GeOSystems, Inc.

PRELIMINARY SOILS ENGINEERING AND ENGINEERING GEOLOGIC INVESTIGATION FOR
PROPOSED OCEAN CHARTER SCHOOL

FOR

OCEAN CHARTER SCHOOL C/O
SCHOOL FACILITY ASSOCIATES
1415 RAMPART DRIVE
ROSEVILLE, CA 95661
ATTN: MS. KRISTY MACK FELT

TABLE OF CONTENTS

1. INTRODUCTION 1
2. SCOPE OF SERVICES 1
3. PROPOSED DEVELOPMENT 4
4. SITE CONDITIONS 5
5. SUBSURFACE EVALUATION 5
5.1 Standard Penetration Testing (SPT) 5
5.2 Cone Penetrometer Testing (CPT) 6
6. SUBSURFACE CONDITIONS 6
6.1 Soils Condition 6
6.2 Groundwater 7
7. FAULTING AND SEISMICITY 8
7.1 Historic Seismicity 8
7.2 Ground Motion and Seismic Design 11
7.3 Ground Shaking 12
7.4 Liquefaction Potential 13
7.5 Seismically - Induced Unsaturated and Saturated Soils Settlement 14
7.6 Lateral Spreading 15
7.7 Ground Rupture 16
8. ENGINEERING GEOLOGY 17
8.1 Planes of Weakness 17
8.2 Joints of Fractures 18
8.3 Excavation Characteristics 18
8.4 Landslides 18
8.5 Flood Hazards, Tsunamis and Seiches 18
8.6 Dam Inundation 19
8.7 Regional Subsidence 22
9. LABORATORY TESTING 22
9.1 Direct Shear 22
9.2 Particle Size Distribution 23

TABLE OF CONTENTS (cont.)

9.3 Consolidation 23
9.4 Corrosive Soil 23
10. CONCLUSIONS 25
11. RECOMMENDATIONS 25
11.1 Site Preparation 25
11.2 Site Clearance 26
11.3 Foundation Settlement (Static) 26
11.4 Foundations 27
11.4.1 Mat Foundation 27
11.4.2 Spread Footings 27
11.4.3 Pile Foundation 28
11.5 Floor Slabs 29
11.6 Expansive Soil 30
11.7 Hydrocollapse 30
11.8 Lateral Design 30
11.9 Retaining Walls. 30
11.10 Retaining Wall Deflection 32
11.11 Temporary Excavation 32
11.12 Shoring/Soldier Piles 34
11.12.1 Shoring Pile Deflection 34
11.12.2 Shoring Monitoring 34
11.12.3 Typical Sequence of Shoring Pile Installation \& Excavation 35
11.13 Slot Cut 35
11.14 Pavement 37
11.15 Patio Slabs and Hardscape 39
11.16 Drainage Control 39
12. CONSTRUCTION AND OBSERVATION 40
13. REMARKS 41

TABLE OF CONTENTS (cont.)

Tables

Table 1 - Seismically Induces Settlement
Table 2 - Direct Shear
Table 3 - Corrosivity
Table 4 - Rigid Pavement

Plates

Plate 1 - Geotechnical Map
Plate 2 - Historically Highest Ground Water Map
Plate 3 - Regional Geologic Map (Open File 98-27)
Plate 4 - Seismic Hazard Zone Map
Plate 5 - FEMA Flood Hazard Zone Map
Plate 6 - Regional Geologic Map (Department of Water Resources)
Plate RT-1 - Regional Topographic Mal
Plate FZ-1 - Alquist-Priolo Special Studies Zones \& Fault Rupture Study Areas
Plate FZ-2 - Alquist-Priolo Special Studies Zones \& Fault Rupture Study Areas
Plate IM-1 - Inundation \& Tsunami Hazard Areas
Plate IM-2 - Inundation Map
Plate IM-3 - Tsunami Inundation Map
Plate CS-1 - Geologic Cross Sections A-A' and B-B'

Appendices

Appendix A - Boring Logs
Appendix B-Laboratory Testing
Appendix C - CPT Logs, Liquefaction and Dynamic Settlement Analyses
Appendix D - CBC Seismic Design / Site Specific Response Spectra
Appendix E - Earth Pressure Analyses

PRELIMINARY SOILS ENGINEERING AND
 ENGINEERING GEOLOGIC INVESTIGATION

FOR
PROPOSED OCEAN CHARTER SCHOOL
12870 PANAMA STREET
LOS ANGELES, CALIFORNIA

1. INTRODUCTION

This report presents the results of our preliminary soils and engineering geologic investigation performed at proposed Ocean Charter School located in 12870 Panama Street, in the City of Los Angeles, California. The report includes a description and an evaluation of the subsurface materials, discusses the soil conditions, and provides soils engineering and engineering geologic recommendations for the proposed development at the subject site.

This report is intended for submittal to the appropriate governmental authorities that control the issuance of necessary permits and provides recommendations for the proposed developments at the subject site.

2. SCOPE OF SERVICE

The scope of our investigation involved the completion of the following:
2.1. Review of available literatures and general geologic data including:

1) California Division of Mines and Geology (1997). Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117, 74 p.
2) Southern California Earthquake Center (1999). Recommended Procedures For Implementation of DMG Special Publication 117 - Guidelines for Analyzing and Mitigating Liquefaction In California, 63 p.
3) California Division of Mines and Geology (1998). Seismic Hazard Zone Report for the Venice Quadrangle, Los Angeles county, Open File Report 98-07.
4) California Division of Mines and Geology (1999). Seismic Hazard Zones Map, Venice Quadrangle.
5) Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A, Ground Water Geology: State of California, Department of Water Resources, Southern District, Bulletin No. 104, Released June 1961, Reprinted May 1990.
6) United States Army Corps of Engineers, 2009, Dam Safety Program, Hansen Dam: http://www.spl.usace.army.mil/Media/Fact-Sheets/Article/477347/dam-safety-program/ (accessed June 2016).
7) California Department of Water Resources, Division of Safety of Dams, 2016, Listing of Dams: http://www.water.ca.gov/damsafety/damlisting/ (accessed June, 2016).
8) Probabilistic Seismic Hazard Assessment for the State of California, California Division of Mines and Geology Open File-Report 96-08 and USGS Open-File Report 96-706, 1996, 33 p., Appendix A and B.
9) State of California, Seismic Hazard Zones, Venice Quadrangle, California Department of Conservation, Division of Mines and Geology, Released March 25, 1999, Scale 1" $=2000^{\prime}$.
10) Barlett, S. F., et. al., 1995, Empirical Prediction of Liquefaction-Induced Lateral Spread, Journal of Geotechnical Engineering, V.121, pg. 316-329.
11) CME Automatic Hammer Operations Bulletin, Published by United States, Department of the Interior, Bureau of Reclamation, Earth Sciences and Research Laboratory, November 1999.
12) Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Landslide Hazards In California; Published by the Southern California Earthquake Center, dated February 2002.
13) Seed, R.B., et al., 2003, Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework, $26^{\text {th }}$ Annual ASCE Los Angeles Geotechnical Spring Seminar, Queen Mary, Long Beach, California, April 30, 2003.
14) Youd, T. L., et. al., 2000, Revised MLR Equations for Predicting Lateral Spread Displacement, Proceedings of the 7th U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Lique-faction, August 15-17, Seattle, Washington, 17 pages.
15) Pile Foundation in Liquefied and Laterally Spreading Ground During Earthquakes: Centrifuge Experiments \& Analyses; Department of Civil \& Environmental Engineering, College of Engineering, University of Davis, Report No. UCD/CGM03/01.
16) United States Geological Survey, Earthquake Ground Motion Parameter Calculator for 2007 CBC Seismic Design Parameters. http://earthquake.usgs.gov/research/hazmaps/design/index.php
17) Risk Engineering Inc., Software for Earthquake Ground Motion Estimation, Version 7.62 .
18) SCEC Working Group C* (Many Authors), 2001, Active Faults in the Los Angeles Metropolitan Region SCEC: Special Publication Series, No. 001, Southern California Earthquake Center, 47 p.
19) County of Los Angeles, Department of Regional Planning, 1990, Safety Element, Los Angeles County General Plan, County of Los Angeles, California: Leighton and Associates, Inc., 48 p.
20) City of Los Angeles, Department of City Planning, 1996, Safety Element of the Los Angeles City General Plan, Los Angeles, California: City Plan Case No. 95-0371 and Council File No. 86-0662, 61 p.
21) Castle, R. O., 1960, Surficial Geology of the Beverly Hills and Venice Quadrangles, California: U.S. Geological Survey, Open File Report OF-60-26, Scale 1:24,000.
22) Nationwide Environmental Title Research, LLC, (2009), in Partnership with the United States Department of Agriculture and the United State Geological Survey, Historic Aerials: http://www.historicaerials.com (accessed July, 2016).
23) Southern California Earthquake Center, 2013, Significant Earthquakes and Faults, Long Beach Earthquake: http://scedc.caltech.edu/significant/longbeach1933.html (accessed July, 2016).
24) Heaton, T.H., 1982, The 1971 San Fernando Earthquake: A Double Event?; Bulletin of the Seismological Society of America, Vol. 72, No. 6, pp. 2037-2062.
25) Hartzell, S., and Iida, M., 1990, Source Complexity of the 1987 Whittier Narrows, California, Earthquake from the Inversion of Strong Motion Records; Journal of Geophysical Research, Vol. 95, No. B8, pp. 12475-12485.
26) Wald, D.J., Heaton, T.H., and Hudnut, K.W., 1996, The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-Motion, Teleseismic, GPS, and Leveling Data; Bulletin of the Seismological Society of America, Vol. 86, No. 1B, pp. S49-S70.
2.2 Review of preliminary topographic maps and site development plans provided by the client.
2.3. Mapping of on site and near by earth materials.
2.4. Excavation and detailed logging of three (3) exploratory truck-mounted hollow stem borings in the general area of the proposed buildings to a maximum depth of 70 -feet below existing grade.
2.5. Excavation of eight (8) CPT (Cone Penetration Testing) soundings to a maximum depth of 64 -feet below existing grade.
2.6. Sampling of representative earth materials.
2.7. Laboratory testing.
2.8. Geotechnical analysis of field and laboratory data.
2.9. Preparation of Geotechnical Map, two (2) Geologic Cross Sections, two (2) Regional Geologic Maps, and various Hazard Maps and graphs.
2.10. Presentation of our procedures, findings and recommendations.

3. PROPOSED DEVELOPMENT

It is proposed to remove all existing structures at the site and construction several new classroom and school facility buildings for a proposed charter school. A two-story building over one-story of subterranean parking is proposed on the western portion of the property. Several
two-story classroom buildings with slab on-grade flooring are proposed along portions of the southern property boundary, and two, single-story buildings are proposed in the central and eastern portions of the property. The remaining area are expected to be additional surface parking area, and recreation space. The approximate proposed building location are depicted on the attached Geotechnical Map, Plate 1.

4. SITE CONDITIONS

The site is a trapezoidal parcel located at the south side of Panama Street, west of Culver Boulevard and north of Marina Freeway (Freeway 90) in Marina del Rey area of the City of Los Angeles, California (Thomas guide page 672, grid C7.) The site is a roughly level, and is currently occupied by several commercial buildings with asphalt and concrete paved parking lots. Drainage is by sheet flow to Panama Street.

5. SUBSURFACE EVALUATION

To geotechnically characterize the site and to provide geotechnical recommendations, a subsurface exploration program consisting of 3 hollow-stem auger borings and 8 CPT soundings was implemented.

5.1 Standard Penetration Testing (SPT)

The site was explored on March 2, 2016 by drilling three (3) exploratory truck-mounted hollow stem borings in the general area of the proposed buildings to a maximum depth of 70 -feet below existing grade to evaluate the subsurface conditions. The approximate boring locations are shown on Plate 1.

The "Standard Penetration Test" was conducted by driving a 2-inch O.D. split spoon into the soil using blows from a 140 pound hammer dropped 30 -inches. The number of blows
required to advance the split spoon the final 12 -inches of a 18 -inch drive is defined as the "Standard Penetration Resistance, " N -value, and is shown on the attached Boring Logs. The N -value can generally be correlated with some significant physical properties of the soil encountered, especially for coarse-grained material. Soil samples were obtained for laboratory testing. The earth materials were logged in detail and are presented in the Log of Borings (Plates B-1 through and B-3.

5.2 Cone Penetrometer Testing (CPT)

The CPT test was conducted by "Gregg Drilling and Testing, Inc." of Long Beach, California. The cone penetrometer testing procedure and cone penetration test data and interpretation are shown on the attached plates (G-1 through G-8), by Gregg Drilling \& Testing, Inc.

Soil Behavior type interpretations are based on the following reference: Lunne, Robertson and Powell, 1997 and Robertson, 2015. The test results, include cone resistance, friction resistance, friction ratio, N60, and pore pressure versus depth are shown on the attached plates.

6. SUBSURFACE CONDITIONS

6.1 Soils Condition

A) Artificial Fills:

Artificial fills consisting of brown to dark brown silty clay to sandy silts were encountered at the upper 2- to 5-feet. These materials were likely placed as part of the previous development of the site. The artificial fills are not expected to be left in place below the proposed buildings or direct contact for the pavement and flatwork support.

Page 7

12870 Panama Street
GS16-0107

B) Quaternary Alluvium (Qal):

Quaternary Alluvium (Qal) was encountered below the fills. The alluvium was deposited through fluvial processes. According to Castle (1960) the upper 5- to 10-feet of alluvium are flood plain deposits, which is generally consistent with the presence of clay and silt in the upper elevations of our exploratory borings. The alluvial deposits generally consist of dense gravelly sands below 40 feet and alternating lenses of clay, silt and sands in the upper 40 feet. At a depth of approximately 60 -feet the alluvium becomes very dense, as evidenced by the high blow counts observed in Boring B-3. Based on the referenced Bulletin No. 104 (see Reference 5, above), the native earth materials at a depth of approximately 60-feet are classified as Undifferentiated San Pedro Formation and/or Pico Formation. This classification appears to be consistent with the subsurface conditions encountered at the site.

Overall, the alluvial deposits encountered in the borings and CPT sounding consists primarily of variously colored interbedded clays (CH-CL), silts (ML), silty sand (SM), gravelly and pebbly sands (SM/SP) and poorly graded sand (SP) of various thickness. The alluvial deposits are stiff to moderately dense to dense, moist to very moist to wet, and are considered suitable for foundation and slab support, provided our recommendations are followed and integrated into the development plans.

6.2 Groundwater

Groundwater was encountered at a depth of approximately 11 -feet below ground surface during our exploration at the subject site. According to Bulletin No. 104 (1961), groundwater observed at the subject site is likely associated with the Ballona Aquifer, which is perched in the
more recent alluvial deposits above the lower undifferentiated San Pedro/Pico formation and deeper Silverado Aquifer.

The historically highest groundwater level is approximately 5 -feet below the existing grade. However, it must be noted that local fluctuation in groundwater level may occur due to tidal variations, seasonal variations in rainfall, irrigation and water line leak.

7. FAULTING AND SEISMICITY

7.1 Historic Seismicity

Faulting, which has occurred along the Los Angeles basin since ancient times, is thought to have provided the present landscape in Southern California. The faulting was caused by tectonic compression between the North American and Pacific tectonic plates. Today this boundary between the two tectonic plates consists of a complex network of faults. A large number of this network of faults, such as the San Andreas and Newport-Inglewood faults, exhibit right-lateral strike-slip movement on generally vertical fault planes due to the relative plate motion between the North American and Pacific tectonic plates.

An example of an earthquake exhibiting right-lateral strike-slip movement in the Los Angeles area is known as the "Long Beach Earthquake," which occurred on March 10, 1933. According to the County of Los Angeles Safety Element (1990), this earthquake was associated with the Newport-Inglewood fault at a depth $10-\mathrm{km}$, and ruptured in the subsurface approximately $25-\mathrm{km}$ from its epicentral location. The County of Los Angeles (1990) also shows an Isoseismal Map of the Modified Mercalli Intensities for the earthquake that indicates the subject site experienced an intensity of "VII" on the scale. According to the Southern California Earthquake Center (2013), the earthquake was a Magnitude 6.4, however no surface rupture
was recorded as a result of the earthquake. The "Long Beach Earthquake" demonstrated that structures built with unreinforced masonry suffer considerable damage when shaking by a moderate to large earthquake is encountered. The EQFAULT Program shows the subject site is approximately 4-mi $(6.4-\mathrm{km})$ from the Newport-Inglewood fault (see Plates EQ-1 through EQ-3).

