	114	0.694	1.52	39.3	13	23.8	18.2	ND	32.7	ND	ND	ND	62.3	58.9	0.00825J
B11-10	8/5/2015	ND	3.12	71.7	0.392	1.35	29.9	7.1	15.2	12.7	ND	26.2	ND	ND	ND	43.7	44	0.0235J
B12-2.5	8/5/2015	ND	5.86	95.9	0.526	1.43	33.3	9.32	61.4	16.4	ND	18.7	ND	ND	ND	43.6	61.7	0.0227J

NOTES:

mg/kg = milligrams per kilogram

ND = Indicates constituent not detected at or above the MDL

MDL = Method Detection Limit

RL = Reporting Limit

J = Analyte detected; however result is an estimated value between the MDL and the RL

CHHSLs = California Health Hazard Screening Level, industrial/commercial land use scenario

TABLE 3

Soil Matrix Sample Results for TPH Phase II Panama Street 12870 Panama Street Los Angeles, California

		TPHcc by	EPA Method 801	5M in Soil
Sample ID	Sample	TPH-GRO	TPH-DRO	TPH-ORO
Campie ib	Date	(C4-C12) (mg/kg)	(C10-C28)	(C28-C36+)
			(mg/kg)	(mg/kg)
	MDL (mg/kg):	0.4-0.44	1.2-1.3	5.9-6
	RL (mg/kg):	0.48-0.53	4.9-5.0	25.0
B1-10	8/6/2015	ND	ND	ND
B2-10	8/6/2015	ND	ND	ND
B3-5	8/6/2015	ND	3.3J	ND
B3-10	8/6/2015	ND	ND	ND
B4-5	8/6/2015	ND	19	120
B5-10	8/6/2015	ND	17	ND
B6-5	8/5/2015	ND	1.3J	ND
B6-10	8/5/2015	ND	1.7J	ND
B7-5	8/5/2015	ND	2.6J	ND
B7-10	8/5/2015	ND	ND	ND
B8-2.5	8/5/2015	ND	2.0J	ND
B8-5	8/5/2015	ND	5.7	ND
B8-10	8/5/2015	ND	4.9J	ND
B9-2.5	8/5/2015	ND	2.7J	ND
B9-5	8/5/2015	ND	4.0J	ND
B9-10	8/5/2015	ND	2.7J	ND
B10-2.5	8/6/2015	ND	ND	ND
B10-5	8/6/2015	ND	ND	ND
B10-10	8/6/2015	ND	ND	ND
B11-2.5	8/5/2015	ND	1.9J	ND
B11-5	8/5/2015	ND	6.9	ND
B11-10	8/5/2015	ND	ND	ND
B12-2.5	8/5/2015	ND	2.3J	ND
B12-5	8/5/2015	ND	ND	ND
B12-10	8/5/2015	ND	ND	ND

NOTES:

ND = Indicates constituents not detected above the PQL

PQL = Practical Quantitation Limit

TPH-GRO = total petroleum hydrocarbons as gasoline range organics

TPH-DRO = total petroleum hydrocarbons as diesel range organics

TPH-ORO = total petroleum hydrocarbons as oil range organics

mg/kg = milligrams per kilogram

bgs = Below ground surface

TABLE 4

Soil Matrix Sample Results for PCBs and PAHs Phase II Panama Street 12870 Panama Street Los Angeles, California

	Sample	EPA 8082	EPA83	10	B(a)P
Sample ID	Date	PCBs	Benzo(k)Fluoranthene	All Other PAHs	Equivalent
	MDL (µg/kg):	21-43	1.7	NA	NA
	RL (µg/kg):	50.0	10	NA	NA
Screen	ing Level (µg/kg):	NA	NA	NA	900.0
B4-5	8/6/2015	ND	38	ND	0.38
B5-10	8/6/2015	ND	ND	ND	NA

NOTES:

ND = Indicates constituent not detected at or above the MDL

MDL = Method Detection Limit

RL = Practical Quantitation Limit

 μ g/kg = micrograms per kilogram

NA = Not Applicable

TABLE 5 Soil Vapor Sample Results for VOCs Phase II Panama Street 12870 Panama Street Los Angeles, California

					jeles, Californ						
			Sample ID:	B4-5	B4-10	B5-5-1PV	B5-5-3PV	B5-5-10PV	B5-10	B6-5	B6-10
			Date:	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015
VOCs in Soil Vapor			CHHSLs								
by EPA Method 8260B	MDL (µg/L):	RL (µg/L):	Ind (µg/L):				VOC Concen				NE
	5	10		ND	ND	ND	ND	ND	ND	ND	ND
t-Amyl Methyl Ether (TAME) Benzene	0.05	0.1 0.05	0.122	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromobenzene	0.04	0.05		ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	0.1	0.2		ND	ND	ND	ND	ND	ND	ND	ND
t-Butanol (TBA)	0.5	1		ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.5	1		ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.5	1		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	0.03	0.05	0.085	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene Chloroethane	0.05	0.1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloroform	0.05	0.1		ND	ND	ND	ND ND	ND ND	ND	ND	ND
Chloromethane	0.05	0.1		ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
2-Chlorotoluene	0.05	0.2		ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	0.02	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	0.02	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.05	0.1	0.167	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.05	0.1	44.4	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.05	0.1	88.7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane 1,3-Dichloropropane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Diisopropyl Ether (DiPE)	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.05	0.1	1.4	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl-t-Butyl Ether (EtBE)	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.5	1	-	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.5	1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl-t-butyl Ether (MtBE) Naphthalene	0.05	0.1 0.05	13 0.11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Propylbenzene	0.05	0.05		ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.05	0.1	0.6	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.05	0.1	380	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.05	0.1	-	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.05	0.1	2,800	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.05	0.1	1.8	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.02	0.1	-	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Trichlorotrifluoroethane	0.1	0.2		ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.01	0.05	0.045 890	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
m,p-Xylenes o-Xylene	0.1	0.2	890	ND	ND	ND	ND	ND	ND	ND	ND
	0.05		ution Factor:	1	1	1	1	1	1	1	1

NOTES:

VOC = Volatile Organic Compound

RL = Reporting Limit

MDL = Method Detection Limit

 $\mathsf{ND}=\mathsf{Indicated}$ constituents not detected above the MDL

µg/L = micrograms per liter

 J = Analyte detected; However result is an estimated value between the MDL and the RL

CHHSLs = California Human Health Screening Levels, Industrial

TABLE 5 Soil Vapor Sample Results for VOCs Phase II Panama Street 12870 Panama Street Los Angeles, California

			Sample ID:	B7-5	B7-10	B7-10-DUP	B8-5	B8-10	B9-5	B9-10	B10-5
			Date:	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015
VOCs in Soil Vapor			CHHSLs								
by EPA Method 8260B	MDL (µg/L):	RL (µg/L):	Ind (µg/L):			١	VOC Concen	tration (µg/L)		
Acetone	5	10		ND	ND	ND	ND	ND	ND	ND	ND
t-Amyl Methyl Ether (TAME)	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.04	0.05	0.122	0.055	ND	ND	0.093	ND	0.061	ND	ND
Bromobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane t-Butanol (TBA)	0.1	0.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Butanone (MEK)	0.5	1	-	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.5	1		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	0.03	0.05	0.085	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.1	0.2		ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	0.02	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	0.02	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.05	0.1		ND	ND ND	ND ND	ND	ND	ND ND	ND	ND
1,3-Dichlorobenzene	0.05	0.1		ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Dichlorodifluoromethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.05	0.1	0.167	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.05	0.1	44.4	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.05	0.1	88.7	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Diisopropyl Ether (DiPE)	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.05	0.1	1.4	ND	ND	ND	0.094J	ND	ND	ND	ND
Ethyl-t-Butyl Ether (EtBE)	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene 2-Hexanone	0.05	0.1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	0.5	0.1		ND	ND	ND ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	0.05	0.1		ND	ND	ND ND	ND	ND	ND	ND	ND
Methylene Chloride	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	1		ND	ND	ND	ND	ND	ND	ND	ND
Methyl-t-butyl Ether (MtBE)	0.05	0.1	13	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	0.03	0.05	0.11	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.05	0.1	0.6	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.05	0.1	380	0.14	0.060J	0.063J	0.37	ND	0.15	ND	0.11
1,2,3-Trichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.05	0.1	2,800	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.05	0.1	1.8	ND	ND	ND	ND	ND	ND	ND	0.29
1,2,3-Trichloropropane	0.02	0.1		ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane Trichlorotrifluoroethane	0.05	0.1		ND	ND ND	ND ND	ND	ND	ND	ND	ND
1.2.4-Trimethylbenzene	0.1	0.2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-Trimethylbenzene	0.05	0.1		ND	ND	ND ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.05	0.05	0.045	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylenes	0.01	0.05	890	0.11J	ND	ND	0.27	ND	0.13J	ND	0.12J
		0.4	000						0.100		
o-Xylene	0.05	0.1	880	ND	ND	ND	0.080J	ND	ND	ND	ND

NOTES:

VOC = Volatile Organic Compound

RL = Reporting Limit

MDL = Method Detection Limit

 $\mathsf{ND}=\mathsf{Indicated}$ constituents not detected above the MDL

µg/L = micrograms per liter

 J = Analyte detected; However result is an estimated value between the MDL and the RL