A portion of the strike-slipping San Andreas, called the "big bend", changes from a northwesterly trend to a more westerly trend. The big bend consists of the Mojave and San Bernardino segments of the San Andreas fault. The compression on this portion of the San Andreas fault is thought to have resulted in numerous east-west trending thrust faults along the southern margins of the San Gabriel, Santa Susana, and Santa Monica Mountains. Many of these thrust faults break the surface and place basement rock formations over younger sedimentary rock formations. An example of a detrimental event in Los Angeles where a thrust fault ruptured the surface is the San Fernando earthquake of 1971. However, some thrust faults are buried and are thought to exist as segmented strands within zones of intense folding cause by compression. These buried thrust faults or "blind" thrust faults have been responsible for at least two of the most recent earthquakes in the Los Angeles area, the Whittier Narrows earthquake of 1987, and the Northridge earthquake of 1994. Brief descriptions of these earthquakes, and their significance are provided below.

On February 9, 1971, a Magnitude 6.6 (Heaton, 1982) earthquake known as the Sylmar (San Fernando) earthquake created approximately 15 kilometers of surface rupture in the northeast San Fernando Valley (SCEC, 2001). The rupture became known as the San Fernando fault although the epicenter of this particular earthquake appears to have been significantly further north at depth. The sense of motion for this earthquake is a reverse (thrust) fault, the fault

Page 10
GS16-0107
plane dips to the north, and it may be a result of flexural slip formed during folding of synclines in this portion of the San Fernando Valley (SCEC, 2001). The San Fernando fault ruptured from a depth of 8 km to the surface (Heaton, 1982). This earthquake showed that precast (tilt up) concrete construction, and "soft-story" multi-story buildings were very susceptible to damage or even collapse in the wake of a moderate to large earthquake. In addition, the earthquake resulted in extensive surface rupture which led to numerous damages, and the Alquist-Priolo Act was established as a direct result of this event. The subject site is approximately $21.1-\mathrm{mi}(34-\mathrm{km})$ to the south of the San Fernando fault (see Plates EQ-1 through EQ-3).

The Whittier Narrows earthquake occurred on October 1, 1987, and had Magnitude 5.9 (Hartzel and Iida, 1990). This fault is a blind thrust, and the plane dips to the north at approximately 30 -degrees. The rupture area was approximately $10-\mathrm{km}$ long and $6-\mathrm{km}$ wide (Hartzel and Iida, 1990). This earthquake helped give insight into the stability of structures that had been retrofitted after the San Fernando earthquake. The subject site is approximately $40-\mathrm{mi}$ west of the epicenter of the Whittier Narrows earthquake.

A Magnitude 6.7 earthquake occurred in Northridge on January 17, 1994 (Wald et al., 1996). The Northridge Earthquake was produced from movement on a blind thrust fault with a fault plane orientation striking northwest and dipping an estimated 40-degrees southwest. The dimensions of the rupture were estimated to by 15 km long and 20 km wide. The depth from the surface to the top of the highest rupture area was approximately 5 to 6 km (Wald et al., 1996). According to the City of Los Angeles (1996), this earthquake caused extensive damage to structures throughout the greater Los Angeles area, which appeared to be a direct result of
building construction rather than the relationship of the distance of a structure to the fault. The earthquake also resulted in liquefaction of loose alluvial soils which has largely influenced geotechnical investigation in areas of alluvial deposits, such as the subject site. The EQFAULT Program shows the subject site is approximately $11.9-\mathrm{mi}$ (19.1-km) from the Northridge fault (see Plates EQ-1 through EQ-3).

Documents from the Los Angeles City Records Counter were reviewed. From review of building permits, it appears the original structure at the site was built in approximately 1954 , with an additional to the structure built in 1962. The structures were built with reinforced brick and concrete. Review of aerial photos (see reference, 22) shows that the original structure and addition have remained on the site from construction to the present, and are generally performing well. In addition, no earthquake damage reports could be found for the subject site. It appears that ground shaking in the greater Los Angeles area due to earthquakes has not negatively impacted the existing structures at the site. In any case, the existing structures at the site are proposed to be removed, and the newly proposed structures will be constructed per the latest modern building codes.

7.2 Ground Motion and Seismic Design

Site Specific Ground Motion Analysis

Site specific ground motion analysis was conducted per Chapter 21 of ASCE 7-10 and 1803A. 6 of 2013 CBC utilizing software program as shown in the reference \#3. The analysis was conducted based on revised estimated average shear wave velocity, Vs_{30}, of $274 \mathrm{~m} / \mathrm{s}$ (an average shear velocity for site class D soils), data base from "USGS 2008 California", and
averaged spectrum from three attenuations by Abrahamson \& Silva, 2008; Boore and Atkinson, 2008; and Campbell and Bozorgnia, 2014. The results of analysis are shown on the attached Plates SP-1 through SP-9. The site specific spectrum is shown on the following Table:

Site Location (latitude, longitude) : (33.9842, 118.4273)	
Spectral Period, T (second)	Site Specific Spectral Acceleration (g)
0.2	$\mathrm{~S}_{\mathrm{DS}}=1.13$
1.0	$\mathrm{~S}_{\mathrm{D} 1}=\mathbf{0 . 9 3}$

7.3 Groundshaking

Ground shaking resulting from a moderate to major earthquake (Magnitude 6.0 or greater) can be expected during the life span of the proposed structure. Property owners and the general public should be aware that any structure or slope in the southern California region could be subject to significant damage as a result of a moderate or major earthquake. The potential exists throughout southern California for strong ground motion similar to that which struck the Los Angeles region during the January 17, 1994, Northridge Earthquake. Several such destructive earthquakes have struck southern California during the span of recorded history.

Present building codes and construction practices, and the recommendations presented in this report are intended to minimize structural damage to buildings and loss of life as a result of a moderate or a major earthquake. They are not intended to totally prevent damage to structures, graded slopes and natural hillsides due to moderate or major earthquakes. While it may be possible to design structures and graded slopes to withstand strong ground motion, the
construction costs associated with such designs are usually prohibitive, and the design restrictions may be severely limiting. Earthquake insurance is often the only economically feasible form of protection for your property against major earthquake damage. Damage to sidewalks, steps, decks, patios and similar exterior improvements can be expected as these are not normally controlled by the building code.

A site specific strong motion study is provided herein for use by a structural engineer to design structures to withstand a major earthquake. Major foundation problems are not anticipated as a result of earthquake induced liquefaction, fault ground rupture or displacement, and differential settlement of natural earth materials, provided the foundation system is constructed as herein recommended, within the limitations presented above.

Structural and cosmetic problems to sidewalks, steps, curbs, decks, and other such appurtenances, may be anticipated as these structures are not normally controlled by the building code.

7.4 Liquefaction Potential

The evaluation of liquefaction potential of the soils at the subject site is based on the following factors: material type, water level, relative density, gradation and intensity and duration of ground shaking.

Soil liquefaction is the sudden decrease of the shearing resistance of a loose state, saturated cohesionless soil under seismic condition. Typically sands and silts are potentially subject to liquefaction under these conditions. According to Seismic Hazard Zones Map (Plate 3), the site is located in an area subject to liquefaction. Liquefaction potential analysis was conducted based on the following conditions:

1) soil type,
2) in-situ standard penetration test and CPT soundings,
3) anticipated highest groundwater level at 5-feet below the grade (Plate 4,)
4) predominant earthquake magnitude of 6.63 (Plate CBC-8), and
5) peak ground acceleration of 0.65 g (Plate CBC-8).

The results indicate that the soil layers at various intervals between depths of 5- to 15feet and 25- to 40 -feet at the site exhibit a factor of safety less than 1.1, which suggests liquefaction may be induced by a major earthquake event should water table rise to the historically highest water level at 5-feet below the existing grade.

7.5 Seismically Induced Unsaturated and Saturated Soils Settlement

We have conducted a quantitative analysis of dry sand settlement analysis based on the following site conditions:

1) soil type.
2) standard penetration test (SPT) data and CPT data.
3) historically highest water level at the site.

Based on the attached analysis on attached plates in Appendix L and the following Table I, the average total and differential seismically induced saturated and un-saturated sand settlement is anticipated to be 1.5 -inch and 1.0 -inch, respectively.

We recommend that the proposed structures be supported on a mat foundation designed for the combined anticipated differential settlement, both seismically induced differential settlement (1.0-inch) plus static differential settlement (0.25-inch).

TABLE I

Test Location	Total Seismically Induced Settlement (inches)	Differential Settlement (inches)
CPT-1	1.15	0.76
CPT-2	0.84	0.56
CPT-3	1.12	0.74
CPT-4	2.86	1.89
CPT-5	1.17	0.77
CPT-6	1.89	1.25
CPT-7	1.41	0.93
CPT-8	1.69	1.12
Average	1.50	1.0

The anticipated amount of seismically-induced settlement as a result of an earthquake.
The seismically induced settlement analysis at the subject site was analyzed utilizing Tokimatsu and Seed (1987) method, predominant earthquake magnitude, $\mathrm{M}_{\mathrm{w}}=6.63$, and a peak ground acceleration of 0.65 g . The project structural engineer should design the foundation system considering the anticipated earthquake-induced saturated sand and un-saturated settlements.

7.6 Lateral Spreading

Based on the attached Plates in Appendix L, the corrected blow counts $(\mathrm{N} 1)_{60}$ of on-site materials are greater than 15 blows/foot. According to Bartlett, S.F., and Youd, T. L., 1995 and Youd, T. L., et, al., 2000, no significant displacement is likely to (N1) $)_{60}$ values greater than 15 blows/foot for a magnitude 8 or less earthquake. Bartlett and Youd's lateral spreading
analysis are limited to two (2) specific slope profiles with a surface slope gradient between 0.1% and 6% which is consistent with the range of slope gradient at the subject site.

In addition, a soil layer with a corrected blow count $(\mathrm{N} 1)_{60}$ value greater than 15 blows/foot indicates a low lateral spreading potential based on the available case histories.

7.7 Ground Rupture

The subject site has been plotted on City of Los Angeles and County of Los Angeles Seismic Safety Element fault maps, and it is not located within any Alquist Priolo Special Studies Zone or in a Fault Rupture Study Area (see Plates FZ-1 and FZ-2). From the reviewed geologic references it appears that the closest fault that is mapped in an Alquist-Priolo Zone is a splay of the Newport-Inlgewood fault located approximately 3.5-miles to the northeast of the subject site (see Plate FZ-2). Based on the referenced geologic map by the State of California, Department of Water Resources (Bulletin No. 104, 1961), the closest mapped fault is located approximately 1-mile to the east of the site (see Plate 6). According to Bulletin No. 104 (1961), this fault appears to trend northwest, and the northeast side is downthrown relative to the southwest side. The fault is zoned as a potentially active fault by the County of Los Angeles (Plate FZ-1), and an area around the fault has been delineated a Fault Rupture Study Area by the City of Los Angeles (Plate FZ-2).

The CPT data is shown on Geologic Cross-Sections A-A' and B-B' to make correlations of packages of alluvium in the subsurface. According to Bulletin No. 104 (1960), the Los Angeles River periodically ran along Ballona Creek in historic time. In addition, the site is near the coast and to the east of Marina del Rey, which at one time was known as Ballona Lagoon. Based on available data and resources, the alluvium below the subject site was most likely
deposited in a combination of lagoon, estuary, and fluvial depositional environments. These depositional environments create complex packages of clay, silt, and sand, where thickening, thinning, and pinching out of certain strata in the sequence is common. The mapped packages of alluvium appear fairly continuous, and have the appearance of sediment composition that changes as a result of changing depositional environments. The mapped sedimentary strata due not appear to have been offset as a result of faulting.

Historical aerial photographs and regional topographic maps for the site were reviewed (see reference 22). The reviewed aerial photos from years prior to development of the subject site do not show any obvious signs surface rupture due to faulting, such as offset streams and lineaments.

Based on available data, it is our finding that the proposed development lies a considerable distance from the closest mapped trace of the active Newport-Inglewood fault zone, and no known active faults directly underlie the proposed development. The potential for hazards due to surface fault rupture in the immediate area of the proposed development is considered to be very low.

8. ENGINEERING GEOLOGY

The engineering geologic factors evaluated include geologic planes of weakness, joints and fractures, excavation characteristics, landslides, inundation hazards, and regional subsidence.

8.1 Planes of Weakness

The alluvium underlying the site consists of interbedded sands, silts, clays and gavels which are essentially horizontal in orientation, which is favorable for the stability of proposed excavations at the site.

8.2 Joints and Fractures

The alluvium underlying the site is not considered prone to fracturing. Fractures are not expected to adversely effect the proposed development at the site.

8.3 Excavation Characteristics

The alluvium at the site was observed to be dense, although it is expected that it can be excavated using standard excavation equipment. However, caving conditions may be encountered for pile shaft excavations below the groundwater level. In this case the use of casing or slurry stabilization may be necessary during pile excavation.

8.4 Landslides

Ancient or recent landslides were not observed on the property. In addition, our examination of the property did not reveal the presence of past surficial slope failures.

8.5 Flood Hazards, Tsunamis and Seiches

We have reviewed the Federal Emergency Management Agency (FEMA) Flood Hazard Zone Map (https://msc.fema.gov/webapp/wcs/stores/ servlet/MapSearchResult?storeId=10001\& catalogId=10001\&langId=-1\&panelIDs=06037C1339F\$\&Type=pbp\&nonprinted=\&unmapped=) to determine if the site is located within an area designated as Flood Hazard Zone. According to the Flood Insurance Rate Map (FIRM), and the attached FEMA Flood Hazard Zone Map, Plate 5, the site is not located within a flood hazard zone, and is labeled as "Zone X," which is defined as areas of 0.2 percent annual chance flood; areas of one percent annual chance flood with average depths of less than one foot or with drainage areas less than one square mile; and areas protected by levees from one percent annual chance flood.

Tsunamis are long wavelength, seismic, sea waves (long compare to sea depth) generated by the sudden movement of the ocean floor during submarine earthquakes, landslide or volcanic activity. The site has been plotted on the inundation maps provided by the City of Los Angeles Seismic Safety Element (1996), County of Los Angeles Seismic Safety Element (1990), and the California Geological Survey (2009), which are provided herein as Plates IM-1, IM-2, and IM-3, respectively. None of the maps show the subject site with an area designated as subject to susceptible to inundation by tsunami.

Seiches are waves generated in a large, enclosed body of water. The nearest bodies of water to the subject site are Marina del Rey and Bellona Creek, and neither are considered enclosed as they outlet to the Pacific Ocean (see Plate RT-1). The closest portion of Marina del Rey is approximately 4,300-feet to the west of the subject site. The closest portion of Ballona Creek is approximately 1,300-feet to the southwest. Inundation as a result of a seiche is considered unlikely.

The project is not mapped within an area considered susceptible to flood hazard, tsunami, or seiche inundation. Therefore, damage to the proposed development as a result of flooding, tsunamis, and/or seiches is not a design consideration.

8.6 Dam Inundation

The City of Los Angeles (1996) and the County of Los Angeles (1990) map the site in areas of potential inundation by several dams and/or reservoir basins (see Plates IM-1 and IM-2). The Stone Canyon Dam (SCD), Lower Franklin Dam (LFD), Mulholland Dam (MHD), Rowena Dam (RWD), Silver Lake Dam, and Hansen Dam all flow in the Ballona Creek drainage and have flood pattern limits that show the subject site could possibly be inundated by them in the event of a failure.

The Stone Canyon Dam (SCD) is an earthen dam that was built in 1924, and is currently owned by the City of Los Angeles. The crest elevation is 878 -feet above sea level, and it has a height of 188 -feet. The SCD has a storage capacity of 10,372 acre-feet, and has a drainage area of 1.4 square miles. The subject site is located approximately 9 -miles to the south of the SCD.

The Lower Franklin Dam (LFD) is a hydraulic fill dam that was built in 1922, and is currently owned by the City of Los Angeles. The crest elevation is 590.4-feet above sea level, and it has a height of 103 -feet. The LFD has a storage capacity of 920 acre-feet, and has a drainage area of 1.12 square miles. The subject site is located approximately 8 -miles to the southwest of the LFD.

The Mulholland Dam (MHD), also known as Lake Hollywood Reservoir, is a gravity dam that was built in 1924, and is currently owned by the City of Los Angeles. The crest elevation is 756 -feet above sea level, and it has a height of 195 -feet. The MHD has a storage capacity of 4.036 acre-feet, and has a drainage area of 1 square mile. The subject site is located approximately 11.5 -miles to the southwest of the MHD.

The Rowena Dam (RWD) is an earthen dam that was built in 1911. The RWD has a storage capacity of 118 acre-feet. The subject site is located approximately 13.25 -miles to the southwest of the RWD.

The Silver Lake Dam (SLD) is an earthen dam that was built in 1976, and is currently owned by the City of Los Angeles. The crest elevation is 463 -feet above sea level, and it has a height of 43 -feet. The SLD has a storage capacity of 2020 acre-feet, and has a drainage area of 0.12 square miles. The subject site is located approximately 12.5 -miles to the southwest of the SLD.

The Hansen Dam (HSD) is an earthen dam that was built in 1940, and is currently owned by the US Army Corp of Engineers. The subject site is located approximately 19 -miles to the southwest of the HSD. Based on our research, the dam received a Dam Safety Action Class IIII rating with probability of failure of moderate to high. Based on the rating, the US Army Corp of Engineers has implemented an interim Risk Reduction Measurement program for dam safety. It should be noted that Hansen Dam is a flood control dam that is rarely at 100% capacity which is immediately released at a controlled flows. Currently a small recreational lake which is part of the City of Los Angeles Parks and Recreation is present which poses no hazard to the proposed development.

The subject site is situated to the north of Ballona Creek, which has been engineered to maintain its current position and outlet to the Pacific Ocean adjacent to Marina del Rey. It also appears from Plate RT-1 that Howard Hughes Airport exists to the south of Ballona Creek at a lower elevation than the subject site, and would likely flood in this area before inundating the site. In addition, the site is far away from all of the above mentioned dams but the drainage of the Los Angeles basin leads there inundations areas into the Pacific Ocean from Ballona Creek.

The age and construction practices of the above mentioned dams, indicate that the potential for failure does exist. According to the County of Los Angeles (1990), the inundation map in the Safety Element (Plate IM-2) shows all probable roots that a flood may follow after leaving the dam, and therefore the map shows a very large and conservative area. Due to the available information and distance from the site to the dams that may pose an inundation threat, it is our professional opinion that the risk of flooding due to dam inundation is low for the subject site.

8.7 Regional Subsidence

According to the County of Los Angeles Seismic Safety Element (1990), regional subsidence may result due to tectonic activity, and the subsidence may be a result of thrust-type faulting due to compression, which causes uplift regional uplift and subsequent subsidence in certain areas. It continues to state that the 1971 San Fernando earthquake was associated with a regional uplift of 2-meters, which may have resulted in approximately 1.6 -meters of subsidence in broad areas of Los Angeles. The subject site resides in a tectonic regime that may be capable of producing a thrust-type earthquake, and it should be noted that regional subsidence may be observed at the site in the event of moderate to large compressional earthquake activity.

9. LABORATORY TESTING

Laboratory tests were conducted on representative samples to determine engineering parameters and physical properties of the earth materials. Shear strength, consolidation, sieve analysis, and corrosivity of the materials were determined from these tests.

9.1 Direct Shear

Our shear tests were performed under consolidated drained conditions per ASTM D3080 method. Direct shear tests were conducted on representative samples to determine their shear strength characteristics. The samples were saturated under normal load before testing. Shear loads were applied at a rate of 0.05 -inch per minute in accordance with the undrained shear test procedure. Ultimate shear strength values for the samples tested are shown on Plates DS-1 through DS-3.

TABLE 2

Sample Number	Depth (ft)	Soil Type	Dry Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)
B-1	10	Qal	102.1	150	23
B-2	7	Qal	106.5	150	31
B-3	5	Qal	111.4	300	31

9.2 Particle Size Distribution

Sieve analyses were performed on the representative materials to verify field classification and aid in evaluation of the shear strength parameters and liquefaction potential of the soils. The test results are attached in the Appendix (Plates SV-1 through SV-13)

9.3 Consolidation

Consolidation tests were performed on in-situ moisture and saturated specimens of the native soil. The consolidometer, like the direct shear machine, is designed to receive the specimens in the field condition. Porous stones placed at the top and bottom of the specimens permits free flow of water into and from the specimens during the test. Successive load increments are applied to the top of the specimens and progressive and final settlements under each load increment are recorded to an accuracy of 0.001 -inch. The consolidation curves of the results are shown in the Appendix (Plates C-1 through C-3.)

9.4 Corrosive Soils

Chemical tests for pH , chloride content, sulfate content and minimum resistivity were performed per California Test Method (CTM), on a sample of the surficial materials in the area
of the proposed development. Minimum resistivity testing was conducted on a saturated sample of the soil. The laboratory test results based on CTM are presented in Table 3 below:

TABLE 3

Sample Location	Depth (ft)	Soil Type	pH CTM 532	Chloride Content CTM 422 (ppm)	Sulfate Content CTM 417 (ppm)	Minimum Resistivity CTM 532 (ohm-cm)
B-1	$0-5$	Qal	7.3	$\mathbf{3 0 . 0}$	$\mathbf{1 2 2}$	$\mathbf{8 , 2 1 6}$

The following corrosion protection and concrete design recommendations are based on California Department of Transportation (Caltrans) Corrosion Guidelines. An engineer specializing in corrosion protection and concrete design should be consulted if additional protection is desirable.

In accordance with Caltrans Corrosion Guidelines, a site is considered to be corrosive if one or more of the following conditions exist: 1) the pH is 5.5 or less, 2) chloride concentration is 500 ppm or greater, 3) sulfate concentration is 2000 ppm or greater, and 4) minimum resistivity is less than 1000 ohm-cm.

The pH and resistivity level of the soils tested are not considered to be corrosive to ferrous metals. Underground steel utilities should be given a high quality protective coating such as 40 mil extruded polyethylene, 20 mil plastic tape over primer per AWWA Standard C209, or hot applied coal tar enamel or tape per AWWA Standard C203. All underground steel should be electrically insulated from above ground steel, dissimilar metals, and cement-mortar or concrete
coated steel. Underground steel pipe should be bonded for electrical continuity if rubber gasketed, mechanical, grooved end, or other nonconductive type joints are used. In addition, cathode protection is recommended for underground steel utilities. No special precautions are required for copper, asbestos-cement or plastic utilities placed underground from a corrosion viewpoint. However, any iron valves or fittings should be protected as mentioned above.

The sulfate content of the soil at the site is considered to be low, standard construction practices and concrete mixes may be used for concrete in contact with the on-site soils using Types I, II or III Portland Cement.

10.0 CONCLUSION

Based on the findings of our investigation, the site is considered to be suitable from a soils engineering standpoint for the proposed school and classroom facility development provided the recommendations included herein are followed and integrated into the foundation, building and grading plans.

11. RECOMMENDATIONS

11.1 Site Preparation

Based on our field observations and laboratory test results, artificial fills were encountered at the upper 2 to 5 -feet within the proposed development area. These materials are not suitable for foundation and slab support at the current condition and will require mitigation for all proposed on-grade development.

The alluvium below a depth of 5 -feet from the existing grade is considered to be suitable for foundation and slab support or for support of new compacted fill. In this case, we recommend that the proposed structures be supported on a new blanket of compacted fill benched into the
underlying alluvium or be supported on foundations bearing a minimum of 5-feet below existing grade.

In order to avoid problems due to differential settlement, we recommend that each individual structure be supported entirely within the same material, either new compacted fill or alluvium (bearing a minimum of 5 -feet below existing grade). If applicable, the compacted fill blanket should extend a minimum of 5-feet beyond the building line (where space is available) and 3-feet below the base of the proposed foundations. All new fill should be benched into firm alluvium and compacted to at least 90 percent of the maximum dry density, as determined by ASTM Method D1557, at about 2 percent above optimum moisture content. On-site materials are considered suitable for compaction provided that all deleterious materials are removed prior to compaction. The bottom of the exposed competent soil should be inspected and approved by the soils engineer prior to compaction work. Additional recommendations are provided in the attached grading guidelines.

11.2 Site Clearance

Demolition debris and other unsuitable materials should be stripped and removed from the site. Water lines or other old utility lines or installations to be abandoned should be removed or crushed in place. Old septic tanks and cesspools, if any, should be backfilled in accordance with regulations of the controlling agencies. Holes resulting from removal of buried obstructions which extend below finished site grades should be backfilled with compacted soils.

11.3 Foundation Settlement (Static)

Settlement of the foundation system is expected to occur on initial load application. The maximum settlement is not expected to exceed 1-inch. Differential settlement is not expected to
exceed $1 / 4$-inch within a span of 30 -feet. The estimates of seismically induced settlement in the event of strong or severe ground shaking resulting from a major earthquake are discussed in the previous section (see Section 7.5, above).

11.4 Foundations

The bearing pressure given is for the total of dead and frequently applied live loads and may be increased by one-third for short duration loading which includes the effects of wind or seismic forces. The foundation system should be designed within a tolerable deflection, determined by structural engineer for the combined differential settlement, both seismically induced differential settlement (1.0 -inch) plus static differential settlement (0.25 -inch).

11.4.1 Mat Foundation

A mat foundation system is recommended for support of the proposed structures. The mat foundation should be supported entirely on competent native alluvium (a minimum of 5-feet below existing grade) or on certified compacted fill, with a minimum 12 -inch embedment. Each individual structure should be supported entirely in the same material, either in approved native alluvium, or in new compacted fill, but not both.

A bearing capacity of 1500 psf and modulus of subgrade reaction of 40 pci should be used for design.

11.4.2 Spread Footings

Conventional continuous and spread footings with grade beams may be used for foundation support provided that the foundations are designed within a tolerable deflection determined by structural engineer. Spread footings should be supported entirely on approved
native alluvium or entirely on new certified compacted fill, but not both. Continuous footings may be designed using a bearing pressure of 1500 psf . They should be a minimum of 15 -inches in width and 18 -inches into the bearing materials.

Independent footings may be designed using a bearing pressure of 2000 psf for approved native alluvium or new compacted fill. The dimensions on independent footings should be a minimum of 2-feet square and founded at least 2-feet into bearing materials.

The bearing capacity can be increased by 10% and 20% with additional foot of width and depth, respectively, to a maximum value of 3000 psf .

Footings should be located below a line measured at a 45 degree angle from the bottom of any utility trench, unless reviewed and approved by the Soils Engineer.

11.4.3 Pile foundation

Friction piles may be used for temporary shoring or for support of proposed structures below the upper 5-feet of unsuitable soil at the site where excavations are limited due to property lines or adjacent structures. Piles should be a minimum of 24 -inches in diameter and embedded a minimum of 8 -feet into the underlying alluvium. Piles may be assumed fixed at 5 -feet below existing grade, or that depth which corresponds to the lowest proposed grade, whichever is deeper. The piles may be designed for a skin friction of 250 psf for that portion of pile in contact with the alluvium, a minimum of 5 -feet below existing grade. All piles should be designed within a tolerable amount of deflection, determined by the structural engineer.

11.5 Floor Slabs

Concrete floor slabs should be supported entirely on competent alluvium or new certified compacted fill, and should be reinforced with a minimum of \#4 rebar spaced at a minimum distance of 16 -inches on center each way. Slabs to be covered with flooring should be protected by an acceptable plastic vapor retarder/barrier (minimum 10 mil thickness). To prevent punctures and aid in the concrete cure, the barrier should be sandwiched within a 3-inch layer of sand.

A minimum 4-inch-thick capillary break consisting of compacted 3/4-inch coarse aggregate (Caltrans Class II permeable or equivalent) should be placed below the vapor retarder/barrier and sand, per the 2010 California Green Building Standards Code (CALGreen).

If moisture vapor transmission is a concern to the facility owner, an expert should be consulted to provide additional recommendations for the design and construction of slabs in moisture sensitive flooring areas.

It is understood that the basement level will be below the historically highest groundwater table. Therefore, a pressure slab to resist maximum probable hydrostatic uplift pressure is recommended for the subterranean garage. The recommendations for pressure slab and underfloor drainage system (relieved slab) are described in Plate RS-1. The actual reinforcement for the slab should be determined by the project structural engineer. Additional 1000 psi concrete strength over the specified concrete strength should be used for foundation or slab under the historically highest water table.

11.6 Expansive Soil

Based on our field exploration, soil classification and in-situ density results, on-site soils in the proposed foundation locations are considered to be medium in expansion potential. Special recommendation for the foundation design as shown in the attached Plate EI-1 is recommended.

11.7 Hydrocollapse

Based on those tests attached, the native alluvium is not considered collapsible with hydro-consolidation less than 0.2 percent. However the existing surficial material at the proposed development area is loose and disturbed at the upper 2- to 5 -feet. We recommend that the existing material be removed and re-compacted for slab support. The fill should be compacted to at least 90 percent of relative compaction at 2 percent above optimum moisture content.

11.8 Lateral Design

Resistance to lateral loading may be provided by friction acting at the base of the foundations and by passive earth pressure within native alluvium or certified compacted fill. An allowable coefficient of friction of 0.30 may be used with the dead load forces.

Passive earth pressure may be computed as an equivalent fluid having a density of 300 pcf with a maximum earth pressure of 4500 psf . When combining passive and friction for lateral resistance, the passive component should be reduced by one-third.

11.9 Retaining Walls

Retaining walls are expected to be a maximum of 10 -feet in height. Free standing retaining wall should be designed utilizing equivalent fluid pressure of 45 pcf as active pressure

Page 31
(see Plate RW-1). Restrained retaining wall (basement wall) should be designed utilizing a trapezoidal distribution of 42 H psf, where H is the height of retaining wall in feet. The proposed retaining wall should be designed for surcharge condition due to sloping ground, building or vehicular surcharge.

In accordance with Section 1802.2.7 of the 2013 California Building code, an additional active load of $28.3 \mathrm{H}^{2}$ pounds should be added to the retaining wall design for restrained walls and an additional active load of $10.6 \mathrm{H}^{2}$ pounds should be added to the retaining wall design for freestanding walls. Our earth pressure distribution diagrams are presented on Plate PD-1.

All walls should be effectively waterproofed, provided with an adequate subdrainage system, and backfilled in accordance with the attached retaining wall backfill and subdrain details (Plates RD-1 and RD-2). We recommend you hire a waterproofing expert to determine your waterproofing requirements. Waterproofing details, application methods or effectiveness in preventing moisture intrusion are beyond the scope of our work authorization and not the responsibility of GeoSystems, Inc. The subdrainage system, including outlet locations, should be clearly shown on the building and/or grading plans. The contractor is responsible to insure that all subdrain outlets are constructed per plan.

The water level at the site is expected to be as high as 5 -feet below the existing grade. Due to historic fluctuation in groundwater levels, and possible tidal influence due to the close vicinity to the ocean, we recommend that the entire height of the wall be designed with additional hydrostatic pressure.

11.10 Retaining Wall Deflection

All walls should be designed by the structural engineer within a tolerable deflection as determined by the project structural engineer and the owner. Non-restrained (freestanding) retaining walls designed for active pressure will typically deflect approximately one percent of their height over time in response to loading (depending on the stiffness of the wall). This deflection is normal and reduces the pressure on the wall. To accommodate this deflection, structures or slabs should not be tied to freestanding retaining walls. Freestanding walls should be provided with vertical construction joints at corners. Should excessive wall deflection be undesirable, at-rest earth pressure recommendations presented herein, which will reduce wall deflection significantly, may be used for retaining wall design. Our recommendations for at-rest earth pressure distribution for the design of restrained retaining walls are provided on Plate PD-1 herein.

Slabs should not be tied to walls unless designed as a structural slab. The space between the wall and the slab will require periodic caulking to prevent moisture instruction into retaining wall backfill.

11.11 Temporary Excavations

Temporary excavations for removal and re-compaction, and for basement walls are expected to be up to approximately 10 -feet in vertical height. The maximum recommended height of temporary vertical excavations in soil is 5-feet. That portion of the excavation above a height of 5 -feet, should be trimmed to a 1:1 slope, where space is available, or the excavation may be shored. Area where trimming is not available, the excavations should be temporarily shored utilizing a shoring system consisting of soldier piles. Recommendations for shoring piles are provided below.

All cut-slopes and temporary excavations should be observed during excavation by a representative of this firm. Should the observation reveal any geologic hazard, appropriate treatment will be recommended.

All excavations shall be made in accordance with the regulations of the State of California, Division of Occupational Safety and Health (Cal/OSHA). These recommended temporary excavation slopes do not preclude local raveling and sloughing. Provided our recommendations are followed, the resulting temporary excavations are anticipated to be safe from a geotechnical standpoint for the proposed construction operations, and should not expose workers to hazards due to cave-ins, provided that geologic conditions exposed by the excavations are as anticipated.

All excavations should be stabilized within 30 days of initial excavation. Water should not be allowed to pond on the top of the excavation nor to flow towards it. No vehicular surcharge should be allowed within 5 -feet of the top of cut.

Groundwater was encountered at a depth of 11-feet during field exploration. If groundwater is encountered during basement excavation, to provide a dry workable field condition, the seepage can be collected via french drain and pump off site. To bridge the soft saturated subgrade, a 12 -inch thick compacted blanket of $3 / 4$-inch gravel is recommended.

It is recommended that a pre-excavation site meeting be attended by the grading contractor, the soils engineer, and an agency representative to discuss methods and sequence of subterranean excavation.