CHHSLs = California Human Health Screening Levels, Industrial

				eles, Californ					
			Sample ID:	B10-10	B11-6	B11-9.5	B12-5	B12-10	B12-10-DUP
			Date:	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015	8/10/2015
VOCs in Soil Vapor			CHHSLs						
by EPA Method 8260B	MDL (µg/L):	RL (µg/L):	Ind (µg/L):			VOC Concen			
Acetone	5	10		ND	ND	ND	ND	ND	ND
t-Amyl Methyl Ether (TAME)	0.05	0.1		ND	ND	ND	ND	ND	ND
Benzene	0.04	0.05	0.122	ND	0.060 ND	0.081 ND	0.044J	0.041J ND	0.045J
Bromobenzene Bromochloromethane	0.05	0.1		ND ND	ND	ND	ND ND	ND	ND ND
Bromodichloromethane	0.05	0.1		ND	ND	ND	ND	ND	ND
Bromoform	0.05	0.1		ND	ND	ND	ND	ND	ND
Bromomethane	0.00	0.1		ND	ND	ND	ND	ND	ND
t-Butanol (TBA)	0.5	1		ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.5	1		ND	ND	ND	ND	ND	ND
n-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
sec-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
tert-Butylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.5	1		ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	0.03	0.05	0.085	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
Chloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND
Chloroform	0.05	0.1		ND	ND	ND	ND	ND	ND
Chloromethane	0.1	0.2		ND	ND	ND	ND	ND	ND
2-Chlorotoluene	0.05	0.1		ND	ND	ND	ND ND	ND	ND
4-Chlorotoluene	0.05	0.1		ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane 1,2-Dibromoethane (EDB)	0.05	0.1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dibromo-3-Chloropropane	0.02	0.1		ND	ND	ND	ND	ND	ND
Dibromomethane	0.02	0.1		ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.05	0.1		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.05	0.1	0.167	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.05	0.1		ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.05	0.1	44.4	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.05	0.1	88.7	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.05	0.1		ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	0.05	0.1		ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	0.05	0.1		ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	0.05	0.1		ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	0.05	0.1		ND ND	ND	ND	ND	ND	ND ND
Diisopropyl Ether (DiPE)	0.05	0.1		ND	ND	ND	ND	ND	ND
Ethylbenzene	0.05	0.1	1.4	ND	ND	ND	ND	ND	ND
Ethyl-t-Butyl Ether (EtBE)	0.05	0.1		ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.05	0.1		ND	ND	ND	ND	ND	ND
2-Hexanone	0.5	1		ND	ND	ND	ND	ND	ND
Isopropylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	0.05	0.1		ND	ND	ND	ND	ND	ND
Methylene Chloride	0.05	0.1		ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.5	1		ND	ND	ND	ND	ND	ND
Methyl-t-butyl Ether (MtBE)	0.05	0.1	13	ND	ND	ND	ND	ND	ND
Naphthalene	0.03	0.05	0.11	ND	ND	ND	ND	ND	ND
n-Propylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
Styrene	0.05	0.1		ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.05	0.1		ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.05	0.1	0.6	ND	ND	ND 0.10	0.47	0.40	0.40
Toluene	0.05	0.1	380	ND	0.22	0.10	0.13	ND	ND
1,2,3-Trichlorobenzene	0.05	0.1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-Trichlorobenzene	0.05	0.1	2,800	ND	ND	ND	ND	ND	ND ND
1,1,2-Trichloroethane	0.05	0.1	2,000	ND	ND	ND	ND	ND	ND
Trichloroethene	0.05	0.1	1.8	0.16	ND	ND	0.076J	0.099J	0.096J
1,2,3-Trichloropropane	0.02	0.1		ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	0.02	0.1		ND	ND	ND	ND	ND	ND
Trichlorotrifluoroethane	0.05	0.1		ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.05	0.1		ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.01	0.05	0.045	ND	ND	ND	ND	ND	ND
m,p-Xylenes	0.1	0.2	890	ND	0.16J	ND	0.17J	ND	ND
o-Xylene	0.05	0.1	880	ND	0.10	ND	0.058J	ND	ND
		Dil	ution Factor:	1	1	1	1	1	1

NOTES:

VOC = Volatile Organic Compound

RL = Reporting Limit

MDL = Method Detection Limit

 $\mathsf{ND}=\mathsf{Indicated}$ constituents not detected above the MDL

µg/L = micrograms per liter

 J = Analyte detected; However result is an estimated value between the MDL and the RL

CHHSLs = California Human Health Screening Levels, Industrial

TABLE 6 Water Sample Results for VOCs Phase II Panama Street 12870 Panama Street Los Angeles, California

	Sample ID: B8 B11 B5							
VOCs by			Date:	8/5/2015	8/5/2015	8/6/2015		
EPA Method 8260B in Water	MDL (µg/L):	RL (µg/L):	MCLs (ug/L)		Concentration			
Acetone Benzene	10 0.14	20 0.50	1	ND ND	ND ND	ND ND		
Bromobenzene	0.14	1.0	1	ND	ND	ND		
Bromochloromethane	0.48	1.0		ND	ND	ND		
Bromodichloromethane	0.21	1.0		ND	ND	ND		
Bromoform	0.50	1.0		ND	ND	ND		
Bromomethane	3.9	10		ND	ND	ND		
2-Butanone	2.2	10		ND	ND	4.8J		
n-Butylbenzene	0.23	1.0		ND	ND	ND		
sec-Butylbenzene	0.25	1.0		ND	ND ND	ND		
tert-Butylbenzene Carbon Disulfide	0.28	1.0 10		ND ND	ND	ND ND		
Carbon Tetrachloride	0.23	0.50	0.5	ND	ND	ND		
Chlorobenzene	0.17	1.0	0.0	ND	ND	ND		
Chloroethane	2.3	5.0		ND	ND	ND		
Chloroform	0.46	1.0		ND	ND	ND		
Chloromethane	1.8	10		ND	ND	ND		
2-Chlorotoluene	0.24	1.0		ND	ND	ND		
4-Chlorotoluene	0.13	1.0		ND	ND	ND		
Dibromochloromethane	0.25	1.0 5.0		ND ND	ND ND	ND ND		
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	0.36	5.0		ND ND	ND ND	ND ND		
Dibromomethane	0.36	1.0		ND	ND	ND		
1,2-Dichlorobenzene	0.46	1.0	600	ND	ND	ND		
1,3-Dichlorobenzene	0.40	1.0		ND	ND	ND		
1,4-Dichlorobenzene	0.43	1.0	5.0	ND	ND	ND		
Dichlorodifluoromethane	0.46	1.0		ND	ND	ND		
1,1-Dichloroethane	0.28	1.0	5.0	ND	ND	ND		
1,2-Dichloroethane	0.24	0.50	0.5	ND	ND	ND		
1,1-Dichloroethene	0.43	1.0	6.0	ND	ND ND	ND		
c-1,2-Dichloroethene t-1,2-Dichloroethene	0.48	1.0	6.0 10	ND ND	ND	ND ND		
1,2-Dichloropropane	0.42	1.0	5.0	ND	ND	ND		
1,3-Dichloropropane	0.30	1.0	0.0	ND	ND	ND		
2,2-Dichloropropane	0.36	1.0		ND	ND	ND		
1,1-Dichloropropene	0.46	1.0		ND	ND	ND		
c-1,3-Dichloropropene	0.25	0.50		ND	ND	ND		
t-1,3-Dichloropropene	0.25	0.50		ND	ND	ND		
Ethylbenzene	0.14	1.0	300	ND	ND	ND		
2-Hexanone Isopropylbenzene	2.1 0.58	10 1.0		ND ND	ND ND	ND ND		
p-Isopropyitoluene	0.58	1.0		ND	ND	ND		
Methylene Chloride	0.64	1.0		ND	ND	ND		
4-Methyl-2-Pentanone	4.4	10		ND	ND	ND		
Naphthalene	2.5	10		ND	ND	ND		
n-Propylbenzene	0.17	1.0		ND	ND	ND		
Styrene	0.17	1.0	100	ND	ND	ND		
1,1,1,2-Tetrachloroethane	0.40	1.0		ND	ND	ND		
1,1,2,2-Tetrachloroethane	0.41	1.0	1 5	ND ND	ND ND	ND ND		
Tetrachloroethene Toluene	0.39	1.0	5	ND	ND	ND		
1,2,3-Trichlorobenzene	0.24	1.0	150	ND	ND	ND		
1,2,4-Trichlorobenzene	0.50	1.0	5	ND	ND	ND		
1,1,1-Trichloroethane	0.30	1.0	200	ND	ND	ND		
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.78	10	1,200	ND	ND	ND		
1,1,2-Trichloroethane	0.38	1.0	5	ND	ND	ND		
Trichloroethene	0.37	1.0	5	ND	ND	ND		
Trichlorofluoromethane	1.7	10	150	ND	ND	ND		
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	0.64 0.36	5.0 1.0		ND ND	ND ND	ND ND		
1,3,5-Trimethylbenzene	0.36	1.0		ND	ND	ND		
Vinyl Acetate	2.8	1.0		ND	ND	ND		
Vinyl Chloride	0.30	0.50	0.5	ND	ND	ND		
p/m-Xylene	0.30	1.0		ND	ND	ND		
o-Xylene	0.23	1.0		ND	ND	ND		
Methyl-t-Butyl Ether (MTBE)	0.31	1.0	13	ND	ND	ND		
Tert-Butyl Alcohol (TBA)	4.6	10		ND	ND	ND		
Diisopropyl Ether (DIPE)	0.33	2.0		ND ND	ND ND	ND ND		
Ethyl-t-Butyl Ether (ETBE)	0.44	2.0						
	0.44 0.22 50	2.0 2.0 100		ND ND ND	ND ND ND	ND ND		

NOTES: VOC = Volatile Organic Compound MDL = Method Detection Limit

RL = Reporting Limit

MCLs = California Department of Public Health Maximum Contaminant Levels, Updated July 2014

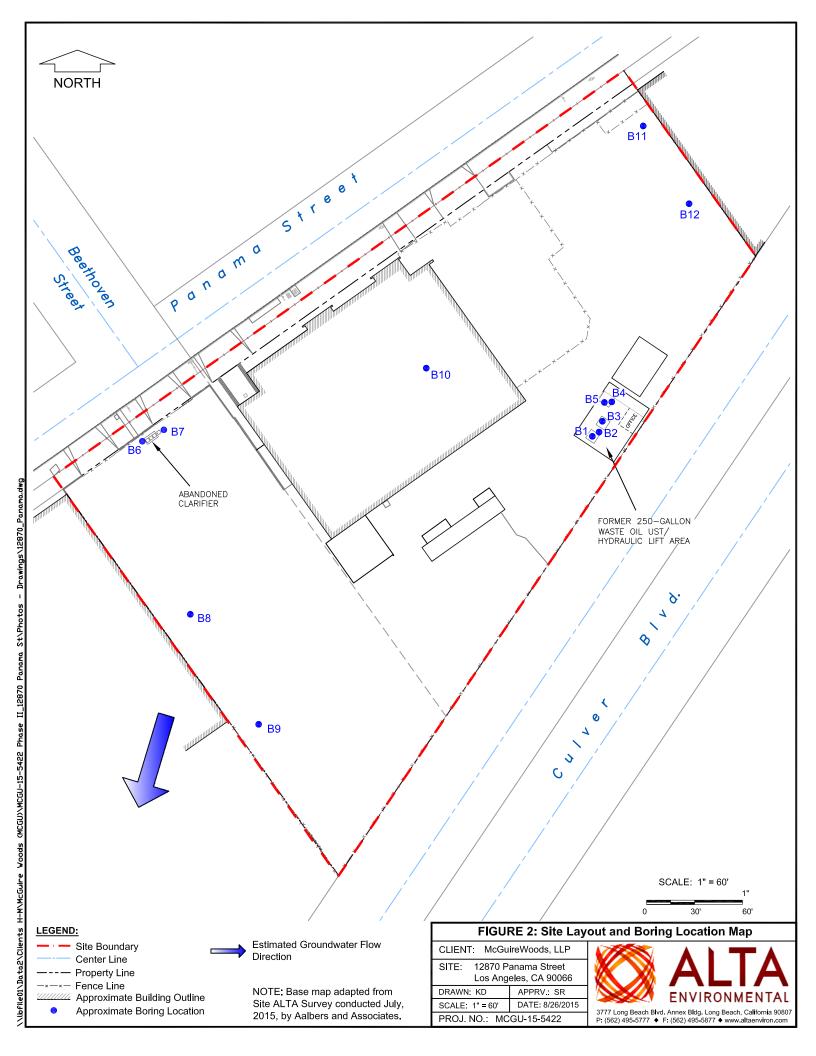
 $\begin{array}{l} \text{Modes} = \text{Controlled Department of Fourier treatment non-instant Containment Covers, Optime ND = Indicated constituents not detected at or above the MDL \\ J = Analyte detected; however, result is an estimated value between the MDL and RL, \\ \mu g/L = micrograms per liter \\ \end{array}$