11.12 Shoring/Soldier Piles

Where sufficient space is not present for trimming temporary excavations as recommended above, excavations may be temporarily shored utilizing a shoring system consisting of soldier piles with wood lagging. The piles should be spaced no greater than 8 -feet on center exhibiting a minimum embedment 10 -feet below the bottom of the excavation. In order to avoid sloughing and/or caving between the proposed piles, we recommend that wood lagging be placed to support the material exposed between the piles. The wood lagging should be extended down to the bottom of the temporary excavations. An active pressure of 35 pcf can be used for temporary shoring design (see Plate RW-2 herein). The shoring can be integrated into permanent wall if the shoring is designed utilizing the active pressure as shown in "retaining wall" section.

11.12.1 Shoring Pile Deflection

The shoring piles should be designed to within a tolerable deflection, typically less than 1 -inch, by the project structural engineer. Any movement over 1 -inch shall be reported to the structural (shoring) engineer. If there is movement of 2-inches or more, remedial shoring will need to be installed to prevent additional movement prior to further construction.

11.12.2 Shoring Monitoring

It will be the responsibility of the grading contractor to maintain an accurate monitoring system of the performance of the excavation. The intent of this program will be to produce an accurate and on-going record of the horizontal and vertical deflections of the temporary shoring system.

It is anticipated that a surveyor would be retained to construct and maintain the monitoring system. Both vertical and horizontal movements should be measured on a weekly basis and
the record of performance should be submitted to both the Soil Engineer and the Structural (Shoring) Engineer. Accuracy should be maintained within one one-hundred of a foot and the record should be produced in a readily understandable form. The surveyor should submit to the Soil Engineer, prior to start of excavation, a plan which would indicate the method selected for monitoring of the excavation.

It is suggested that some attempt be made to secure monuments or survey points for horizontal measurements of the subgrade displaced some 3- or 4-feet back of the shoring elements. It is suggested that several locations be selected at the top of the pile and the performance of such monuments would be included within the monitoring record submitted each week.

Monitoring of the excavation performance should be started prior to the beginning of the initial excavation. The weekly schedule of performance monitoring may be modified as the job progresses. Once the subterranean structure has been constructed, monitoring of the performance will no longer be required.

11.12.3 Typical Sequence of Shoring Pile Installation and Excavation:

1. Drill soldier piles, set steel, and pour concrete;
2. Once cured, excavate for retaining wall;
3. Construct shotcrete retaining wall.

11.13 Slot Cut

As an alternative to temporary shoring, in areas where required removal and re-compaction is adjacent to property lines, excavation may proceed using the "A-B-C" slot cut method.

Slot cutting may be performed utilizing the A-B-C slot cut method. Each slot width should not exceed 8-feet per the calculations presented on Plate SC-1. The maximum anticipated height of each slot is not anticipated to exceed 5 -feet. The following construction procedure should be utilized for removal and re-compaction using the slot cut method:

1. Excavate each "A" slot;
2. Backfill each "A" slot with compacted fill;
3. Excavate each " B " slot;
4. Backfill each " B " slot with compacted fill;
5. Excavate each "C" slot;
6. Backfill each " C " slot with compacted fill.

A representative of GeoSystems, Inc., should continuously observe the slot cutting procedure to verify that the geologic conditions being exposed in the cuts are as anticipated. Additional or revised recommendations will be made as field conditions warrant.

All cut-slopes and temporary excavations should be observed during excavation by a representative of this firm. Should the observation reveal any geologic hazard, appropriate treatment will be recommended.

All excavations shall be made in accordance with the regulations of the State of California, Division of Occupational Safety and Health (Cal/OSHA). These recommended temporary excavation slopes do not preclude local raveling and sloughing. Provided our recommendations are followed, the resulting temporary excavations are anticipated to be safe from a geotechnical standpoint for the proposed construction operations, and should not expose
workers to hazards due to cave-ins, provided that geologic conditions exposed by the excavations are as anticipated.

All excavations should be stabilized within 30 days of initial excavation. Water should not be allowed to pond on the top of the excavation nor to flow towards it. No vehicular surcharge should be allowed within 5 -feet of the top of cut.

Groundwater was encountered at a depth of 11-feet during field exploration. Groundwater is likely will encountered during basement excavation. To provide a dry workable field condition, the seepage can be collected via french drain and pump off site. To bridge the soft saturated subgrade, a 12 -inch thick compacted $3 / 4$-inch gravel is recommended.

It is recommended that a pre-excavation site meeting be attended by the grading contractor, the soils engineer, and an agency representative to discuss methods and sequence of subterranean excavation.

11.14 Pavement

We recommend that the upper 2-feet of loose soils and fill materials be removed and re-compacted within the area to receive pavement section.

Prior to placing pavement, the subgrade should be scarified to a depth of 6-inches, moistened or dried out to optimum moisture content, and recompacted to at least 90 percent of the maximum dry density, as determined by ASTM Method D1557-02e1.

Utilizing an estimated traffic index of 4 and " R " value of 30 , a flexible pavement section consisting of 3-inches of asphalt concrete over 4-inches of base material should be used for the light weight traffic area. Utilizing an estimated traffic index of 6 and " R " value of 30, a flexible
pavement section consisting of 4-inches of asphalt concrete over 6-inches of base material should be used for the service lanes (truck and loading area). The base material may be crushed aggregate.

As an alternative, a rigid pavement section consisting of Portland Cement Concrete (PCC) can be used. The traffic loading is expected to be primarily light vehicles. Recommendations for the rigid concrete pavement design is provided herein in the following Table 4:

TABLE 4

Compressive Strength of Concrete @28 days	3500 psi
Modulus of Rupture of Concrete @28 days	550 psi
Concrete Thickness	4 inches
90 Percent Compacted Subbase	12 inches
Contraction Joint Spacing	10 ft.
Depth of Joint	1 inch

Concrete slabs should be separated from other structures or fixed objects within or abutting the paved area by isolation joints. This serves to offset the effects of the differential horizontal and vertical movements of the structures which may fracture the concrete slab.

When isolation joints are located where wheel and other loads are applied, the pavement edge at the joint should be thickened by 20 percent or 2 -inches, whichever is greater.

A joint filler should be applied to any new isolated joints within the concrete slab. The joint filler should extend through the slab thickness and should be recessed below the pavement surface so that the joint can be sealed with joint sealant material. The types of joint filler materials recommended include bituminous mastic, bituminous impregnated cellulose or cork, sponge rubber, or resin-bound cork. Joint filler materials should be installed in accordance with the recommendations of the manufacturer.

11.15 Patio Slabs and Hardscape

It may be desirable to support new patio slabs and hardscape (patios, steps, walkways, and etc.) on the existing surficial soils. These structures are not normally subject to building code requirements for structural support. In order to reduce the potential for distress due to the potential for settlement, it may be desirable to provide additional subgrade preparation and additional steel and concrete thickness for the proposed patio slabs and hard-scape at the site. At a minimum, we recommend that patio slabs and hardscape be reinforced with a minimum of \#4 rebar placed at 16 -inches on center each way. The upper 12-inches of existing surficial soils to be used for slab support should be removed and recompacted to 90 percent of the maximum dry density, as determined by ASTM Method D1557-02e1. It should be noted that patio slabs/ hardscape constructed to the preceding specification may be subject to distress over time.

Periodic maintenance or replacement may be necessary.

11.16 Drainage Control

Final grading shall provide positive drainage away from the footings and from the lot. Proper drainage shall also be provided away from the building footing and from the lot during

July 22, 2016
Page 40
12870 Panama Street

GS16-0107
construction. Maintaining a proper drainage system will minimize the shrink/swell potential of the subsoils.

All pad and roof drainage should be collected and transferred to the adjacent street in non-erosive drainage devices. Drainage should not be allowed to pond on the pad or against any retaining wall or foundation.

12. CONSTRUCTION AND OBSERVATION

A set of foundation should be submitted to this office for review and approval prior

 to initiation of construction.It is recommended that all foundation excavations be approved by this firm prior to placing concrete or steel. Any fill which is placed should be tested for compaction if used for engineering purposes. All cut-slopes and temporary excavations should be observed by a representative of this firm. Should the observation reveal any unforeseen hazard, appropriate treatment will be recommended.

It is advised that the client contact GEOSYSTEMS, INC., at least $\mathbf{1}$ week in advance of commencing grading to allow for contractual agreements for geotechnical services during the construction phases of your project

Please advise this office at least $\underline{\mathbf{2 4}} \mathbf{h o u r s}$ prior to any required verification.
Representatives of GEOSYSTEMS, INC., will observe work in progress, perform tests on soil, and observe excavations and trenches. It should be understood that the contractor or others shall supervise and direct the work and they shall be solely responsible for all construction means, methods, techniques, sequences and procedures, and shall be solely and completely

July 22, 2016
12870 Panama Street

Page 41
GS16-0107
responsible for conditions of the job site, including safety of all persons and property during the performance of the work.

Periodic observation by GEOSYSTEMS, INC., is not intended to include verification of dimensions or review of the adequacy of the contractor's safety measures in, on, or near the construction site.

13. REMARKS

The conclusions and recommendations contained herein are based on the findings and observations made at the boring locations. While no great variations in soil conditions are anticipated, if conditions are encountered during construction which appear to differ from those disclosed, GEOSYSTEMS, INC., should be notified, so as to consider the need for modifications.

This report has been compiled for the exclusive use of OCEAN CHARTER SCHOOL and their authorized representatives. It shall not be transferred to, or used by, a third party, to another project or applied to any other project on this site, other than as described herein, without consent and/or thorough review by this facility.

Should the project be delayed beyond the period of one year after the date of this report, the site should be observe and the report reviewed to consider possible changed conditions.

This report is issued with the understanding that it is the responsibility of the owner, or their representative, to assure that the information and recommendations contained herein are called to the attention of the designers and builders for the project.

The limits of our liability for data contained in this report and our warranty is presented on the following page.

GEOSYSTEMS, INC.

Steve S . Tsaí, Vice President GE 2268, Exp. 3-31-2018

Richard Gladson, Senior Geologist CEG 1758, Exp. 9-30-2017

Attachments: 288 Plates, see Appendix
CC: $\quad 4$ to Client
BT:RG:SST:VJC/jsc

G:IGSIGGSI6-0107_PanamalREPORTS panama_12870 (7-22-16).ocean wpd

LIMITATIONS

This report is based on the development plans provided to our office. In the event that any significant changes in the design or location of the structure(s); as outlined in this report are planned, the conclusions and recommendations contained in this report may not be considered valid unless the changes are reviewed and the conclusions of this report are modified or approved by the soil engineer.

The subsurface conditions and excavation characteristics described herein have been projected from individual borings or test pits placed on the subject property. The subsurface conditions and excavation characteristics data should in no way be construed to reflect any variations which may occur between these borings or test pits.

It should be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, and other factors not evident at the time measurements were made and reported herein. GEOSYSTEMS, INC., assumes no responsibility for variations which may occur across the site.

If conditions encountered during construction appear to differ from those disclosed, this office shall be notified so as to consider the need for modifications. No responsibility for construction compliance with the design concepts, specifications or recommendations is assumed unless on-site construction review is performed during the course of construction which pertains to the specific recommendations contained herein.

This report has been prepared in accordance with generally accepted practice. No warranties, either expressed or implied, are made as to the professional advice provided under the terms of the agreement and included in this report.

GRADING GUIDELINES

Site Clearing

Any existing brush, loose fill and porous soils shall be excavated to competent native materials. Prior to the placement of any fill soils, the exposed surface shall be scarified, cleansed of debris and recompacted to 90 percent of the laboratory standard under the direction of the Soils Engineer in accordance with the following "Placing, Spreading, and Compacting Fill Materials".

Preparation

After the foundation for the fill has been cleared, and scarified, it shall be brought to a proper moisture content and compaction to not less than 90 percent of the maximum dry density in accordance with ASTM D1557.

Materials

On-site materials may be used in the fill if cleansed of debris. Imported fill materials shall be approved by the Soils Engineer and may be obtained from any other approved source. The materials used should be free of excessive organic matter and other deleterious substances and shall not contain rocks or lumps greater than 6 inches in maximum dimension.

Placing, Spreading and Compacting Fill Materials

Fill materials shall be placed in layers which when compacted shall not exceed 6 inches in thickness. Each layer shall be spread evenly and shall be thoroughly mixed during the spreading to ensure uniformity of material and moisture of each layer.

Where the moisture content of the fill material is below the optimum value determined by the Soils Engineer, water shall be uniformly added to obtain the approximate optimum moisture content.

Where the moisture content of the fill materials is higher than the optimum value determined by the Soils Engineer, the fill materials shall be aerated by blading disking or mixing with dry materials until the optimum moisture content is obtained.

After each layer has been placed, mixed and spread evenly, it shall be thoroughly compacted to not less than 90 percent of the maximum dry density in accordance with ASTM D1557 Cohesionless soil having less than 15 percent finer than 0.005 millimeters (such as base material or pea gravel) shall be compacted to a minimum of 95 percent of the maximum dry density.

Compaction shall be by sheepfoot roller, tract rolling or other types of acceptable compaction equipment of such design that they will be able to compact the fill material to the specified density. Rolling shall be accomplished while the fill material is at the specified moisture content, to ensure that the desired density has been obtained. The final surface of the areas to review slabs-on-grade should be rolled to a dense smooth surface.

GRADING GUIDELINES (Continued)

Field density tests shall be made by the Soils Engineer at intervals not to exceed 2 feet of fill height. Where sheepfoot rollers are used, the soil may be disturbed to a depth of several inches and density reading shall be taken in the compaction material below the disturbed surface. When these readings indicate the density of any fill or portion thereof is below the required 90 percent density, the particular layer of portion shall be reworked until the required density has been obtained.

The grading specifications should be a part of the project specifications. The Soils Engineer shall review the grading plan prior to grading.

APPENDIX

National Flood Hazard Layer Official Map

Legend
— Cross-Sections
~ Base Flood Elevations
Flood Hazard Zones

1\% Annual Chance Flood
[Regulatory Floodway
© Special Floodway
Area of Undetermined Flood Hazard
0.2\% Annual Chance Flood

- Future Conditions 1% Annual Chance
- Flood Hazard
- Area with Reduced Risk Due to Levee

LOMRs
\square Effective
Map Panels
\square Digital Data
\square Unmodernized Maps
\square Unmapped
The NFHL is a living database, updated daily, and this map repr
specific time.
Flood risks are dynamic and can change Flood risks are dynamic and can change
frequentiy due to a variety of factors, including weather patterns, erosion, and new development.
FEMA flood maps are continually updated through FEMA flod maps are continually y pdated through
a variety of processes. Users should always
Un a variety of processes. Sesers should always
verify through the Map Sevice Center or the Community Map Repository that they have the current effective information.
NFHL maps should not be created for unmapped or unmodernized areas

N FEMA
 Date: 6/24/2016 Time: 4:24:06 PM

2ouren
201 A sose
 Yrear

(1) OTHER LOOD AEEAS

\square OTHERAREGS

OTN OTHERYSE PROTECTD ARES (OPAS)

\cdots,

(3)--- (B)

APPENDIX A

Boring Logs

APPENDIX B

Laboratory Testing

DIRECT SHEAR TEST DIAGRAM

$\gamma d=106.5 p c f$
$W i=15.2 \%$
$W f=20.2 \%$
Sample Location: \qquad Depth: 7 ft .

Material: SM Saturated, Undisturbed
Project: 12870 Panama Street
Los Angeles, California

Date: $6 / 20 / 16$
GS \# 16-0107

Normal Pressure (psf)

Sample Location : B-2
Depth : \qquad $\gamma_{\mathrm{d}}=114.6 \mathrm{pcf}$

Material \qquad
feet
$\omega_{1}=\quad 12.6 \%$
$\omega_{f}=14.4 \%$

12870 Panama
Los Angeles, California
PHONE 818-500-9533 FAX 878-500-0134

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-1
DEPTH :	12.5
USCS CLASSIFICATION :	SC

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-1
DEPTH :	32.5
USCS CLASSIFICATION :	SP

GEOSYSTEMMS, Inc. ENVIRONMENTAL, ENGINEERING-GEOLOGY AND GEOTECHINICAL ENGINEERINC 545 VICTORY BLVD., 2ND FLR., GI.ENDALE, CA 91201-9240	PARTICAL SIZE ANALYSIS 12870 Panama Street Los Angeles, California			
PHONE 818-500-9533 FAX 818-500-0134	Date: April, 2016	GS 16-0107	PLATE	SV-2

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-2
DEPTH :	16
USCS CLASSIFICATION : feet	

GEOSYSTEMMS, Inc. ENVIRONMENTAL, ENGINEERING-GEOLOGY AND GEOTECI-INICAL ENGINEERING 1545 VICTORY BLVD., 2ND FLR., GI.ENDALE, CA 91201-9240 PHONE 818-500-9533 FAX 818-500-0134	PARTICAL SIZE ANALYSIS 12870 Panama Street Los Angeles, California					
	Date:	April, 2016		16-0107	PLATE	SV-3

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-2
DEPTH :	$\mathbf{2 6}$
USCS CLASSIFICATION :	SP

GEOSYSTEMMS, Inc. ENVIRONMENTAL, ENGINEERING-GEOLOCY AND GEOTECHINICAL ENGINEERING 45 VICTORY BLVD., 2ND FLR., GLENDALE, CA 91201-9240	PARTICAL SIZE ANALYSIS 12870 Panama Street Los Angeles, California					
PHONE 818-500-9533 FAX 818-500-0134	Date:	April, 2016	GS	16-0107	PLATE	SV-4

PARTICLE SIZE ANALYSIS

| SAMPLE LOCATION : | B-2 |
| ---: | :---: | :---: |
| DEPTH : | 36 |
| USCS CLASSIFICATION : | CL/SC |

GEOSYSTEMS, Inc. ENVIRONMENTAL, ENGINEERING-GEOLOCY AND GEOTECHINICAL ENGINEERING 5 VICTORY BLVD., 2ND FLR., GI.ENDALE, CA 91201-9240	PARTICAL SIZE ANALYSIS 12870 Panama Street Los Angeles, California				
18-500-9533 FAX 818-500-0134	Date:	April, 2016	GS 16-0107	PLATE	SV-5

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-2
DEPTH :	46
USCS CLASSIFICATION : feet	
	SP

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-3
DEPTH :	20
USCS CLASSIFICATION :	CL

PARTICAL SIZE ANALYSIS				
12870 Panama Street				
Los Angeles, California				

PARTICLE SIZE ANALYSIS

GEOSYSTERMS, Inc.
ENVIRONMENTAL, ENGINEERING-GEOLOGY AND GEOTECHINICAL ENGINEERING 1545 VICTORY BLVD., 2ND FLR., GLENDALEE, CA 91201-9240

PHONE 818-500-9533 FAX 818-500-0134

Los Angeles, California
Date: April, 2016 \quad GS 16-0107 \quad PLATE SV-10

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-3
DEPTH :	50
USCS CLASSIFICATION :	SP

GEOSYSTERMS, Inc. ENVIRONMENTAL, ENGINEERING-GEOLOCY AND CEOTECHNICAL ENCINEERINC 45 VICTORY BLVD., 2ND FLR., GLENDALE, CA 91201-9240	PARTICAL SIZE ANALYSIS 12870 Panama Street Los Angeles, California					
3 FAX 818-500-0134	Date:	April, 2016		16-0107	PLATE	SV-11

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-3
DEPTH :	$\mathbf{6 0}$
USCS CLASSIFICATION :	SP

GEOSYSTENMS, Inc. ENVIRONMENTAL, ENGINEERING-GEOLOGY AND GEOTECHNICAL ENGINEERINC 45 VICTORY BLVD, 2ND FLR., GLENDALE, CA $97201-9240$	PARTICAL SIZE ANALYSIS 12870 Panama Street Los Angeles, California				
NE 818-500-9533 FAX 818-500-01	Date:	April, 2016	GS 16-0107	PLATE	SV-12

PARTICLE SIZE ANALYSIS

SAMPLE LOCATION :	B-3
DEPTH :	70
USCS CLASSIFICATION :	SP

ENVIRONMENTAL, ENGINEERING-GEOLOGY AND GEOTECHINICAL ENGINEERINC
1545 VICTORY BLVD., $2 N D$ FLR., GLENDALE, CA 97201 -9240
PHONE 818-500-9533 FAX 818-500-0134

PARTICAL SIZE ANALYSIS

12870 Panama Street
Los Angeles, California

12870 Panama Street				
Los Angeles, California				
	April, 2016	GS 16-0107	PLATE	SV-13

APPENDIX C

CPT Logs, Liquefaction and Dynamic Settlement Analysis

Cone Penetration Testing Procedure (CPT)

Gregg Drilling carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, Figure CPT.

The cone takes measurements of tip resistance $\left(q_{c}\right)$, sleeve resistance $\left(f_{s}\right)$, and penetration pore water pressure $\left(u_{2}\right)$. Measurements are taken at either 2.5 or 5 cm intervals during penetration to provide a nearly continuous profile. CPT data reduction and basic interpretation is performed in real time facilitating onsite decision making. The above mentioned parameters are stored electronically for further analysis and reference. All CPT soundings are performed in accordance with revised ASTM standards (D 5778-12).

The 5 mm thick porous plastic filter element is located directly behind the cone tip in the u_{2} location. A new saturated filter element is used on each sounding to measure both penetration pore pressures as well as measurements during a dissipation test (PPDT). Prior to each test, the filter element is fully saturated with oil under vacuum pressure to improve accuracy.

When the sounding is completed, the test hole is backfilled according to client specifications. If grouting is used, the procedure generally consists of pushing a hollow tremie pipe with a "knock out" plug to the termination depth of the CPT hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized.

Figure CPT

Gregg $15 \mathrm{~cm}^{2}$ Standard Cone Specifications

Dimensions		
Cone base area	$15 \mathrm{~cm}^{2}$	
Sleeve surface area	$225 \mathrm{~cm}^{2}$	
Cone net area ratio	0.80	
Specifications		
Cone load cell		
Full scale range	$180 \mathrm{kN} \mathrm{(20} \mathrm{tons)}$	
Overload capacity	150%	
Full scale tip stress	$120 \mathrm{MPa} \mathrm{(1,200} \mathrm{tsf)}$	
Repeatability	$120 \mathrm{kPa}(1.2 \mathrm{tsf})$	
Sleeve load cell		
Full scale range	$31 \mathrm{kN} \mathrm{(3.5} \mathrm{tons)}$	
Overload capacity	150%	
Full scale sleeve stress	$1,400 \mathrm{kPa}(15 \mathrm{tsf})$	
Repeatability	$1.4 \mathrm{kPa}(0.015 \mathrm{tsf})$	
Pore pressure transducer		
Full scale range	$7,000 \mathrm{kPa}(1,000 \mathrm{psi})$	
Overload capacity	150%	
Repeatability	$7 \mathrm{kPa}(1 \mathrm{psi})$	

Note: The repeatability during field use will depend somewhat on ground conditions, abrasion, maintenance and zero load stability.

Cone Penetration Test Data \& Interpretation

The Cone Penetration Test (CPT) data collected are presented in graphical and electronic form in the report. The plots include interpreted Soil Behavior Type (SBT) based on the charts described by Robertson (1990). Typical plots display SBT based on the non-normalized charts of Robertson et al (1986). For CPT soundings deeper than 30 m , we recommend the use of the normalized charts of Robertson (1990) which can be displayed as SBTn, upon request. The report also includes spreadsheet output of computer calculations of basic interpretation in terms of SBT and SBTn and various geotechnical parameters using current published correlations based on the comprehensive review by Lunne, Robertson and Powell (1997), as well as recent updates by Professor Robertson (Guide to Cone Penetration Testing, 2015). The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg Drilling \& Testing Inc. does not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and does not assume any liability for use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software. Some interpretation methods require input of the groundwater level to calculate vertical effective stress. An estimate of the in-situ groundwater level has been made based on field observations and/or CPT results, but should be verified by the user.

A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface.

Note that it is not always possible to clearly identify a soil type based solely on q_{t}, f_{5}, and u_{2}. In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the correct soil behavior type.

ZONE		SET	
1			Sensitive, fine grained
2			Organic materials
3			Clay
4			Silty clay to clay
5			Clayey silt to silty clay
6			Sandy silt to clayey silt
7			Silty sand to sandy silt
8			Sand to silty sand
9			Sand
10			Gravely sand to sand 11
12		Very stiff fine grained*	
*over consolidated or cemented			

Figure SBT (After Robertson et al., 1986) - Note: Colors may vary slightly compared to plots

Cone Penetration Test (CPT) Interpretation

Gregg uses a proprietary CPT interpretation and plotting software. The software takes the CPT data and performs basic interpretation in terms of soil behavior type (SBT) and various geotechnical parameters using current published empirical correlations based on the comprehensive review by Lunne, Robertson and Powell (1997). The interpretation is presented in tabular format using MS Excel. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg does not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

The following provides a summary of the methods used for the interpretation. Many of the empirical correlations to estimate geotechnical parameters have constants that have a range of values depending on soil type, geologic origin and other factors. The software uses 'default' values that have been selected to provide, in general, conservatively low estimates of the various geotechnical parameters.

Input:

$1 \quad$ Units for display (Imperial or metric) (atm. pressure, $p_{a}=0.96$ tsf or 0.1 MPa)
2 Depth interval to average results (ft or m). Data are collected at either 0.02 or 0.05 m and can be averaged every 1,3 or 5 intervals.
Elevation of ground surface (ft or m)
Depth to water table, z_{w} (ft or m) - input required
Net area ratio for cone, a (default to 0.80)
Relative Density constant, $C_{D r}$ (default to 350)
Young's modulus number for sands, α (default to 5)
Small strain shear modulus number
a. for sands, S_{G} (default to 180 for $\mathrm{SBT}_{\mathrm{n}} 5,6,7$)
b. for clays, C_{G} (default to 50 for $\mathrm{SBT}_{n} 1,2,3 \& 4$)
$9 \quad$ Undrained shear strength cone factor for clays, N_{kt} (default to 15)
10 Over Consolidation ratio number, $\mathrm{k}_{\text {ocr }}$ (default to 0.3)
11 Unit weight of water, (default to $\gamma_{w}=62.4 \mathrm{lb} / \mathrm{ft}^{3}$ or $9.81 \mathrm{kN} / \mathrm{m}^{3}$)

Column	
1 Depth, $z,(\mathrm{~m})-\mathrm{CPT}$ data is collected in meters 2 Depth (ft) 3 Cone resistance, $\mathrm{q}_{\mathrm{c}}(\mathrm{tsf}$ or MPa$)$ 4 Sleeve resistance, $\mathrm{f}_{\mathrm{s}}(\mathrm{tsf}$ or MPa$)$ 5 Penetration pore pressure, $\mathrm{u}(\mathrm{psi}$ or MPa$)$, measured behind the cone (i.e. $\left.\mathrm{u}_{2}\right)$ 6 Other - any additional data 7 Total cone resistance, $\mathrm{q}_{\mathrm{t}}(\mathrm{tsf}$ or MPa)	

Notes:

1 Soil Behavior Type (non-normalized), SBT (Lunne et al., 1997 and table below)

2 Unit weight, γ either constant at 119 pcf or based on Non-normalized SBT (Lune et al., 1997 and table below)

3 Soil Behavior Type (Normalized), SBT ${ }_{n}$
Lone et al. (1997)
$4 \quad S B T_{n}$ Index, I_{c}

$$
I_{c}=\left(\left(3.47-\log Q_{t 1}\right)^{2}+\left(\log F_{r}+1.22\right)^{2}\right)^{0.5}
$$

$5 \quad$ Normalized Cone resistance, Q_{tn} (n varies with Ic)
$\mathrm{Q}_{\mathrm{tn}}=\left(\left(\mathrm{q}_{\mathrm{t}}-\sigma_{\mathrm{vo}}\right) / \mathrm{pa}\right)\left(\mathrm{pa} /\left(\sigma_{\mathrm{vo}}\right)^{\mathrm{n}}\right.$ and recalculate I_{c}, then iterate:

When $I_{c}<1.64, \quad n=0.5$ (clean sand)
When $I_{c}>3.30$,
$n=1.0$ (clays)
When $1.64<I_{c}<3.30, \quad n=\left(I_{c}-1.64\right) 0.3+0.5$
Iterate until the change in $n, \Delta n<0.01$

Equivalent SPT N_{60}, blows/ft Lune et al. (1997)

$$
\frac{\left(\mathrm{q}_{1} / \mathrm{p}_{\mathrm{a}}\right)}{\mathrm{N}_{60}}=8.5\left(1-\frac{\mathrm{I}_{\mathrm{c}}}{4.6}\right)
$$

8
Equivalent SPT $\left(N_{1}\right)_{60}$ blows $/ \mathrm{ft} \quad\left(N_{1}\right)_{60}=N_{60} C_{N}$
where $C_{N}=\left(p a / \sigma^{\prime}{ }_{v o}\right)^{0.5}$

9
Relative Density, D_{r} (\%) Only SB T 5 5, 6, 7 \& 8

$$
D_{r}^{2}=Q_{t n} / C_{D r}
$$

Show ' N / A^{\prime} in zones $1,2,3,4 \& 9$
$10 \quad$ Friction Angle, $\phi^{\prime},($ degrees $) \quad \tan \phi^{\prime}=\frac{1}{2.68}\left[\log \left(\frac{\mathrm{q}_{\mathrm{c}}}{\sigma^{\prime}{ }^{\prime}}\right)+0.29\right]$
Only SB Tn 5, 6, 7 \& 8
Show' N / A^{\prime} in zones $1,2,3,4$ \& 9

11

12 Small strain shear modulus, Go
a. $\mathrm{G}_{0}=\mathrm{S}_{\mathrm{G}}\left(\mathrm{q}_{\mathrm{t}} \sigma_{\text {vo }}^{\prime} \mathrm{pa}\right)^{1 / 3} \quad$ For $S B T_{n} 5,6,7$
b. $G_{0}=C_{G} q_{t}$

For $S B T_{n} 1,2,3 \& 4$
Show ' N / A^{\prime} 'in zones $8 \& 9$

13
Undrained shear strength, $s_{u} \quad s_{u}=\left(q_{t}-\sigma_{v o}\right) / N_{k t}$ Only SB T $1,2,3,4$ \& $9 \quad$ Show ' N / A^{\prime} in zones 5, 6, 7 \& 8

14 Over Consolidation ratio, OCR
Only SET 1, 2, 3, 4 \& 9
$E_{5}=\alpha q_{t}$
Show ' N / A^{\prime} in zones 1, 2, 3, 4 \& 9

Young's modulus, E_{s} Only SET 5, 6, 7 \& 8

OCR $=k_{\text {ocr }} Q_{\text {t } 1}$
Show ' N / A^{\prime} in zones $5,6,7 \& 8$

The following updated and simplified SBT descriptions have been used in the software:

SBT Zones

1 sensitive fine grained
2 organic soil
3 clay
4 clay \& silty clay
5 clay \& silty clay
6 sandy silt \& clayey silt

SET ${ }_{n}$ Zones

1 sensitive fine grained
2 organic soil
3 clay
4 clay \& silty clay

7	silty sand \& sandy silt	5	silty sand \& sandy silt 8
sand \& silty sand	6	sand \& silty sand	

Track when soils fall with zones of same description and print that description (i.e. if soils fall only within SBT zones 4 \& 5, print 'clays \& silty clays')

Estimated Permeability (see Lunne et al., 1997)

SAT $_{n}$	Permeability $(\mathrm{ft} / \mathrm{sec})$	$(\mathrm{m} / \mathrm{sec})$
1	3×10^{-8}	1×10^{-8}
2	3×10^{-7}	1×10^{-7}
3	1×10^{-9}	3×10^{-10}
4	3×10^{-8}	1×10^{-8}
5	3×10^{-6}	1×10^{-6}
6	3×10^{-4}	1×10^{-4}
7	3×10^{-2}	1×10^{-2}
8	3×10^{-6}	1×10^{-6}
9	1×10^{-8}	3×10^{-9}

Estimated Unit Weight (see Lunne et al., 1997)

SBT	Approximate Unit Weight $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$	$\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
1	111.4	17.5
2	79.6	12.5
3	111.4	17.5
4	114.6	18.0
5	114.6	18.0
6	114.6	18.0
7	117.8	18.5
8	120.9	19.0
9	124.1	19.5
10	127.3	20.0
11	130.5	20.5
12	120.9	19.0

|-97

O.
Col 13i
Effective
overburden
stress, σ 'v (tsf) ere $={ }^{2} 8$

0.000
0.000
0.000

8
8
0
0
0
0
0
0

| :e |
| :--- | :--- |
| :ya0 | | Assumed depth of wate |
| :--- |
| Net area ratio of cone: |
| Unit weight of water: |
| Relative density constant |
| Yount modus |

$\frac{\bar{N}}{\bar{O}}$	
$\frac{\bar{i}}{\overline{3}}$	
$\frac{\overline{2}}{\overline{3}}$	$\begin{aligned} & 2 \\ & \frac{2}{5} \\ & \frac{0}{0} \\ & 3 \\ & 0 \\ & 5 \end{aligned}$