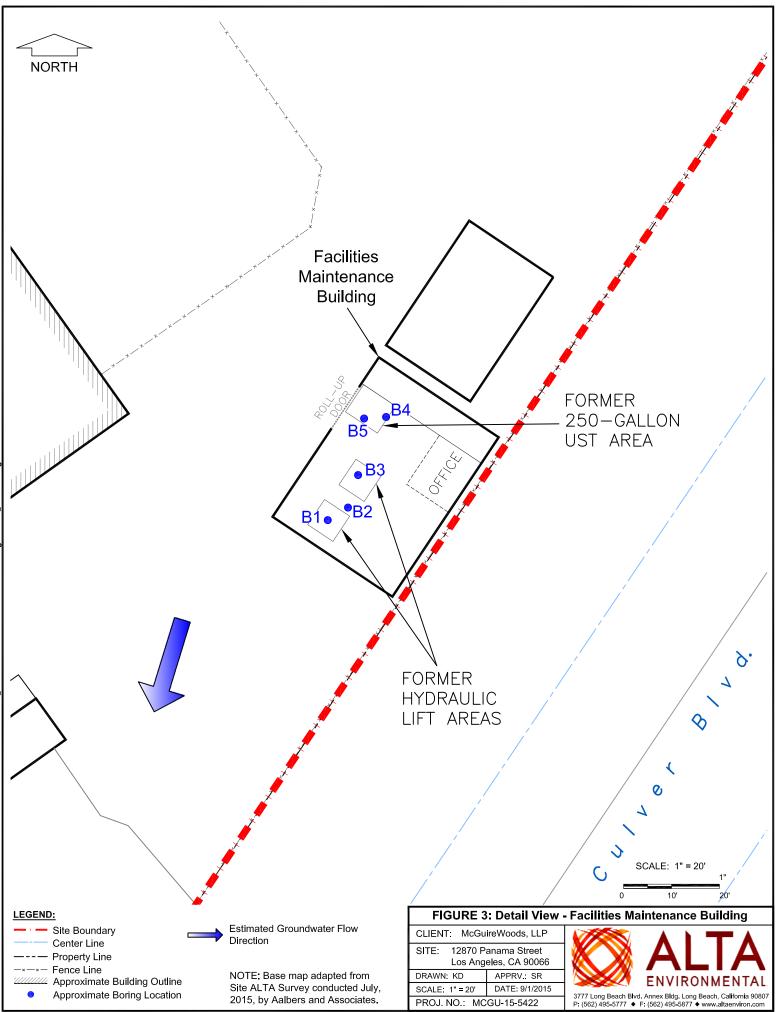
TPHcc by EPA Method 8015M in Water								
Sample ID	Sample Date	TPH-GRO (C6-C10) (ug/L)	TPH-DRO (C10-C22) (ug/L)	TPH-ORO (C23+) (ug/L)				
N	IDL (ug/L):	48	8.0	53				
	RL (µg/L)	50	50.0	250				
B8	8/5/2015	ND	65	ND				
B11	8/5/2015	ND	37J	ND				
B5	8/6/2015	ND	1,500	190J				

NOTES:

ND = Indicates constituents not detected above the PQL

MDL = Method Detection Limit


TPH-GRO = total petroleum hydrocarbons as gasoline range organics


TPH-DRO = total petroleum hydrocarbons as diesel range organics

TPH-ORO = total petroleum hydrocarbons as oil range organics

ug/L = micrograms per liter

J = Analyte detected; result is an estimated value between the MDL and the reporting limit.

TABLE 1 Water Sample Results for VOCs Panama Street - Additional Site Assessment 12870 Panama Street Los Angeles, California

			Sample ID:	B13	B14	B15	B17	B18	B19
VOCs by			Date:	9/24/2015	9/24/2015	9/24/2015	9/24/2015	9/24/2015	9/24/2015
EPA Method 8260B in Water	MDL (µg/L):	RL (µg/L):	MCLs (ug/L)		Concentration	(ug/L)		Concentration	(ug/L)
Acetone	10	20	-	ND	ND	ND	ND	ND	ND
Benzene	0.14	0.5	-	ND	ND	ND	ND	ND	ND
Bromobenzene	0.3	1	-	ND	ND	ND	ND	ND	ND
Bromochloromethane	0.48	1	-	ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.21	1	-	ND	ND	ND	ND	ND	ND
Bromoform	0.5	1	-	ND	ND	ND	ND	ND	ND
Bromomethane	3.9	10	-	ND ND	ND ND	ND ND	ND ND	ND	ND ND
2-Butanone n-Butylbenzene	2.2 0.23	10 1	-	ND	ND	ND	ND	ND ND	ND
sec-Butylbenzene	0.25	1	-	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	0.23	1	-	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.41	10	NE	ND	0.44J,B	ND	ND	ND	ND
Carbon Tetrachloride	0.23	0.5	-	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.17	1	-	ND	ND	ND	ND	ND	ND
Chloroethane	2.3	5	-	ND	ND	ND	ND	ND	ND
Chloroform	0.46	1	-	ND	ND	ND	ND	ND	ND
Chloromethane	1.8	10	-	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	0.24	1	-	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	0.13	1	-	ND	ND	ND	ND	ND	ND
Dibromochloromethane	0.25	1	-	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	1.2	5	-	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.36	1	-	ND	ND	ND	ND	ND	ND
Dibromomethane	0.46	1	-	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.46	1	-	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0.4	1	-	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.43	1	-	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane 1.1-Dichloroethane	0.46	1	-	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.28	1 0.5	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.1-Dichloroethene	0.24	1	-	ND	ND	ND	ND	ND	ND
c-1,2-Dichloroethene	0.43	1	-	ND	ND	ND	ND	ND	ND
t-1,2-Dichloroethene	0.37	1	-	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.42	1	-	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	0.3	1	-	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	0.36	1	-	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	0.46	1	-	ND	ND	ND	ND	ND	ND
c-1,3-Dichloropropene	0.25	0.5	-	ND	ND	ND	ND	ND	ND
t-1,3-Dichloropropene	0.25	0.5	-	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.14	1	-	ND	ND	ND	ND	ND	ND
2-Hexanone	2.1	10	-	ND	ND	ND	ND	ND	ND
Isopropylbenzene	0.58	1	-	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	0.16	1	-	ND	ND	ND	ND	ND	ND
Methylene Chloride	0.64	10	-	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	4.4	10	-	ND	ND	ND	ND	ND	ND
Naphthalene	2.5	10	-	ND	ND	ND	ND	ND	ND
n-Propylbenzene	0.17	1	-	ND	ND	ND	ND	ND	ND
Styrene	0.17	1	-	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	0.4	1	-	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.41	1	-	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Tetrachloroethene	0.39	1	-	ND	ND	ND	ND	ND ND	ND
Toluene 1,2,3-Trichlorobenzene	0.24	1	-	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.5	1	-	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.3	1	-	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.5	10	-	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.38	1	-	ND	ND	ND	ND	ND	ND
Trichloroethene	0.37	1	-	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	1.7	10	-	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.64	5	-	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.36	1	-	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.28	1	-	ND	ND	ND	ND	ND	ND
Vinyl Acetate	2.8	10	-	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.3	0.5	-	ND	ND	ND	ND	ND	ND
p/m-Xylene	0.3	1	-	ND	ND	ND	ND	ND	ND
o-Xylene	0.23	1	-	ND	ND	ND	ND	ND	ND
Methyl-t-Butyl Ether (MTBE)	0.31	1	-	ND	ND	ND	ND	ND	ND
Tert-Butyl Alcohol (TBA)	4.6	10	-	ND	ND	ND	ND	ND	ND
Diisopropyl Ether (DIPE)	0.33	2	-	ND	ND	ND	ND	ND	ND
Ethyl-t-Butyl Ether (ETBE)	0.44	2	-	ND	ND	ND	ND	ND	ND
Tert-Amyl-Methyl Ether (TAME)	0.22	2	-	ND	ND	ND	ND	ND	ND
Ethanol	50	100	-	ND	ND	ND	ND	ND	ND
			Dilution Factor:	1	1	1	1	1	1

NOTES:

VOC = Volatile Organic Compound MDL = Method Detection Limit

RL = Reporting Limit

MCLs = California Department of Public Health Maximum Contaminant Levels, Updated July 2014

 ND = Indicated constituents not detected at or above the MDL J = Analyte detected; however, result is an estimated value between the MDL and RL.