\bar{a}	\leftarrow
$\overline{0}$	分

它
Other

4
(151)
5 b

듬
등
ㄷ N M O

$\frac{\overline{\mathrm{N}}}{\overline{\mathrm{O}}}$			$\begin{array}{ccc} 5 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \bar{\circ} \\ \hline 0 & \overline{0} \\ \hline 0 & 0 \\ \hline \end{array}$	$\overline{\mathbf{O}} \mathbf{0} \mathbf{N}$		NO	$\begin{array}{l\|l} 5 \\ \hline 0 . \\ \hline 0 \end{array}$	$\begin{array}{\|c\|c} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0} \end{array}$	$\begin{array}{l\|l} \substack{0 \\ 0 \\ 0 \\ 0 \\ \hline \\ \hline} \end{array}$	3	$\begin{array}{ll} \mathbb{O} \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$				$\overline{\mathbf{O}} \overline{\mathbf{O}}$	$\overline{0}$	$\begin{aligned} & \overline{0} \\ & \mathbf{0} \end{aligned}$	Co	\mathbf{O}	5	$\begin{aligned} & \overline{0} \\ & \hline \mathbf{0} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	8	O	8		80	\％	8	O			O		88		O	8	
$\frac{i n}{\overline{3}}$				$\begin{array}{ccc} 8 \\ 0 \\ 0 \\ \hline \end{array}$	$\underset{\sim}{\infty}$		$\begin{array}{cc} \text { N } \\ \text { Ni } \\ \text { M } \\ \hline \end{array}$			べ	¢	令	－	\mathfrak{c}	No	¢	$\stackrel{\sim}{\square}$	$\stackrel{0}{\sim}$	N－	$\stackrel{\sim}{\text { n }}$	¢	$\stackrel{\text { L }}{\text { N }}$	4	－	\bigcirc	${ }_{0}$		－	${ }_{0}$	ल	O	\％		$\stackrel{N}{N}$			\pm	¢	\％	－
$\frac{\overline{7}}{\overline{3}}$					$\begin{gathered} n \\ \underset{N}{N} \\ \underset{N}{N} \\ \underset{N}{N} \\ \hline \end{gathered}$				$\begin{array}{l\|l} \substack{n \\ \infty \\ 0 \\ 0 \\ 0} \\ \hline \end{array}$	$\stackrel{\infty}{\infty} \underset{\sim}{\circ}\|\underset{\infty}{\infty}\|$		$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		\mathfrak{i}		$\begin{array}{l\|r} N \\ 0 \\ 0 \\ \end{array}$		$\left\{\begin{array}{l} 0 \\ 0 \\ \infty \end{array}\right.$		$\begin{gathered} 0 \\ \stackrel{N}{N} \\ \underset{N}{N} \end{gathered}$	迢	$\begin{aligned} & \text { y } \\ & \text { y } \end{aligned}$	$\frac{ㅇ ㅡ ㅇ ~}{\infty}$		－	N			?	N	©	$\begin{gathered} \text { N } \\ \underset{\sim}{\infty} \end{gathered}$		N	8		$\underset{\sim}{m}$	0	¢	－8
$\frac{\overline{3}}{\overline{3}}$				$\begin{array}{llll} 0 & \mathbf{0} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0 \\ 0 & 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{array}{cc} \infty & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			$\begin{gathered} m \\ \\ 0 \end{gathered} \underset{\sim}{N}$	NN	\hat{N}		8		$$		180	$\frac{m}{\infty}$		－		$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		\pm	${ }_{6}$				4	4	4		－	－	0	ग	O		$\stackrel{-}{-}$
$\frac{\stackrel{\rightharpoonup}{3}}{\overline{0}}$					$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$				$\underset{\sim}{\square}$	$\underset{i}{\infty}$		$\frac{8}{2}$		$\frac{8}{6} \frac{8}{\square}$	かio	N		여N	－	0	No	－	$\frac{N}{5}$	N		¢	3	\mathfrak{N}	∞	©		－	$\stackrel{10}{7}$	＋	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & \infty \\ & \dot{g} \\ & \dot{0} \end{aligned}$	$\stackrel{\circ}{\circ}$
$\overline{\overline{0}}$		0_{0}^{0}			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{cc} 20 & 0 \\ & 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{array}{l\|l} 2 \\ \\ \\ \\ \hline \end{array}$		$\begin{aligned} & \text { On } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		o	$\begin{array}{ll} 9 \\ \hline 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		Bo	N	0	0	8	${ }^{\infty}$	$\underset{\sim}{\infty}$		\circ	$\stackrel{N}{N}$		Nị Ǹ Nָ		∞	of	잉		－	N	fo		\mathfrak{B}		－
$\frac{\overline{ }}{\overline{0}}$	2 5 5 5 5 5 5				$\stackrel{n}{\sim} \stackrel{n}{2}$					$\stackrel{4}{\square} \underset{\sim}{\mp}$		둔	듄	$\stackrel{1}{7}$		$\frac{n}{2}$	0	12	18	$\frac{10}{7} \frac{18}{7}$	$\stackrel{5}{5}$	Ω		F	－	$\stackrel{\sim}{*}$		$\stackrel{\text { N }}{\sim}$	～	N	$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{\sim}$		N	N		N	N		
$\frac{\overline{9}}{\overline{3}}$	$\stackrel{\leftarrow}{8}$	－	0 －	－ω	$\bigcirc \omega$	0 Ln	\cdots	\％ 0		－m	m	m	$\cdots \nabla$	\bigcirc	n 4		$\bigcirc 0$	ค	\checkmark	15	¢	ω	N	N	－	os	∞	0	0	a	∞	σ		응	은		은	－		
$\left\lvert\, \frac{\bar{\omega}}{\overline{0}}\right.$	4			$\begin{array}{ccc} \infty \\ 0 \\ 0 \\ \hline \end{array}$	$\stackrel{N}{\underset{\sim}{\sim}} \underset{\sim}{\underset{\sim}{2}}$	－		\bigcirc		$\begin{array}{c\|c} N \\ \text { Ni } \\ \text { U } \end{array}$	U	$\xrightarrow[+]{4}$	$\stackrel{9}{9}$	－		$\stackrel{n}{m} \underset{\sim}{c}$	N	－		$\stackrel{\sim}{\sim}$	\％	$\stackrel{9}{\sim}$	$\stackrel{\sim}{+}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	N		－	0	M	－	$\stackrel{\infty}{\square}$		N	0	${ }_{0}^{\circ}$		$\stackrel{n}{0}$		
$\stackrel{i}{\bar{\circ}}$					$\begin{array}{lll} \infty & 0 \\ \stackrel{N}{\dot{j}} \\ \dot{j} \end{array}$		$\begin{aligned} & \text { N } \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$			$\begin{array}{ll} N \\ \infty \\ \infty & \underset{\sim}{2} \end{array}$	\bigcirc	$\mathfrak{\infty}$			$\stackrel{\rightharpoonup}{2}$	$\stackrel{\leftrightarrow}{\dot{\sim}} \underset{\sim}{\dot{T}} \underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\rightharpoonup}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty}$	－	$\begin{gathered} \underset{\sim}{8} \\ \dot{\sim} \end{gathered}$		O	in	$\begin{aligned} & n \\ & N \\ & 0 \end{aligned}$	$\stackrel{\sim}{n}$		N			$\stackrel{\sim}{2}$	8	\％	－		\％	is	$\overline{0}$	析			
$\frac{\overline{0}}{0}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{N}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$																																							
$\overline{i n}$				$\underset{\sim}{\underset{\sim}{w}} \underset{\sim}{\infty} \underset{\sim}{N}$							$\underset{\sim}{\underset{\sim}{\underset{\sim}{2}}} \underset{\sim}{\underset{\sim}{N}}$	＋	$\stackrel{0}{N}$	－	$\stackrel{n}{\underset{\sim}{n}} \underset{\sim}{\sim}$			Non	$\begin{gathered} 7 \\ \substack{4 \\ \vdots \\ 0} \end{gathered}$		－	$\stackrel{i}{\infty}$	$\frac{9}{7}$	$\stackrel{\leftrightarrow}{\circ}$	N	$\stackrel{\Gamma}{\sim}$	－	N	\mathfrak{f}		$\stackrel{3}{4}$	\checkmark			m		$\stackrel{\infty}{\infty} .$			\％
$\overline{\overline{3}}$	4				$\begin{aligned} & \text { N } \\ & \\ & \mathbf{N} \\ & \mathbf{N} \\ & \hline \mathbf{N} \end{aligned}$		0	$\stackrel{y}{4}$		$\begin{array}{c\|c} N \\ \\ 0 \\ \hline \end{array}$	$\stackrel{\Gamma}{\Gamma} \underset{0}{\stackrel{\rightharpoonup}{\sigma}} \underset{\sim}{\stackrel{\rightharpoonup}{m}}$	兑	$$		$\begin{gathered} \underset{\sim}{\underset{y}{2}} \\ \underset{0}{2} \end{gathered}$	$\begin{array}{l\|l} 0 \\ 0 \\ 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		¢	$\begin{aligned} & \mathbf{S}_{2} \\ & 0 \end{aligned}$	No	O	荷	－	\％	$\stackrel{\sim}{\sim}$	¢	¢	N		N	－	\bigcirc		m	N	$\underset{\sim}{\underset{\sim}{\mathrm{N}}}$	0			
$\overline{\overline{3}}$		$\because \underset{y y y y y y y}{\mid c}$								$\begin{array}{c\|c} \infty \\ \vdots \\ \vdots \\ \infty \\ \infty \\ \hline \end{array}$					n 0 0 0			9 8	$\begin{gathered} \underset{\infty}{N} \\ \underset{\sim}{\mathrm{~N}} \\ \hline \end{gathered}$				$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{n}{n} \\ & \\ & \hline \end{aligned}$		$\stackrel{\text { N }}{\text { N }}$	N				\％	$\stackrel{\sim}{N}$		N	＋					
$\frac{\bar{x}}{\overline{0}}$								$\begin{gathered} 5 \\ \\ \\ \\ \hline \end{gathered}$				$\begin{aligned} & \text { 을 } \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$		¢	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\top} \end{gathered}$		N	¢	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \infty \end{gathered}$	¢	N－	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & \underset{i}{2} \end{aligned}$	$\begin{gathered} \mathrm{m} \\ \mathrm{C} \\ \stackrel{i}{\mathrm{~N}} \end{gathered}$			$\stackrel{\sim}{\sim}$	容			\％	N	กั่		¢	－	సi่		$\begin{array}{\|c} \underset{\sim}{N} \\ \underset{\sim}{c} \\ \end{array}$		
$\overline{\bar{\circ}}$					$\begin{array}{l\|l} \hline 8 \\ \hline 8 \\ \text { M } \\ \hline 0 \\ \hline \end{array}$	0	\mathfrak{j}	$\underset{\sim}{c} \underset{\sim}{\sim}$		$$		$\begin{gathered} 8 \\ \underset{\sim}{8} \\ \dot{\sim} \end{gathered}$			$\frac{8}{4}$	$\stackrel{\substack{0 \\ \hline \\ i \\ \hline \\ \hline}}{ }$		\％	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{c\|c} 88 \\ \text { Ci } \\ \text { in } \\ \hline 0 \end{array}$		$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	$\stackrel{8}{-}$	$\begin{gathered} \mathrm{O} \\ \underset{N}{0} \end{gathered}$	$\begin{gathered} 8 \\ \hline \end{gathered}$	8	$\begin{gathered} 0 \\ \hline 0 \\ \hline \end{gathered}$	$\begin{aligned} & 8 \\ & \hline \\ & 0 \end{aligned}$		8	－	¢			0	8				