µg/L = micrograms per liter

B = Analyte was present in the associated method blank - = Not Applicable

NE = No MCL Established

TABLE 2Water Sample Results for TPHPanama Street - Additional Site Assessment12870 Panama StreetLos Angeles, California

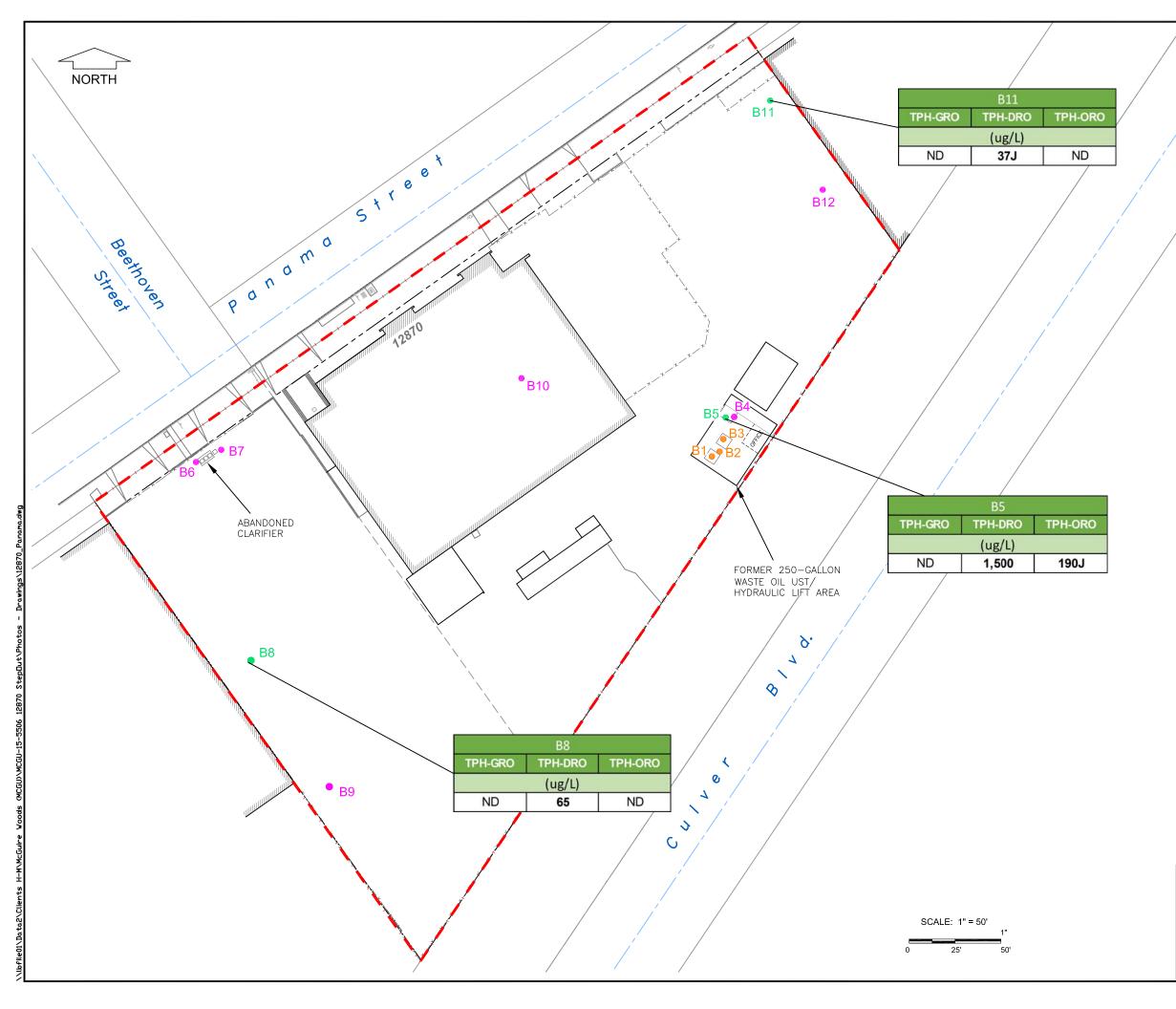
TPHcc by EPA Method 8015M in Water								
Sample ID	Sample Date	$(Ch-C_1(0)) = (C_1(0-C_2(2)))$						
MDL (ug/L):		48	7.7-15	51-100				
RL (µg/L)		50	48-96	240-480				
B13	9/24/2015	ND	ND	ND				
B14	9/24/2015	ND	530	3800				
B15	9/24/2015	ND	15J	ND				
B17	9/24/2015	ND	ND	ND				
B18	9/24/2015	ND	ND	ND				
B19	9/24/2015	ND	9.4J	ND				

NOTES:

ND = Indicates constituents not detected above the PQL

MDL = Method Detection Limit

TPH-GRO = total petroleum hydrocarbons as gasoline range organics


TPH-DRO = total petroleum hydrocarbons as diesel range organics

TPH-ORO = total petroleum hydrocarbons as oil range organics

ug/L = micrograms per liter

J = Analyte detected; result is an estimated value between the MDL and the reporting limit.

LEGEND:

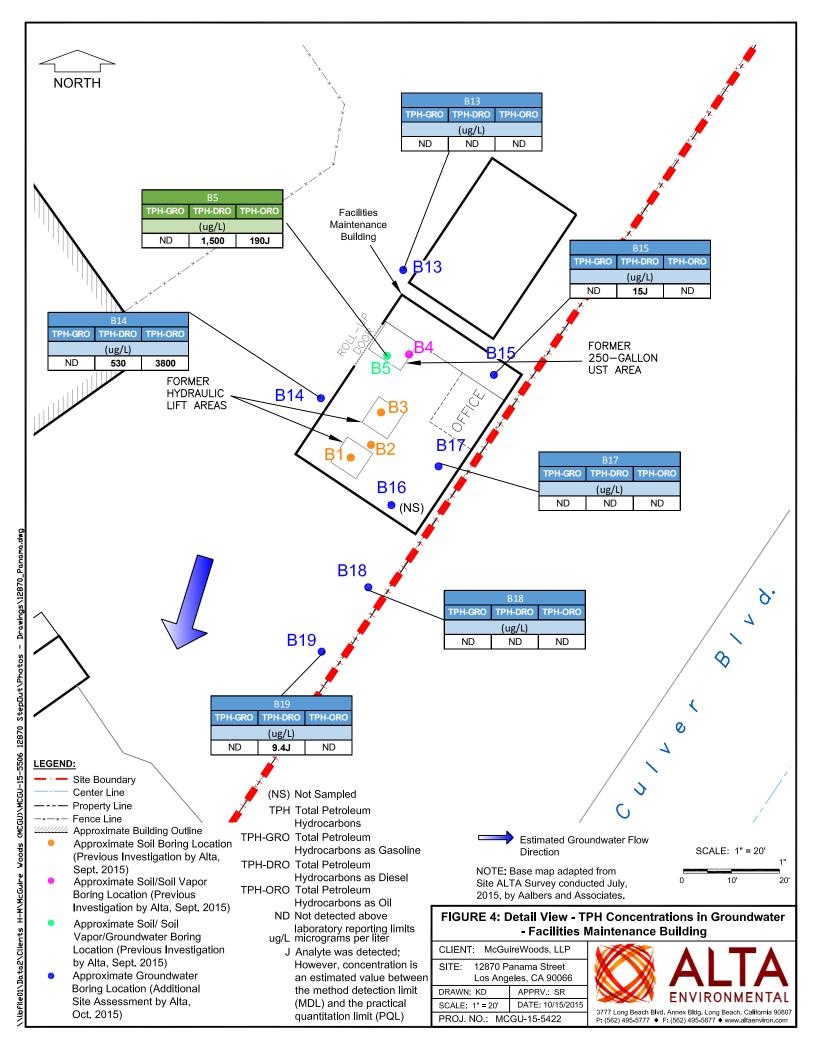
- Site Boundary
 - Center Line
- ---- Property Line
- ----- Fence Line

Approximate Building Outline

- Approximate Soil Boring Location (Previous Investigation by Alta, Sept. 2015)
 - Approximate Soil/Soil Vapor Boring Location (Previous Investigation by Alta, Sept. 2015)
- Approximate Soil/Soil Vapor/Groundwater Boring Location (Previous Investigation by Alta, Sept. 2015)

•

Estimated Groundwater Flow Direction


- TPH Total Petroleum Hydrocarbons
- TPH-GRO Total Petroleum Hydrocarbons as Gasoline

TPH-DRO Total Petroleum Hydrocarbons as Diesel

- TPH-ORO Total Petroleum Hydrocarbons as Oil
 - ND Not detected above laboratory reporting limits
 - ug/L micrograms per liter
 - J Analyte was detected; However, concentration is an estimated value between the method detection limit (MDL) and the practical quantitation limit (PQL)

NOTE: Base map adapted from Site ALTA Survey conducted July, 2015, by Aalbers and Associates.

FIGURE 3: Detected TPH Concentrations in Groundwater Samples - Previous Investigation Borings							
CLIENT: McGu	ireWoods, LLP						
	anama Street eles, CA 90066						
DRAWN: KD APPRV.: SR							
SCALE: 1" = 50'	DATE: 10/15/2015	3777 Long Beach Blvd, Annex Bldg, Long Beach, California 90807					
PROJ. NO.: MC	GU-15-5422	P (562) 495-5777 ♦ F: (562) 495-5877 ♦ www.altaenviron.com					

Attachment B -- Health Risk Analysis Model Spreadsheets

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Reset to Defaults CAS No. (numbers only, Cas Concentration Data Soil Gas Concentration Data Soil Concentration Con

ž

Scenario: Residential Chemical: Benzene

	Result	Results Summary		
Soil Gas Conc.	soil Gas Conc. Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
(глади)	(unitless)	(пд/ш ³)	Risk	Hazard
7.30E+01	1.4E-03	1.0E-01	1.0E-06	3.2E-02

	(numbers only, no dashes)	C, (ua/m ³)		Ca (nmmv)	Chemical	
		22		Contractor	CI-CI-III-CO	
	71432	7.30E+01			Benzene	
					MESSAGE: See VLOOKUP table comments on chemical properties and/or toxicity oriteria for this chemical.	properties
	ENTER	ENTER	ENTER	ENTER	ENTER	
	Depth				-	
MORE	below grade	Soil gas		Vadose zone	User-defined	
→	to bottom	sampling	Average	SCS	vadose zone	

ENTER		User-defined	vadose zone	soil vapor	permeability,	ĸ	(cm ²)	
					OR			
ENTER		Vadose zone	SCS	soil type	(used to estimate	soil vapor	permeability)	0
ENTER			Average	soil	temperature,		(°C)	10
ENTER		Soil gas	sampling	depth	below grade,	Ls	(cm)	150
ENTER	Depth	below grade	to battom	of enclosed	space floor,	LF	(15 or 200 cm)	ų,

	ENTER	ENTER	ENTER	ENIER
MORE Van	idose zone	Vadose zone	Vadose zone	Vadose zone
	SCS	soil dry	soil total	soil water-filled
0	soil type	bulk density,	porosity,	porosity,
د	Lookup Soil	PbA	>⊔	9w^
2	rameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

C (L/m)

	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
	Averaging time for	Averaging time for	Exposure	Exposure	Exposure	Air Exchange
N	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate
Lookup Receptor	ATc	AT _{NC}	ED	Ш	ET	ACH
rarameters	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
N=> Residential	20	26	26	350	24	0.5
					(NEW)	(NEW)

DTSC Vapor Intrusion Screening Model Soil Gas

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

						Chemical	Ethvlbenzene
	ENTER	Soil	gas	conc.,	ഗ്	(ppmv)	
Soil Gas Concentration Data			OR				
Soll G	ENTER	Soll	gas	conc.,	ഗ്	(mg/mg)	0.74F+02
l	ENTER		Chemical	CAS No.	(numbers only,	no dashes)	100414
	Donot to		Detaults	V.			