$\frac{0}{\overline{0}}$				0.8	$\begin{aligned} & 888 \\ & 50 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 8 \\ 0 & 8 \\ 0 \end{array}$	8.8	$\begin{array}{l\|l\|} \hline 8 \\ \hline 8 \\ \hline \end{array}$	8	$\begin{aligned} & 8 \\ & \hline 0 \\ & 0 \end{aligned}$	88	8.8		$\begin{array}{l\|l} 8 \\ \hline 0 \\ \hline 0 \\ \hline 0 \end{array}$	80			8	8	8	8	O		O	88	8	－	8	0	8	8	O	8	8		8	88	8	8		O	
$\left\|\frac{i \bar{n}}{\overline{0}}\right\|$				$\begin{array}{l\|l} \mathbf{n} \\ 0 \\ 0 \\ 0 & 0 \end{array}$		OR	$\begin{array}{c\|c} \hline & \ddots \\ 0 & 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & \hline 8.0 \\ & \hline 0 . \\ & \hline 0 . \end{aligned}$	${ }_{0}^{\infty}$	下		$\begin{array}{ll} n & 5 \\ 0 \\ 0 & 0 \\ 0 \end{array}$		$\begin{array}{c\|c} 18 \\ 0 \\ 0 \\ \hline \end{array}$		$\begin{gathered} \mathbb{Z} \\ 0 \end{gathered}$	0	${ }^{\circ}$	${ }^{3}$	－	$\stackrel{\sim}{0}$	－		\％	－	\bigcirc	－	¢	${ }_{0}^{\infty}$	N	べ	${ }^{\infty}$	\％	ल		営	－	过	\％	$\begin{aligned} & n \\ & i \\ & 0 \end{aligned}$	0	$\stackrel{\text { a }}{\substack{\circ \\ 0}}$
$\left\|\frac{9}{\overline{0}}\right\|$										$\begin{gathered} 0 \\ \underset{\sim}{\mathrm{~N}} \\ \text { N } \end{gathered}$		$\begin{array}{ll} \overline{0} & 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$				$\begin{aligned} & \mathrm{N} \\ & \text { N } \\ & \text { O } \end{aligned}$	5 $\stackrel{5}{2}$ $\stackrel{0}{5}$	$\begin{aligned} & 8 \\ & \vdots \\ & i \\ & i \end{aligned}$		$\underset{\sim}{9}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	，			\％	O			$\stackrel{-}{N}$	N	תִ	－	－	$\begin{aligned} & \underset{8}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{N}{N}$				$\begin{aligned} & \infty \\ & \substack{\infty \\ \vdots \\ \vdots \\ \\ \\ \hline} \end{aligned}$		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \text { No } \end{aligned}$
$\left.\frac{\overline{2}}{\overline{0}} \right\rvert\,$		気				$\stackrel{n}{2}_{7}^{2}$	$\stackrel{\leftrightarrow}{f}$	$\underset{\sim}{c}$	$\mathfrak{\infty}$	$\mathscr{\sim}$	앋 읃	$\underset{\sim}{\mathrm{N}} \underset{\sim}{\mathrm{~N}}$			Nio	$\underset{\text { N̦ }}{\text { N̦ }}$	N్రీ		Bo	N	－	¢	\％	O్ల	－	O	$\stackrel{\text { N }}{\sim}$	N		号	－			\％	$\frac{9}{5}$	N			\sqrt{n}	$\underset{\sim}{\sim}$	\mathfrak{m}	$\stackrel{\square}{0}$
$\left\|\frac{\overline{\mathrm{y}}}{\mathbf{O}}\right\|$		象象		$\begin{array}{c\|c} \hat{N} \\ \\ 0 \\ 0 & 0 \\ 0 \end{array}$					$\left\lvert\, \begin{gathered} \infty \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & 5 \\ & 0 \\ & 0 \end{aligned}$			N	先	$\stackrel{\text { V }}{ }$	$\begin{aligned} & \mathbb{N} \\ & \hline \\ & 0 \\ & 0 \end{aligned}$				－	${ }_{\sim}$	$\begin{aligned} & \mathbf{m} \\ & \infty \\ & 0 \end{aligned}$	筞	8	$\stackrel{\sim}{\infty}$	${ }^{1}$		$\frac{\varphi}{6}$	$\begin{aligned} & 0 \\ & \hline \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			N	$\mathbf{c}_{\substack{\infty \\ 0 \\ 0 \\ 0}}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{8}{8}$
$\left\lvert\, \frac{\overline{5}}{\overline{8}}\right.$		i_{i}^{i}		$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{-}{r} \\ \hline \end{gathered}$			$\underset{N}{N} \cdot \stackrel{1}{n}$	$\stackrel{\substack{c \\ \sim}}{\stackrel{2}{2}}$	\mathfrak{N}	$\stackrel{\substack{\text { p }}}{ }$						$\begin{aligned} & \text { U } \\ & \underset{O}{O} \\ & \sim \end{aligned}$			－	，	－	$\frac{0}{i}$			$\stackrel{3}{\text { N }}$	ω	\％	N	¢	g	$\stackrel{y}{4}$	－		N	$\stackrel{4}{\text { i }}$	¢	这	－	？	\mathfrak{l}	$\begin{aligned} & 8 \\ & \substack{8 \\ \stackrel{y}{n} \\ i} \end{aligned}$	$\stackrel{\bar{T}}{\bar{\sim}}$
$\frac{\overline{0}}{\overline{0}}$	5	중		$\underset{\sim}{\mathrm{N}}$	－	N	N	N	N	N			－	N	$\stackrel{\sim}{\mathrm{N}}$	N	N	$\stackrel{N}{\mathrm{~N}}$		N		N			－	へ	N	N	へ	N	N			N	N	N	$\stackrel{\text { N }}{\sim}$	$\stackrel{\text { N }}{\sim}$	N		N	$\stackrel{\text { N }}{\sim}$
$\frac{\bar{\alpha}}{\bar{\circ}}$	品		으웅	으응	으으움	으응	으응	으으	안	응	응	응	응앙	오융	으응		앙	앙	\bigcirc		앙	응		？	으웅	안	응	암		은	앙	앙	안	응	은	은	ㅇa	－${ }^{\text {은 }}$	온		은	os
$\frac{\bar{\infty}}{\overline{0}}$	$\stackrel{4}{4}$	Oom		$\begin{array}{l\|l} n \\ \\ 0 \\ 0 & 0 \\ 0 \end{array}$		$\begin{array}{\|c\|c} 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \hline \end{aligned}$	$\begin{array}{cc} 8 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	N	0_{0}^{0}	${ }_{0}^{\sim}$		\bigcirc	$\stackrel{\square}{\square}$	\＃		O20	O	－	容	－		N	O	\％	$\stackrel{\rightharpoonup}{0}$	O	＋	N	$\stackrel{\sim}{\sim}$	－	\％	－	O	$\begin{gathered} \mathrm{m} \\ \mathrm{~m} \end{gathered}$	$\begin{array}{lll} \bar{n} \\ 0 \\ 0 \\ 0 \end{array}$	Rగయ	$\underset{\sim}{0}$	$\begin{gathered} N \\ N \\ 0 \end{gathered}$		¢
$\left\|\frac{\pi}{\overline{0}}\right\|$	ঢ	$\stackrel{4}{4}=\stackrel{8}{8}$							$\begin{gathered} \stackrel{u}{n} \\ \underset{\sim}{\sim} \end{gathered}$	$\begin{aligned} & n \\ & \substack{n \\ 0 \\ n} \end{aligned}$								$\begin{aligned} & \infty \\ & \infty \\ & \dot{\infty} \\ & \vdots \end{aligned}$	$\begin{aligned} & 9 \\ & 0.0 \\ & 0 \\ & \end{aligned}$		品	W				\％	$\stackrel{\text { ¢ }}{\substack{\text { N } \\ \sim \\ \sim}}$	$\begin{gathered} 9 \\ 0 \\ \infty \\ \frac{\infty}{n} \end{gathered}$	－	$\stackrel{+}{+}$	$\stackrel{\infty}{\square}$	－	ช									＋
$\frac{\bar{o}}{\bar{O}}$																																										
$\left\lvert\, \begin{aligned} & i \overline{0} \\ & \overline{0} \end{aligned}\right.$	$コ$	훙						$\begin{array}{ll} g \\ \underset{\sim}{\circ} \\ \stackrel{y}{0} \\ \hline \end{array}$	N	$\xrightarrow{\frac{\infty}{5}}$	$\stackrel{8}{8}$	$\begin{array}{ccc} \underset{\sim}{N} \\ \underset{\infty}{\infty} \\ \infty \\ \infty \end{array}$	$\begin{array}{c\|c} \infty & 0 \\ 0 & 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c\|c} N_{n} & \infty \\ 0 & 0 \\ 0 \\ \infty & \infty \\ \infty \end{array}$		1		$\begin{aligned} & \hat{n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	\％		$\begin{gathered} \pm \\ \bar{n} \\ \sigma i \end{gathered}$			N	N	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		号	$\stackrel{\text { N}}{\stackrel{N}{\mathrm{~N}}}$		N	$\begin{gathered} n \\ N_{0} \\ \vdots \end{gathered}$		$\begin{gathered} \bar{n} \\ \underset{0}{2} \end{gathered}$	$\begin{aligned} & m 0 \\ & \vdots \\ & \text { oi } \\ & 0 \end{aligned}$			$;$		¢
$\left\|\begin{array}{l} \overline{3} \\ \overline{0} \end{array}\right\|$	4	$\stackrel{\text { Bin }}{\underset{\sim}{N}} \underset{\sim}{N}$		$\begin{array}{l\|l} \infty \\ \underset{\sim}{N} \\ \underset{\sim}{c} \\ \underset{N}{N} \\ \hline \end{array}$				N్ల్ల		$\left\{\begin{array}{l} \bar{o} \\ \vdots \\ \\ \end{array}\right.$	$\stackrel{N}{n}$					$\underset{\substack{m \\ \\ \\ \hline}}{ }$	$\stackrel{\substack{n \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \\ \hline}}{ }$	ल	$\underset{\sim}{\underset{\sim}{u}}$	m	$\stackrel{+}{8}$		$\stackrel{\infty}{0}$			へ̀	$\stackrel{\text { O }}{\substack{\text { N }}}$	$\begin{aligned} & \bar{\infty} \\ & \infty \\ & \infty \end{aligned}$	v	\bigcirc	－	O	－	＋	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { 品 } \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{n}{6}$					
$\left.\frac{\bar{m}}{\overline{0}} \right\rvert\,$		$\text { = } \begin{gathered} \overline{3} \\ \hline \end{gathered}$							$\begin{gathered} \underset{\sim}{\underset{y}{u}} \\ \underset{\sim}{j} \end{gathered}$											5	\％	号	－	只		尔	N		\％	＋	－	$\bar{子}$	＋	－		$\begin{aligned} & \text { N } \\ & \text { d } \\ & \text { y } \end{aligned}$				$\begin{aligned} & \vec{N} \\ & \substack{2 \\ 0 \\ 0 \\ 0} \end{aligned}$	$\begin{aligned} & \underset{G}{\dot{G}} \\ & \dot{N} \\ & \underset{\sim}{y} \end{aligned}$	
$\frac{\overline{0}}{\overline{0}}$		※n		$\stackrel{n}{\substack{\infty \\ \infty \\ \sim \\ \sim}}$					\＃		$\begin{aligned} & \text { o} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{9}{9} \underset{\sim}{q}$				\mathfrak{c}		－	－	¢	M	－	¢		¢	N	$\begin{aligned} & 0 \\ & \\ & \stackrel{n}{2} \\ & \end{aligned}$	\％	－	N	m	－	9	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & \dot{寸} \end{aligned}$							へ
\bar{i}		$\stackrel{c}{0}$		$\begin{array}{ll} 80 \\ 0 \\ 0 & 0 \\ 0 \\ 0 \end{array}$					유N		$\begin{aligned} & 8 \\ & \vdots \\ & 0 \end{aligned}$		$\begin{array}{c\|c} 8 & 0 \\ 08 \\ 0 & 1 \\ 0 & 0 \\ \hline \end{array}$				$\begin{aligned} & 10 \\ & \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{8}{\stackrel{\rightharpoonup}{\circ}}$	－	ㅇ	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{8}{\mathbf{o}}$			－	¢	$\begin{aligned} & 8 \\ & \stackrel{8}{n} \\ & = \\ & \hline \end{aligned}$	－	8	$\stackrel{\stackrel{8}{\circ}}{\stackrel{\circ}{\circ}}$	\％	O	$\begin{aligned} & \mathrm{O} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{2} \\ & \text { in } \end{aligned}$	8 				$\begin{aligned} & \text { O} \\ & \hline \\ & \hline \end{aligned}$	$\stackrel{\square}{\square}$	¢

Col 1 i	Col 2i	Col 3 i	Col 4i	Col 5 i	Col 6 i	Col 7i	Col 8 i	Col 9i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, Y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qt\|	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
13.300	43.635	229.569	3.185	9.372		229.70	1.39	9	124	2.631	1.018	1.613	140.78	1.40	0.00
13.400	43.963	137.766	2.238	9.271		137.90	1.62	8	121	2.651	1.028	1.623	83.36	1.65	0.00
13.500	44.291	51.595	1.399	10.609		51.75	2.70	6	115	2.670	1.039	1.631	30.09	2.85	-0.01
13.600	44.619	39.261	0.914	13.056		39.45	2.32	6	115	2.688	1.049	1.640	22.42	2.49	0.00
13.700	44.948	62.720	1.403	15.212		62.94	2.23	7	118	2.708	1.059	1.649	36.53	2.33	0.00
13.800	45.276	292.522	1.747	21.595		292.83	0.60	10	127	2.729	1.069	1.659	174.83	0.60	0.00
13.900	45.604	464.901	2.724	23.777		465.24	0.59	10	127	2.750	1.080	1.670	276.94	0.59	0.00
14.000	45.932	450.624	3.145	23.387		450.96	0.70	10	127	2.770	1.090	1.681	266.67	0.70	0.00
14.100	46.260	462.540	2.837	23.248		462.87	0.61	10	127	2.791	1.100	1.691	272.02	0.62	0.00
14.200	46.588	470.106	2.114	23.273		470.44	0.45	10	127	2.812	1.110	1.702	274.76	0.45	0.00
14.300	46.916	465.904	2.027	23.488		466.24	0.43	10	127	2.833	1.120	1.713	270.58	0.44	0.00
14.400	47.244	457.233	2.293	23.853		457.58	0.50	10	127	2.854	1.131	1.723	263.87	0.50	0.00
14.500	47.572	449.834	2.480	24.080		450.18	0.55	10	127	2.875	1.141	1.734	257.97	0.55	0.00
14.600	47.900	443.690	2.620	23.790		444.03	0.59	10	127	2.896	1.151	1.745	252.86	0.59	0.00
14.700	48.228	433.336	2.750	23.575		433.68	0.63	10	127	2.917	1.161	1.755	245.42	0.64	0.00
14.800	48.556	448.365	2.647	23.538		448.70	0.59	10	127	2.938	1.172	1.766	252.43	0.59	0.00
14.900	48.885	469.241	2.358	23.411		469.58	0.50	10	127	2.958	1.182	1.777	262.66	0.51	0.00
15.000	49.213	464.678	2.455	23.096		465.01	0.53	10	127	2.979	1.192	1.787	258.53	0.53	0.00
15.100	49.541	446.776	1.898	23.096		447.11	0.42	10	127	3.000	1.202	1.798	247.03	0.43	0.00
15.200	49.869	476.435	1.476	24.042		476.78	0.31	10	127	3.021	1.213	1.808	261.97	0.31	0.00
15.300	50.197	522.881	1.733	23.992		523.23	0.33	10	127	3.042	1.223	1.819	285.95	0.33	0.00
15.400	50.525	546.034	2.043	23.487		546.37	0.37	10	127	3.063	1.233	1.830	296.93	0.38	0.00
15.500	50.853	547.270	1.779	23.286		547.61	0.32	10	127	3.084	1.243	1.840	295.87	0.33	0.00
15.600	51.181	582.925	1.030	24.597		583.28	0.18	10	127	3.105	1.254	1.851	313.43	0.18	0.00
15.700	51.509	592.591	1.980	26.918		592.98	0.33	10	127	3.126	1.264	1.862	316.83	0.34	0.00
15.800	51.837	523.792	2.544	25.594		524.16	0.49	10	127	3.146	1.274	1.872	278.27	0.49	0.00
15.900	52.165	437.798	1.340	24.673		438.15	0.31	10	127	3.167	1.284	1.883	231.00	0.31	0.00
16.000	52.493	378.655	1.393	24.068		379.00	0.37	10	127	3.188	1.295	1.894	198.46	0.37	0.00
16.100	52.822	340.826	2.154	23.513		341.16	0.63	10	127	3.209	1.305	1.904	177.47	0.64	0.00
16.200	53.150	346.728	2.278	23.147		347.06	0.66	10	127	3.230	1.315	1.915	179.55	0.66	0.00
16.300	53.478	365.671	2.222	22.907		366.00	0.61	10	127	3.251	1.325	1.926	188.38	0.61	0.00
16.400	53.806	360.503	2.049	22.642		360.83	0.57	10	127	3.272	1.335	1.936	184.66	0.57	0.00
16.500	54.134	359.471	1.682	22.428		359.79	0.47	10	127	3.293	1.346	1.947	183.11	0.47	0.00
16.600	54.462	358.588	1.109	22.529		358.91	0.31	10	127	3.313	1.356	1.958	181.65	0.31	0.00
16.700	54.790	385.004	1.237	22.655		385.33	0.32	10	127	3.334	1.366	1.968	194.08	0.32	0.00
16.800	55.118	399.373	0.953	19.930		399.66	0.24	10	127	3.355	1.376	1.979	200.27	0.24	0.00
16.900	55.446	391.212	1.486	15.502		391.44	0.38	10	127	3.376	1.387	1.990	195.05	0.38	0.00
17.000	55.774	398.564	2.078	15.490		398.79	0.52	10	127	3.397	1.397	2.000	197.68	0.53	0.00
17.100	56.102	404.550	2.654	15.629		404.78	0.66	10	127	3.418	1.407	2.011	199.60	0.66	0.00
17.200	56.430	402.998	2.727	15.831		403.23	0.68	10	127	3.439	1.417	2.021	197.77	0.68	0.00
17.300	56.759	397.886	1.873	16.045		398.12	0.47	10	127	3.460	1.428	2.032	194.21	0.47	0.00
17.400	57.087	394.187	1.476	16.625		394.43	0.37	10	127	3.481	1.438	2.043	191.38	0.38	0.00
17.500	57.415	403.528	1.509	16.852		403.77	0.37	10	127	3.501	1.448	2.053	194.93	0.38	0.00
17.600	57.743	412.256	1.508	16.940		412.50	0.37	10	127	3.522	1.458	2.064	198.14	0.37	0.00
17.700	58.071	402.970	1.540	17.042		403.22	0.38	10	127	3.543	1.469	2.075	192.64	0.39	0.00
17.800	58.399	398.695	1.603	17.206		398.94	0.40	10	127	3.564	1.479	2.085	189.60	0.41	0.00
17.900	58.727	423.586	1.736	17.458		423.84	0.41	10	127	3.585	1.489	2.096	200.50	0.41	0.00
18.000	59.055	426.393	1.963	17.925		426.65	0.46	10	127	3.606	1.499	2.107	200.81	0.46	0.00
18.100	59.383	441.004	2.425	18.606		441.27	0.55	10	127	3.627	1.509	2.117	206.70	0.55	0.00
18.200	59.711	464.882	2.500	18.694		465.15	0.54	10	127	3.648	1.520	2.128	216.88	0.54	0.00