Å

ие	Results Summary	Indoor Air Conc.
Residential Ethylbenzene	Resu	Soil Gas Conc. Attenuation Factor
Scenario: Chemical:		Soil Gas Conc.

Soil Gas Conc.	Soil Gas Conc. Attenuation Factor	Indoor Air Conc.	Cancer	Cancer Noncancer
(па/ш ₃)	(unitless)	(ma/m ³)	Risk	Hazard
9.74E+02	1.2E-03	1.2E+00	1.0E-06	1.0E-06 1.1E-03

ENTER	ENTER	ENTER	ENTER		ENTER
below grade	Soil gas		Vadose zone		User-defined
to bottom	sampling	Average	SCS		vadose zone
of enclosed	depth	soil	soil type		soil vapor
space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
٦	٦	Ts	soil vapor		ĸ
5 or 200 cm)	(cm)	(C)	permeability)		(cm ²)

MORE

s

24

152

5

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

Qsoll (L/m)

Averaging time for time for carcinogens, noncarcinogens, duration, frequency, arcinogens, noncarcinogens, duration, arcinogens, noncarcinogens, duration, arcinogens, noncarcinogens, duration, arcine ATC Air Exposure Arit Air Exchange Lookup Receptor ATC ATN ED EF ET ACH Parameters (yrs) (yrs) (yrs) (yrs) (hou) ⁻¹ Residential 70 26 350 24 05	•	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
r carcinogens, noncarcinogens, duration, frequency, Time AT _c AT _k ED EF ET T AT _c (yrs) (yrs) (yrs) (days/yr) (hrs/day)		Averaging time for	Averaging time for	Exposure	Exposure	Exposure	Air Exchange
r AT _c AT _{Nc} ED EF ET (yrs) (yrs) (yrs) (days/yr) (hrs/day) (105 26 26 24 1 (NEW)	2	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate
V (yrs) (yrs) (ays/yr) (hrs/day) 70 26 26 350 24 (NEW)	Lookup Receptor	ATc	ATNC		Ш	ET	ACH
Residential 70 26 26 350 24 0.5 (NEW) (NEW) (NEW) (NEW) (NEW) (NEW) (NEW)	Parameters	(Vrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
Residential 70 26 26 350 24 0.5 (NEW) (NEW)							
(NEW) (NEW)	Residential	70	26	26	350	24	0.5
						(NEW)	(NEM)

Vapor Intrusion Screening Model - Soil Gas **Department of Toxic Substances Control**

DATA ENTRY SHEET

Soil Gas Concentration Data

						ylene
					Chemical	Tetrachloroeti
ENTER	Soil	gas	COTIC	ഗ്	(ppmv)	
		OR				
ENTER	Soil	ព្វឧន	conc.,	ບ້	(ra/ma)	4.87E+02
ENTER		Chemical	CAS No.	(numbers only,	no dashes)	127184
	Reset to	Detaults	8			

3

Tetrachloroethylene

	Result	Results Summary		
Soil Gas Conc.	Soil Gas Conc., Attenuation Factor	Indoor Air Conc.		Cancer Noncancer
(µg/m³)	(unitless)	(па/ш ³)	1 Did	Hazard
4.87E+02	1.0E-03	5.0E-01	1.0E-06	1.4E-02
)	

Tetrachloroethylene Residential

Scenario: Chemical:

	ENTER	ENTER		ENTER
Soll gas sampling	ወ	Vadose zone SCS		User-defined vadose zone
pth		soil type		soil vapor
grade,	temperature,	(used to estimate	0R	permeability,
5	Тs	soil vapor		¥
(H	(C)	permeability)		(cm ²)
047				

MORE

ENTER		ENTER	ENTER	ENTER
Vandose zo	one	Vadose zone	Vadose zone	Vadose zone
SCS		soil dry	soil total	soil water-fille
soil type	0	bulk density,	porosity,	porosity,
Lookup Soil	Ê	PbA	>u	0w ^V
Parameters	1	(g/cm ³)	(unitless)	(cm ³ /cm ³)
S		1.66	0.375	0.054

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

(m/) Qsoil

S

	ENTER ENTER			Time Rate	ET ACH	nrs/day) (hour) ⁻¹	34 0.5	EW) (NEW)
	ENTER EN		Exposure Expo			(days/yr) (hrs	350 2	N)
	ENTER		Exposure	duration,	ED	(yrs)	26	
	ENTER	Averaging	time for	noncarcinogens,	AT _{NC}	(yrs)	26	
	ENTER	Averaging	time for	carcinogens,	ATc	(yrs)	70	
MORE	•			/- 8.,	Lookup Receptor		EW=> Residential	

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Soil Gas Concentration Data

					Chemical		Toluene
ENTER	Soil	gas	conc.	ഗ്	(vmdd)		
		OR				0	
ENTER	Soll	gas	canc.,	ບ້	(hg/m ³)		2:54E+05
ENTER		Chemical	CAS No.	(numbers only,	no dashes)		108883
		SIL	6			40. d	
		Detault					

J

_	1.	-	1	٨
	Noncancer	Hazard	1.0E+00	
	Cancer	Rísk	NA	
Results Summary	Indoor Air Conc.	(m/g/u)	3.3E+02	
Result	Soil Gas Cone, Attenuation Factor	(unitless)	1.3E-03	
	Soil Gas Conc.	(пд/ш ³)	2.54E+05	

Residential Toluene

Scenario: Chemical:

ENTER	User-defined	vadose zone	soil vapor	permeability,	¥	(cm ²)
				OR		
ENTER	Vadose zone	SCS	soil type	(used to estimate	soil vapor	permeability)
ENTER		Average	soil	temperature,	Ts	(°)
ENTER	Soil gas	sampling	depth	below grade,	ٿ	(cm)
ENTER Depth	below grade	to bottom	of enclosed	space floor,	LF	(15 or 200 cm)

MORE

in

24

152

45

ENLEK ENLEK Vadose zone Vadose zone soil dry soil total bulk density, porosity, p _a n ^v (g/cm ³) (unitiess)	Vandose zone SCS soil type Lookup Soi Parameters
--	--

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{sol} (L/m)

ŝ

ENTER ENTER ENTER ENTER Averading	time for Exposure Exposure Exposure	duration, frequency,	ED EF	(yrs) (yrs) (days/yr) (hrs/day)	26 26 350 24	
ENTER Averaging				(yrs)	20	

DTSC Vapor Intrusion Screening Model Soil Gas

CREEN	ication
04/2003	2014
USEPA SG-SCREEI	DTSC Modification
Version 2.0, 04/2003	December 2014

Vapor Intrusion Screening Model - Soil Gas Department of Toxic Substances Control

DATA ENTRY SHEET

Soil Gas Concentration Data

Cancer Noncancer Hazard 3.4E-01

Risk 1.0E-06

 Soil Gas Conc.
 Attenuation Factor
 Indoor Air Conc.

 (μg/m³)
 (unitiess)
 (μg/m³)

 5.93E+02
 1.2E-03
 7.2E-01

Results Summary

Trichloroethylene Residential

Chemical: Scenario:

	щ ,	ENTER	ENTER		ENTER	
Reset to			Soll		Soil	
Defaults	ช	Chemical	gas	SOR	gas	
	δ	CAS No.	conc.,		conc.	
	unu)	(numbers only,	ບໍ		വ്	
	OL	no dashes)	(_с ш/бл)		(vmqq)	Chemical
		79016	5,93E+02			Trichloroethylene
						MESSAGE: See VLOOKUP table comments o
						dilutrat towards allealing the miss missional

Å

			U	96	152	15
	(cm ²)		permeability)	(C)	(cm)	(15 or 200 cm)
	۲		soil vapor	_s _	L°	Ľ
	permeability,	OR	(used to estimate	temperature,	below grade,	space floor,
	soil vapor		soil type	soil	depth	of enclosed
	vadose zone		SCS	Average	sampling	to bottom
	User-defined		Vadose zone		Soil gas	below grade
	ENTER		ENTER	ENTER	ENTER	ENTER Depth
chemical proper	MESSAGE: See VLUUKUP table comments on chemical properties and/or toxicity criteria for this chemical.	and/or toxicity criteria for this chemical	and			

MORE

ENTER Average vapor flow rate into bldg (Leave blank to calculate)

(L/m) Q. Ios

S

ENTER Averaging time for arcinogens, ATc (yrs) 70		time for Exposure Exposure		AT _{NC} ED EF	(yrs) (yrs) (days/yr) (hrs/day)	26 26 350 24	(NEW)
	Averading	time for	carcinogens,	ATc	(yrs)	0/	

Last Update: December 2014 DTSC Human and Ecological Risk Office

Va	DTSC Modification December 2014
	Version 2 0, 04/2003
	USEPA SG-SCREEN

apor Intrusion Screening Model - Soil Gas **Department of Toxic Substances Control**

DATA ENTRY SHEET

Soil Gas Concentration Data

					Chemical	Xylene
ENTER	Soil	gas	conc.	ບ້	(ppmv)	6
		ЧÓ				
ENTER	Soil	gas	COLIC	ບ້	(mg/m³)	9.00E+04
ENTER		Chemical	CAS No.	(numbers only	no dashes)	95476
	Reset to	Detaults			1	

J

	Reut	Roculte Summary	
	1 MCONI	o vullillal y	
Soil Gas Conc.	Soil Gas Conc. Attenuation Factor	Indoor Air Conc.	Cano
('m/grl)	(unitiess)	('m/6d)	Risk

Residential o-Xylene

Scenario: Chemical:

		1	
Noncancer	Hazard	1.05+00	
Cancer	Risk	NA	
Indoor Air Conc.	("m/gd)	1.1E+02	
Soil Gas Conc. Attenuation Factor	(unitiess)	1.2E-03	
Soil Gas Conc.	(_m/brl)	9.00E+04	

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade	Soil gas		Vadose zone		User-defined
to bottom	sampling	Average	SCS		vadose zone
of enclosed	depth	soil	soil type		soil vapor
space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
LF	Ľ	Ts	soil vapor		Ŷ
(15 or 200 cm)	(cm)	(C)	permeability)		(cm ²)

MORE +

	L _F (15 or 200 cm)	ط تر (1s (°C)	soil vapor permeability)	ارد (cm³)	
	-1	152	24	S		
	FNTFR	ENTER	ENTER	FNTFR	ENTER	
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone	Average vapor	
→	SCS	soil dry	soil total	soil water-filled	flow rate into bldg.	
	soil type	bulk density,	porosity,	porosity,	(Leave blank to calculate)	
	Lookup Soil	P _a A	>_ -	θw <	Qsoil	
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(L/m)	

S

0.054

0.375

1.66

G

(NEW)

(NEW)

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Soil Gas Concentration Data

					Chemical	Benzene
ENTER	Soil	gas	conc.,	ບ້	(vmqq)	
		OR				
ENTER	Soil	gas	conc.,	Ű	(µд/ш³)	D 20ETO1
ENTER		Chemical	CAS No.	(numbers only,	no dashes)	02442
		aults	Ì.			
2	Reset to	Detaults				

2

Residential	Benzene	
Scenario:	Chemical:	

	Result	Results Summary		
Soil Gas Conc	Soil Gas Conc. Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
(µg/ш³)	(unitless)	(рд/т ³)	Risk	Hazard
9.30E+01	1.4E-03	1.3E-01	1.3E-06	4.1E-02

71432	9.30E+01			Benzene		
			MES	MESSAGE: See VLOOKUP table com and/or toxicity criteria for this chemical	MESSAGE: See VLOOKUP table comments on chemical properties and/or toxicity criteria for this chemical,	emical properties
ENTER Depth	ENTER	ENTER	ENTER		ENTER	
below grade	Soil gas		Vadose zone		User-defined	
to bottom	sampling	Average	SCS		vadose zone	
of enclosed	depth	soil	soil type		soil vapor	
space floor,	below grade,	temperature,	(used to estimate	OR	permeability,	
LF	_"	Ts	soil vapor		K _v	
(15 or 200 cm)	(cm)	(C)	permeability		(cm ²)	

MORE

4

152

12

ENTER ENTER ENTER	ne Vadose zone	SCS soil dry soil total	bulk density,	Lookup Soil , Pb ^A n ^V	Parameters (unitless) (unitless)
ENTER		Ň		9 ^w V	(cm ³ /cm ³)

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soll} (L/m)

	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
	Averaging time for	Averaging time for	Exposure	Exposure	Exposure	Air Exchange
1	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate
Lookup Receptor	ATc	AT _{NC}	ĒD	Ш	ET	ACH
raramerers	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
Residential	02	26	26	350	24	0.5
					(NEM)	(NEW)

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Soil Gas Concentration Data

					Chemical	Ethylbenzene
ENTER	Soil	gas	conc.	Q	(ppmv)	
		0R				
ENTER	Soil	gas	conc.,	ഗ്	(µg/ш³)	9 40E+01
ENTER		Chemical	CAS No.	(numbers only,	no dashes)	100414
	Reset to	Deraults				

j

Scenario: Residential Chemical: Ethylbenzene

	Result	Results Summary		
Soil Gas Conc.	Soil Gas Conc. Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
(m/b/l)	(unitless)	(ra/m3)	Risk	Hazard
9.40E+01	1.2E-03	1.1E-01	1.0E-07	1.1E-04

ENTER Donth	ENTER	ENTER	ENTER		ENTER
below grade	Soil gas		Vadose zone		User-defined
to bottom	sampling	Average	SCS		vadose zone
of enclosed	depth	soil	soil type		soil vapor
space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
LF	Ls	Ts	soil vapor		Υ Υ
(15 or 200 cm)	(cm)	(°°)	permeability)		(cm ²)
45	140	24	U		

MORE

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

Qsoll (L/m)

ENTER	Air Exchange	Rate	ACH	(hour) ⁻¹	0.5	(NEW)
ENTER	Exposure	Time	ET	(hrs/day)	24	(NEW)
ENTER	Exposure	frequency,	EF	(days/yr)	350	
ENTER	Exposure	duration,	ED	(yrs)	26	
ENTER	Averaging time for	noncarcinogens,	AT _{NC}	(yrs)	26	
ENTER	Averaging time for	carcinogens,	ATc	(yrs)	70	
MORE		2	Lookup Receptor		NEW=> Residential	

Vapor Intrusion Screening Model - Soil Gas Department of Toxic Substances Control

DATA ENTRY SHEET

Soil Gas Concentration Data

					Chemical		Tetrachioroethylene
ENTER	Soil	gas	conc.	ు	(bpmv)		
		OR				NC :	
ENTER	Soil	gas	conc.,	ບ້	(гд/шз)		4.70E+02
ENTER		Chemical	CAS No.	(numbers only,	no dashes)		127184
		Derauits	•				<u> </u>

J

Soil Gas Conc., Attenuation Factor	ctor Indoor Air Conc.	Cancer	Noncancer
(µg/m³) (unitless)	(ра/ш ₃)	Risk	Hazard
4.70E+02 1.0E-03	4.8E-01	1.0E-06	1.3E-02

Tetrachloroethylene Residential

Scenario: Chemical:

below grade Soil gas		Vadose zone		User-defined
sampling	Average	SCS		vadose zone
depth	soil	soil type		soil vapor
	temperature,	(used to estimate	OR	permeability,
ت	Ts	soil vapor		Y
0 cm) (cm)	(C)	permeability)		(cm ²)

MORE

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

(m/l) O soll

ENTER	Air Exchange	ACH	(hour) ⁻¹	0.5	(MEM)
ENTER	Exposure	ET	(hrs/day)	24	(NEW)
ENTER	Exposure	II equalicy, EF	(days/yr)	350	
ENTER	Exposure	ED	(yrs)	26	
ENTER Averacing	time for	ATNC	(yrs)	26	
ENTER Averading	time for	ATc	(yrs)	70	
MORE	2	Lookup Receptor		NEW=> Residential	

Last Update: December 2014 DTSC Human and Ecological Risk Office

Vapor Intrusion Screening Model - Soil Gas **Department of Toxic Substances Control**

DATA ENTRY SHEET

Chemical ENTER Soll gas C_a (vmdd) Soil Gas Concentration Data КO ENTER Soll gas conc., Ca (µg/m³) (numbers only, no dashes) CAS No. ENTER Chemical Reset to Defaults

ð

Residential Toluene Scenario: Chemical:

Soil Gas Conc. Attenuation Factor Indoor Air Conc. Cancer Noncanc (µg/m³) (unitiess) (µg/m³) Risk Hazarc 3.70E+02 1.3E-03 4.8E-01 NA 1.5E-03		Kesult	Kesults Summary		
(unitiess) (µg/m ³) Risk I 1.3E-03 4.8E-01 NA :	Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
1.3E-03 4.8E-01 NA	(_в ш/вл)	(unitless)	(гла/ш ₃)	Risk	Hazard
	3.70E+02	1.3E-03	4.8E-01	NA	1.5E-03

	ENTER		ENTER
	Vadose zone		User-defined
Average	SCS		vadose zone
	soil type		soil vapor
emperature,	(used to estimate	OR	permeability,
_co	soil vapor		¥
0	permeability)		(cm ²)
14	S		
			(used to estimate soil vapor permeability)

S

Toluene

3.70E+02

108883

	ENTER	ENTER	ENTER	ENTER
NORE Van	dose zone	Vadose zone	Vadose zone	Vadose zone
→	SCS	soil dry	soil total	soil water-filled
0	soil type	bulk density,	porosity,	porosity,
Lo.	Lookup Sail	Ph	>_	0°~
8	rameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)

ENTER Average vapor flow rate into bldg (Leave blank to calculate)

Qsoll (L/m) LC,

ENTER ENTER Exposure Exposure dutation, frequency, ED EF (yrs) (days/yr)	350
ENTER Exposure duration, (yrs)	H
	26
ENTER Averaging time for noncarcinogens, AT _{Nc} (yrs)	26
ENTER Averaging time for carcinogens, AT _c (yrs)	70
MORE Lookup Receptor Parameters	Residential

DTSC Vapor Intrusion Screening Model Soil Gas

END

MORE

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

 Reset to
 ENTER
 Soil Gas Concentration Data

 Reset to
 ENTER
 ENTER

 Defaults
 Chemical
 gas

 CAS No.
 conc.
 conc.

 (numbers only,
 ca
 ca

 no dashes)
 (wa/m^{*})
 (ppmv)

ŝ

Scenario: Residential Chemical: Trichloroethylene

Soil Gas Conc. Atteruation Factor	teruation Factor	Indoor Air Conc.	Cancer	Noncancer
(µg/m³)	(unitless)	(µg/m³)	Risk	Hazard
2.90E+02	1.2E-03	3.5E-01	5.1E-07	1.7E-01

			iemical properties				
Unemical		Trichioroethylene	MESSAGE: See VLOOKUP table comments on chemical properties and/or toxicity criteria for this chemical.	ENTER	User-defined	vadose zone	:
(Audd)				ENTER	Vadose zone	SCS	
				ENTER		Average	
(III)Bed		2,90E+02		ENTER	Soil gas	sampling	
no dasnes)		79016		ENTER Depth	below grade	to bottom	-
J	0 3						

								 _
UNIUK		User-defined	vadose zone	soil vapor	permeability,	, K	(cm ²)	
					OR			
TI INI TI INI		Vadose zone	SCS	soil type	(used to estimate	soil vapor	permeability)	S
			Φ	soil	temperature,		(°C)	24
		Soil gas	sampling	depth	below grade,	Ľ	(cm)	152
	Depth	below grade	to bottom	of enclosed	space floor,	LF	(15 or 200 cm)	15

MORE

ENTER Average vapor flow rate into bldg, (Leave blank to calculate)

Q_{soil} (L/m)

MORE ENTER ENTER Averacing Averacing		ĕ	or AT _c		Residential 70 26	END
ENTER	Exposure			(yrs)	26	
ENTER	Exposure	frequency,	ΕF	(days/yr)	350	
ENTER	Exposure	Time	ET	(hrs/day)	24	(NEW)
ENTER	Air Exchange	Rate	ACH	(hour) ⁻¹	0.5	(NEW)

DTSC Vapor Intrusion Screening Model Soil Gas

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Soil Gas Concentration Data ENTER

> Reset to Defaults

> > 1

						Chemical	o-Xylene
	ENTER	Soil	gas	conc.,	បី	(ppmv)	
			OR				
1	ENTER	Soil	gas	conc.,	ບ້	(mg/m3)	2.70E+02
	ENTER		Chemical	CAS No.	(numbers only,	no dashes)	95476
3	~			6			

Residential	o-Xylene
Scenario:	Chemical:

	Result	Results Summary		
il Gas Conc.	Soil Gas Conc. Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
(пд/m ³)	(unitless)	(hg/m³)	Risk	Hazard
2.70E+02	1.2E-03	3.35-01	NA	3.1E-03

1						
ENTER	User-defined	vadose zone	soil vapor	permeability,	Υ Υ	(cm ²)
				OR		
ENTER	Vadose zone	SCS	soil type	(used to estimate	soil vapor	permeability)
ENTER		Average	soil	temperature,	Ts	Q
ENTER	Soil gas	sampling	depth	below grade,	Ls.	(cm)
ENTER Depth	below grade	to bottom	of enclosed	space floor,	L _F	(15 or 200 cm)

MORE 🔶

ŝ

152

12

one Vadose zone soil total ty, porosity,					
soil dry soil total bulk density, porosity, p _b ^A n ^V	Vandose	e zone	Vadose zone	Vadose zone	Vadose zone
bulk density, porosity, p ^b ^A n ^V	S	Ś	soil dry	soil total	soil water-filled
Pb A NV	t soil t	ype	bulk density,	porosity,	porosity,
· · · · · · · · · · · · · · · · · · ·	Lookup	Soil	PhA	>u	9 ^w v
	Parame	ters ,	(a/cm ³)	(Imitless)	(cm ³ /cm ³)

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

Qsoil (L/m)

G

	time for Exposure Exposure Exposure	treduency, noncarcinogens, duration, frequency, Time	r AT _c AT _{nc} ED EF	(yrs) (days/yr) (hrs/day)	70 26 26 350 24 0.5	(ALEGAN CALENARY
More		762	Lookup Receptor	Farameters	Residential	

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Soll Gas Concentration Data

	-	ENTER	ENTER		ENTER	
Reset to			Soll		Soil	
Defaults	-	Chemical	gas	OR	gas	
		CAS No.	conc.,		conc.,	
	nu)	numbers only,	ഗ്		ഗ്	
		no dashes)	(mg/mg)		(vmgd)	Chemical
		71432	8.10E+01			Benzene
						MESSAGE: See VI OOKI ID table con

Å

	Result	Results Summary		
Soil Gas Conc.	Soil Gas Conc, Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
(рд/т ³)	(unitless)	(ра/ш ³)	Risk	Hazard
8.10E+01	9.6E-04	7.8E-02	8.1E-07	2.5E-02

Residential Benzene

Scenario:

Chemical:

ENTER Depth below grad							
Dep below (~ ~	MESSAGE: See VLOOKUP table com and/or toxicity criteria for this chemical	MESSAGE: See VLUOKUP table comments on chemical properties and/or toxicity criteria for this chemical	cal properties
Dep below (띲	ENTER	ENTER	ENTER		ENTER	
below (하						
	below grade	Soil gas		Vadose zone		User-defined	
to bottom	tom	sampling	Average	scs		vadose zone	
of enclosed	osed	depth	soil	soil type		soil vapor	
space floor,	floor,	below grade,	temperature,	(used to estimate	OR	permeability,	
Ľ		_s _	Ts	soil vapor		Å.	
(15 or 200 cm	(mp 00	(cm)	(°C)	permeability)		(cm ²)	

MORE 🔶

0

385

5

ENTER Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soll} (L/m)

ഹ

MORE ENTER								
ENTER ENTER ENTER ENTER ENTER ENTER Averaging Averaging Averaging Exposure Exposure Exposure time for time for time for Exposure Exposure Exposure Arc AT _c AT _k ED EF ET (yrs) (yrs) (yrs) (yrs) (ays/yr) (hrs/day) 70 26 26 350 24 I	MORE							
Averaging Averaging Averaging Averaging time for time for time for time for carcinogens, noncarcinogens, duration, frequency, AT_c AT_nc AT_c AT_nc (yrs) (yrs) (yrs) (yrs) 70 26 26 26 26 24	•		ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
time for time for Exposure Exposure Exposure Exposure Exposure (arcinogens, noncarcinogens, duration, frequency, Time AT _c AT _c ED EF ET (vrs) (yrs) (yrs) (yrs) (yrs) (regulary) (residency) (resid			Averaging	Averaging				
ATc ATuc ED EF ET ATc ATuc ED EF ET (yrs) (yrs) (yrs) (days/yr) (hrs/day) 70 26 26 24 I			time for	time for	Exposure	Exposure	Exposure	Air Exchange
AT _c AT _{kc} ED EF ET (yrs) (yrs) (yrs) (yrs) (hrs/day) 70 26 26 24 1	~	3°	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate
(yrs) (yrs) (yrs) (days/yr) (hrs/day) 70 26 26 350 24 1	Lookup Rece	eptor	ATc	AT _{NC}		ΕL	ET	ACH
70 26 26	raramete	2	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
70 26 26		1						
END (NEW) (NEW)	/=> Residentia		70	26	26	350	24	0,5
END		1					(NEW)	(NEW)
	END							

DTSC Vapor Intrusion Screening Model Soil Gas

Attachment C -- Agency NFA Letters

BOARD OF FIRE COMMISSIONERS 485-6032

> DAVID W. FLEMING PREMOUNT

KENNETH LOMBARD WCE- PRESIDENT

LARRY GONZALEZ

ELIZABETH H. LOWE

LESLIE SONG WINNER

LYNNE NELSON EXECUTIVE ANHITAN

April 1, 1996

CITY OF LOS ANGELES CALIFORNIA

DEPARTMENT OF FIRE 200 NORTH MAIN STREET LOS ANGELES, CA 90012

WILLIAM R. BAMATTRE CHIEF ENGINEER AND SENERAL MANAGER

RICHARD J. RIORDAN MAYOR

Mr. Craig Fry Teledyne Industries 12870 Panama Street Los Angeles, CA 90067

Dear Mr. Fry:

Teledyne Electronics 12870 Panama Street Los Angeles, California

The Fire Department has reviewed the Closure Report dated March 27, 1996, as submitted by All Environmental, Incorporated.

Based on the information provided to date, no further action is required at this time.

Please note that this correspondence does not exempt you of any liability under the California Health and Safety Code or Water Code for past, present, or future operations at this site. Nor does it exempt you of the responsibility to correct additional or previously unidentified conditions at the site which cause, or thereafter to cause, pollution or nuisance, or otherwise pose a threat to water quality or public health.

If you require additional information from the Los Angeles City Fire Department, please contact Inspector Robert B. Reimers of the Underground Tank Plan Check Unit, at (213) 485-7543.

Very truly yours,

WILLIAM R. BAMATTRE Chief Engineer and General Manager

Jeffrey J. Mills, Captain I Commander, Underground Tank Plan Check Unit

JJM:RBR:kz:ugt1282

cc: Mr. Joseph P. Derhake, All Environmental, Incorporated

AN EQUAL EMPLOYMENT OPPORTUNITY - AFFIRMATIVE ACTION EMPLOYER

REC'D JAN 0 8 2016

MATTHEW RODHIOUEZ SECRETARY FOR ENVIRONMENTAL PROTECTION

Los Angeles Regional Water Quality Control Board

January 7, 2016

Ms. Melanie S. Cibik Teledyne Technologies Incorporated 1049 Camino Dos Rios Thousand Oaks, CA 91360

UNDERGROUND STORAGE TANK PROGRAM – CASE REFERRAL RESPONSE TELEDYNE TECHNOLOGIES INCORPORATED 12870 PANAMA STREET, LOS ANGELES, CALIFORNIA (GLOBAL ID NO.: T10000008217)

Dear Ms. Cibik:

On December 30, 2015, the City of Los Angeles Fire Department transmitted this case to our agency due to concerns regarding soil and groundwater impacts from the subject site (Site). The California Regional Water Quality Control Board, Los Angeles Region (Regional Board), is the public agency with primary responsibility for the protection of ground and surface water quality for all beneficial uses within the Los Angeles and Ventura counties. As such, we are the lead regulatory agency for overseeing corrective actions (assessment and/or monitoring activities) and cleanup of releases from leaking underground storage tank (UST) systems at the Site.

We have received the following document for the Site:

"Groundwater Assessment Results, Former Underground Storage Tank Site" dated December 10, 2015, prepared by Alta Environmental (Alta).

Based on our review of the submitted document, we have the following comments:

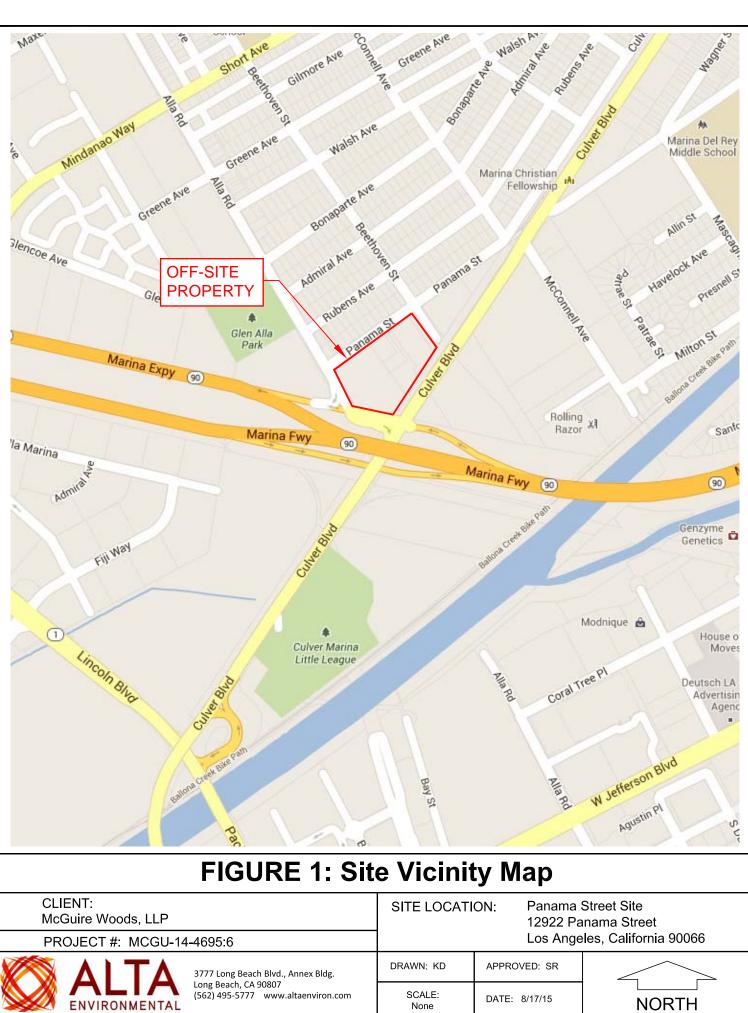
- The City of Los Angeles Fire Department issued a no further action letter for the Site on April 1, 1996, following removal of two hydraulic lifts and one 250-gallon waste oil UST from the Site.
- In August and September 2015, Alta oversaw the advancement of soil borings B5, and B13 through B19 into groundwater and the collection of grab groundwater samples from borings B5, B13, B14, B15, B17, B18, and B19. Groundwater samples were submitted to an analytical testing laboratory for chemical analysis. Soil samples were not submitted for analytical testing during the investigation.
- Groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as diesel (TPHd), and total petroleum hydrocarbons as oil (TPHo) by modified EPA Method 8015B, and for full scan volatile organic compounds (VOCs) and ethanol by EPA Method 8260B.

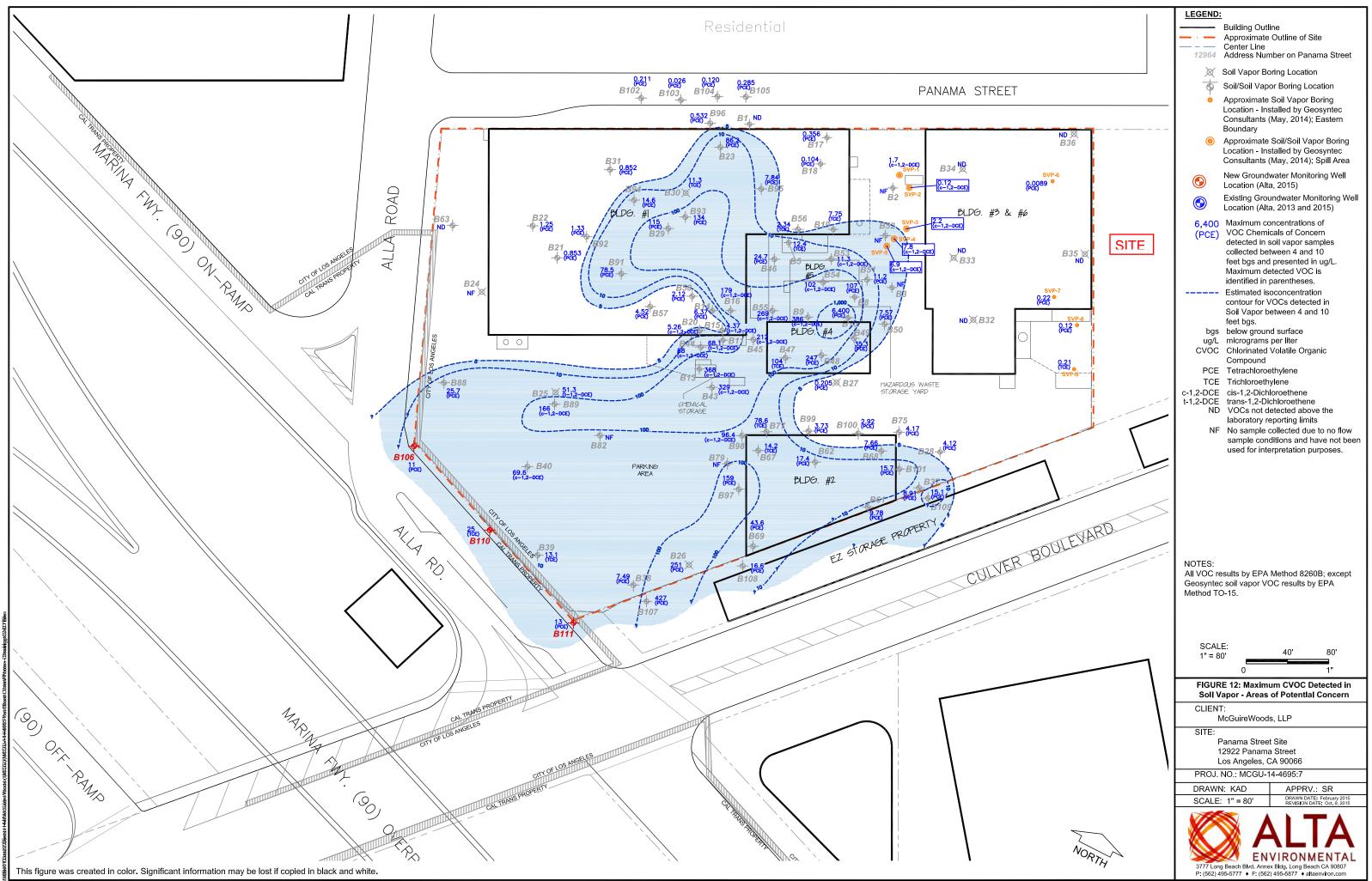
Ms. Melanie S. Cibik 12870 Panama Street, Los Angeles Page 2

- Laboratory results for the groundwater samples indicated the maximum concentration of TPHd, TPHo, 2-butanone, and carbon disulfide were 1,500 micrograms per liter (µg/L), 3,800 µg/L, 4.8J µg/L, and 0.44J µg/L, respectively. TPHg, ethanol, and other VOCs tested for were not detected above their respective reporting limits.
- Groundwater was encountered at the Site during site investigation activities in August and September 2015 at depths ranging between 12 and 13.5 feet below ground surface.

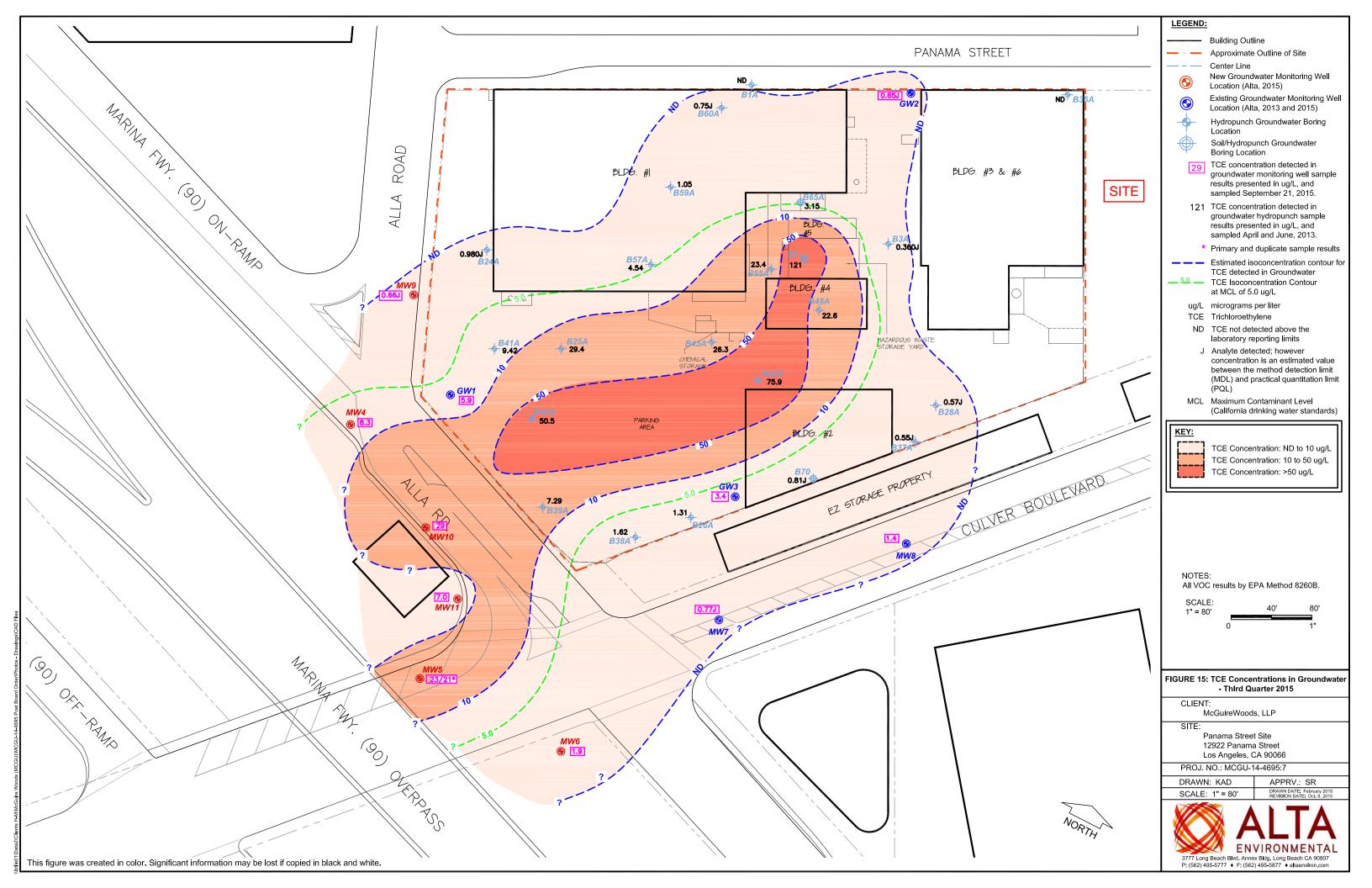
Based on the information available to us, Regional Board staff determined that residual concentrations of fuel constituents pose a low threat to human health, and soil and groundwater quality beneath the Site. Therefore, no further action is required to pursue any further soil and/or groundwater investigation at the Site. At this time, the Regional Board is not opening a case for the Site.

If you have any questions, please contact Dr. Weixing Tong at (213) 576-6715 or email him at Weixing.Tong@waterboards.ca.gov.


Sincerely,


Yue Rong, Ph. D. O Program Manager Underground Storage Tank Program


cc: Eloy Luna, City of Los Angeles Fire Department Steven Ridenour, Alta Environmental


Attachment D -- Off-Site Soil Gas Sample Locations and Results (12922 Panama Street)