$\begin{gathered} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{gathered}$				\bigcirc																																									
$\left\lvert\, \begin{aligned} & \tilde{0}_{0}^{0} \\ & \overline{0} \end{aligned}\right.$				$\stackrel{\Gamma}{\mathrm{N}}$																																									
$\frac{\mathrm{i}}{\mathrm{~N}}$		둥		$\stackrel{\substack{4 \\ \underset{\sim}{c} \\ ~}}{ }$																																									
$\left\|\begin{array}{c} \mathbf{0} \\ \stackrel{0}{0} \\ \mathbf{0} \end{array}\right\|$		$\underset{\sim}{9}$	$\stackrel{\rightharpoonup}{\sim} \underset{\sim}{\stackrel{~}{\Sigma}}$		$\underset{\infty}{\infty}$	$\underset{\sim}{\sim}$		$\stackrel{+}{\circ}$		$3 \mathbb{N}$				$\left\lvert\, \begin{array}{\|c} \stackrel{\rightharpoonup}{\mathbf{o}} \\ \underset{\sim}{2} \\ \hline \end{array}\right.$		$\underset{N}{\text { N }}$	$\stackrel{9}{8}$	$\begin{aligned} & \text { O} \\ & \mathbf{\infty} \\ & \hline \end{aligned}$			$\underset{\sim}{\infty}$	$\underset{\infty}{\infty}$		$\underset{y}{2}$	8	$\bar{\square}$	$\stackrel{\sim}{2}$	\％	$\begin{gathered} \underset{\sim}{0} \\ 0 \end{gathered}$	\mathfrak{m}	\mathfrak{N}	0	$\left.\begin{array}{\|l\|l} \infty \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\stackrel{\Sigma}{n}$	$\frac{m}{\underset{~}{c}}$	$\frac{m}{N}$	号	$\stackrel{i}{\circ}$	N	$\begin{aligned} & \infty \\ & \end{aligned}$	$\underset{\sim}{\infty}$	$\stackrel{n}{N}$	\mathfrak{n}	$\stackrel{9}{i}$	
$\left\lvert\, \begin{gathered} i \bar{N} \\ \stackrel{0}{0} \\ \hline \end{gathered}\right.$		$\text { 풍 } \frac{0}{\pi}$	$\stackrel{\circ}{9}$			$\stackrel{-}{¢}$	－	－	－	$\begin{array}{l\|l} 4 \\ 0 \\ 0 & 0 \\ \hdashline \\ \hline \end{array}$				$\stackrel{\sim}{\circ}$	$\stackrel{\infty}{\infty}$		$$	¢	$\frac{\infty}{n}$	$\frac{8}{N}$	Non	N	$\stackrel{\underset{N}{\circ}}{\stackrel{\rightharpoonup}{2}}$	\odot	$\stackrel{\Delta}{0}$	\％		$\underset{y}{q}$	$\underset{\sim}{9}$	$\begin{aligned} & \infty \\ & 0 \\ & \vdots \\ & y \end{aligned}$	y	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$2 \frac{2}{2}$	$\frac{9}{9}$	－	$\stackrel{N}{7}$		\cong	0	$\frac{m}{\omega}$	$\begin{aligned} & 9 \\ & \stackrel{9}{n} \\ & \end{aligned}$	5	$\stackrel{N}{\circ}$	－
$\left\lvert\, \begin{gathered} \bar{y} \\ \mathrm{~N} \\ \mathrm{O} \end{gathered}\right.$			영			$\underset{\sim}{\sim}$	¢ 9	4	\％	ก2	489	88	89	¢8	\％	48	¢ ¢ ¢	\％	\％	9	\％	\％	98		\％	寸	寸	寸	寸	\％	寸	\％	寸	寸	寸	\％	\％	\％	\％	\％	\％	\＃	寸	J	G
$\left\|\begin{array}{c} \bar{N} \\ \overline{0} \end{array}\right\|$			요		M	2\％	8	8	8	8	80	¢ை8	88	か	8	8	88	I	\％	\％	\％	운	\％	∞	※	∞	ゅ	－	－	－	－	－	－	\％	8	－	∞	－	∞	\％	¢	－	8	8	万
$\begin{aligned} & \text { N} \\ & \overline{\mathrm{O}} \end{aligned}$	$\frac{5}{\infty} \stackrel{\circ}{5}$				$\stackrel{-}{\text { N }}$	¢	¢	\％	O	$\stackrel{\bullet}{\bullet}$	N		¢	¢	¢	no	\％	\bigcirc	¢	N	－	$\stackrel{N}{0}$	N	－	N	号	－	－	¢	ベ	－	－	－	F	\％	\％	－		9	－	¢	\％	－	\％	
$\begin{aligned} & \overline{\mathrm{N}} \\ & \overline{\mathrm{O}} \end{aligned}$	$\frac{z}{\mathbf{z}}$					¢ ${ }_{\text {¢ }}^{\text {g }}$	S	No	－	¢	－	¢	N	¢	－	No	¢	O	－	－	$\xrightarrow{\text { N }}$	No	－	－		in		18	n	¢	$\stackrel{\square}{6}$	N	$\overline{\mathrm{S}}$	－	N	8	\％	6	－	\％	$\stackrel{-}{6}$	－	10	¢	N
$\begin{aligned} & \overline{\mathrm{N}} \\ & \overline{\mathrm{O}} \end{aligned}$													¢	7 岂	7 耑 m			$\begin{aligned} & \text { N} \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{n} \end{aligned}$	$\left\lvert\, \begin{gathered} N \\ \vdots \\ u_{0} \\ \text { n } \end{gathered}\right.$												荌	N		\dot{c}		$\left[\begin{array}{c} 7 \\ w \\ u_{0} \\ 0 \\ p \end{array}\right.$	$\begin{gathered} \begin{array}{c} u_{1} \\ 0 \\ 0 \\ m \end{array} \end{gathered}$		\mathfrak{c}		\mathfrak{c}		$\begin{gathered} \mid \\ \underset{~}{4} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} 8 \\ u \\ 0 \\ m \\ m \end{array} \\ \hline \end{gathered}$	
$\frac{\bar{\sigma}}{\overline{3}}$								\mathfrak{n}							¢			嵜	$\begin{gathered} \hat{y} \\ \dot{8} \\ \dot{\sim} \\ \hline \end{gathered}$	－	$\begin{aligned} & 0 \\ & 0 \\ & \dot{\sim} \\ & \stackrel{y}{\sigma} \end{aligned}$	N	m	－	\mathfrak{c}	尔	号	$\begin{aligned} & \infty \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	\mathfrak{c}	－		呙		N	$\stackrel{\leftrightarrow}{\stackrel{1}{\circ}}$	¢	守	N	N	N ¢ N	N	$\stackrel{N}{\stackrel{N}{i}}$	N	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	
－					$\underset{\sim}{\infty}$		$\stackrel{\sim}{\sim}$	89	nem	$\xrightarrow{\sim}$		$\stackrel{\sim}{\square}$		$\xrightarrow{\circ}$	$\stackrel{q}{f}$		$\stackrel{\sim}{\sim}$	¢	$\xrightarrow[\sim]{\sim}$	$\underset{\sim}{\text { d }}$			－		O	－	\％	$\stackrel{\sim}{\sim}$	운	－	$\stackrel{\rightharpoonup}{9}$	m	\％	\％	No	\％	¢	$\underset{\sim}{*}$	\％	$\stackrel{-}{\square}$		19	\＃	－	－
－			－↔ サ	寸＊	10	0.0	0 －	0		－	\bullet－	－ 0	$\bullet \bullet$	\bigcirc	\bullet	－ 0	0 －	－	－		\cdots	\cdots	\odot	co	－	\bigcirc		\circ			¢	，	\bigcirc	ω	ω	\bullet	\bullet		\bullet		\bullet	－	－	\bullet	ω
$\begin{gathered} \overline{\mathrm{y}} \\ \overline{\mathrm{o}} \end{gathered}$	$\begin{aligned} & \stackrel{5}{\mathbf{\circ}} \\ & \stackrel{0}{0} \end{aligned}$												$\begin{aligned} & 8 \stackrel{\infty}{8} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$			$\frac{1}{i}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\{\begin{array}{l} n \\ \infty \\ 0 \\ 0 \\ 0 \end{array}\right.$	$\begin{aligned} & -\infty \\ & \frac{\infty}{i} \\ & \dot{n} \end{aligned}$	号			N		号	$\begin{aligned} & 8 \\ & 0 \\ & \\ & \end{aligned}$	\mathfrak{l}	\mathfrak{c}	$\begin{aligned} & 8 \\ & \substack{2 \\ \dot{n} \\ \dot{n} \\ \hline} \end{aligned}$	$\stackrel{\infty}{\sim}$		N	i＇	筞	O	in	告		N	艮	$\begin{gathered} N \\ \underset{\sim}{0} \\ i^{\circ} \end{gathered}$	\％	
$\overline{\%}$	듬	E			$\begin{array}{cc} 8 \\ \mathrm{C} \\ \mathrm{O} \\ \mathrm{~m} \\ \mathrm{~m} \\ \\ \hline \end{array}$		$\begin{array}{l\|l\|} \hline 8 \\ 0 \\ \\ \\ \hline \end{array}$	$$		$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\stackrel{8}{寸}$		$\begin{aligned} & 88 \\ & 08 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \dot{1} \\ & i \end{aligned}$	$\underset{\substack{8 \\ 0 \\ \dot{y} \\ \hline}}{ }$			－	\mathfrak{c}		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 5 \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & \\ & \text { in } \end{aligned}$	$\stackrel{\sim}{\square}$	－	응		\％	$\begin{aligned} & 8 \\ & \stackrel{8}{寸} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	$\begin{aligned} & 8 \\ & \underset{\rho}{\rho} \\ & \end{aligned}$		8 		－	－	$\begin{aligned} & 8 \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	－	$\xrightarrow{8}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$		$1 \begin{aligned} & 8 \\ & 0 \\ & \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \underset{\sim}{8} \end{aligned}$	8 0 0 0	

Col 1i	Col2i	Col 31	Col 41	Col 5	Col 61	Col7i	Col 81	Col 91	Col 10 i	Col 11i	Col 12i	Col 13i	Col $14 i$	Col 151	Col 16i
Depth	Depth	9 c	fs	u	Other	qt	Ri	SBT	Unit Weight, y	$\begin{gathered} \text { Total } \\ \text { Overburden } \\ \text { Stress, ov } \end{gathered}$	Insitu pore pressure, чо	Effective overburden stress, $\sigma^{\prime} v$	Normalized cone resistance, QtI	$\begin{gathered} \text { Normalized } \\ \text { Friction raio, } \mathrm{Fr} \end{gathered}$	Normalized pore pressure ratio, Bq
(m)	(tit)	(tst)	(tsf)	(psi)		(tis)	(\%)		(pef)	(lst)	(tst)	(tsf)			
18.300	60.039	507.842	2.783	18.921		508.11	0.55	10	127	3.669	1.530	2.139	235.88	0.55	0.00
18.400	60.367	516.663	3.498	19.299		516.94	0.68	10	127	3.689	1.540	2.149	238.81	0.68	0.00
18.500	60.696	523.132	2.216	19.640		523.41	0.42	10	127	3.710	1.550	2.160	240.62	0.43	0.00
18.600	61.024	504.505	1.517	21.116		504.81	0.30	10	127	3.731	1.561	2.171	230.85	0.30	0.00
18.700	61.352	524.043	1.544	21.734		524.36	0.29	10	127	3.752	1.571	2.181	238.68	0.30	0.00
18.800	61.680	567.811	1.899	21.633		568.12	0.33	10	127	3.773	1.581	2.192	257.48	0.34	0.00
18.900	62.008	608.131	1.745	21.620		608.44	0.29	10	127	3.794	1.591	2.202	274.53	0.29	0.00
19.000	62.336	663.351	0.506	24.812		663.71	0.08	10	127	3.815	1.602	2.213	298.17	0.08	0.00

Col 1i	Col 2i	Col 171	Col 18 i	Col 19 i	Col 20i	Col 211	Col 22i	Col 23 i	Col 24i	Col 25i	Col 26 i	Col 27i	Col 28 i	Col 29i
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, Ic	Normalized Cone resistance, Qtn	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ \text { (N1) } 60 \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	Young's modulus, Es	Small strain shear modulus, Go	Undrained shear strength, su	Undrained strength ratio, su/q'v	Over consolidation ratio, OCR
(m)	(ft)				(ft/sec)	(blows/ft)	(blows/ft)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
18.300	60.039	6	1.46	335.34	$3.00 \mathrm{E}-4$	82.7	58.2	98	45	2032	1886			
18.400	60.367	6	1.52	340.35	$3.00 \mathrm{E}-4$	85.7	60.1	99	45	2068	1900			
18.500	60.696	6	1.38	343.78	3.00E-4	83.1	58.2	99	45	2094	1911			
18.600	61.024	7	1.31	330.64	$3.00 \mathrm{E}-2$	78.4	54.8	97	45	2019	1891			
18.700	61.352	7	1.29	342.69	$3.00 \mathrm{E}-2$	81.0	56.4	99	45	2097	1918			
18.800	61.680	7	1.30	370.58	$3.00 \mathrm{E}-2$	87.9	61.1	103	45	2272	1973			
18.900	62.008	7	1.24	396.08	$3.00 \mathrm{E}-2$	92.4	64.1	106	46	2434	2022			
19.000	62.336	7	1.00	431.23	3.00E-2	94.3	65.2	111	46	2655	2085			

Font: Courier New, Regular, Size 8 is recommended for this report.
Licensed to, $6 / 2 / 2016,4: 30: 31 \mathrm{PM}$
Input File Name: G:\GS16\GS16-0107_Panama\Design \& Analysis\LIQUEFACTION\16-0107-CPT1.liq
Title: 12870 Panama Street
Subtitle: CPT 1

Input Data:
Surface Elev. $=0$
Hole No. =CPT1
Depth of Hole $=62.00 \mathrm{ft}$
Water Table during Earthquake= 5.00 ft
Water Table during In-Situ Testing= 10.00 ft
Max. Acceleration=0.65 g
Earthquake Magnitude $=6.63$
No-Liquefiable Soils: $\quad C L, O L$ are Non-Liq. Soil

1. CPT Calulation Method: Modify Robertson*
2. Settlement Analysis Method: Ishihara / Yoshimine
3. Fines Correction for Liquefaction: Stark/Olson et a1.*
4. Fine Correction for Settlement: During liquefaction*
5. Settlement Calculation in: All zones*
6. User request factor of safety (apply to CSR) , User= 1.1

Plot two CSR (fsl=1, fs2=User)
10. Average two input data between two Depths: Yes*

* Recommended Options

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Page 2

Output Results:
Calculation segment, $d z=0.050 \mathrm{ft}$
User defined Print Interval, $d p=0.50 \mathrm{ft}$
Peak Ground Acceleration (PGA), a_max $=0.65 \mathrm{~g}$

Depth ft	gamma pcf	sigma atm	gamma' pcf	sigma' atm	rd	$\begin{gathered} m Z \\ g \end{gathered}$	$\begin{aligned} & \mathrm{a}(z) \\ & \mathrm{g} \end{aligned}$	CSR	x fsl	$=$ CSRfs
0.16	120.00	0.009	120.00	0.009	1.00	0.000	0.650	0.42	1.00	0.42
0.66	120.00	0.037	120.00	0.037	1.00	0.000	0.650	0.42	1.00	0.42
1.16	120.00	0.066	120.00	0.066	1.00	0.000	0.650	0.42	1.00	0.42
1.66	120.00	0.094	120.00	0.094	1.00	0.000	0.650	0.42	1.00	0.42
2.16	120.00	0.122	120.00	0.122	0.99	0.000	0.650	0.42	1.00	0.42
2.66	120.00	0.151	120.00	0.151	0.99	0.000	0.650	0.42	1.00	0.42
3.16	120.00	0.179	120.00	0.179	0.99	0.000	0.650	0.42	1.00	0.42
3.66	120.00	0.208	120.00	0.208	0.99	0.000	0.650	0.42	1.00	0.42
4.16	120.00	0.236	120.00	0.236	0.99	0.000	0.650	0.42	1.00	0.42
4.66	120.00	0.264	120.00	0.264	0.99	0.000	0.650	0.42	1.00	0.42
5.16	120.00	0.293	57.60	0.288	0.99	0.000	0.650	0.42	1.00	0.42
5.66	120.00	0.321	57.60	0.302	0.99	0.000	0.650	0.44	1.00	0.44
6.16	120.00	0.349	57.60	0.315	0.99	0.000	0.650	0.46	1.00	0.46
6.66	120.00	0.378	57.60	0.329	0.98	0.000	0.650	0.48	1.00	0.48
7.16	120.00	0.406	57.60	0.343	0.98	0.000	0.650	0.49	1.00	0.49
7.66	120.00	0.434	57.60	0.356	0.98	0.000	0.650	0.51	1.00	0.51
8.16	120.00	0.463	57.60	0.370	0.98	0.000	0.650	0.52	1.00	0.52
8.66	120.00	0.491	57.60	0.383	0.98	0.000	0.650	0.53	1.00	0.53
9.16	120.00	0.519	57.60	0.397	0.98	0.000	0.650	0.54	1.00	0.54
9.66	120.00	0.548	57.60	0.411	0.98	0.000	0.650	0.55	1.00	0.55
10.16	120.00	0.576	57.60	0.424	0.98	0.000	0.650	0.56	1.00	0.56
10.66	120.00	0.604	57.60	0.438	0.98	0.000	0.650	0.57	1.00	0.57
11.16	120.00	0.633	57.60	0.451	0.97	0.000	0.650	0.58	1.00	0.58
11.66	120.00	0.661	57.60	0.465	0.97	0.000	0.650	0.58	1.00	0.58
12.16	120.00	0.690	57.60	0.479	0.97	0.000	0.650	0.59	1.00	0.59
12.66	120.00	0.718	57.60	0.492	0.97	0.000	0.650	0.60	1.00	0.60
13.16	120.00	0.746	57.60	0.506	0.97	0.000	0.650	0.60	1.00	0.60
13.66	120.00	0.775	57.60	0.520	0.97	0.000	0.650	0.61	1.00	0.61
14.16	120.00	0.803	57.60	0.533	0.97	0.000	0.650	0.62	1.00	0.62
14.66	120.00	0.831	57.60	0.547	0.97	0.000	0.650	0.62	1.00	0.62
15.16	120.00	0.860	57.60	0.560	0.96	0.000	0.650	0.63	1.00	0.63
15.66	120.00	0.888	57.60	0.574	0.96	0.000	0.650	0.63	1.00	0.63
16.16	120.00	0.916	57.60	0.588	0.96	0.000	0.650	0.63	1.00	0.63
16.66	120.00	0.945	57.60	0.601	0.96	0.000	0.650	0.64	1.00	0.64
17.16	120.00	0.973	57.60	0.615	0.96	0.000	0.650	0.64	1.00	0.64
17.66	120.00	1.001	57.60	0.628	0.96	0.000	0.650	0.65	1.00	0.65
18.16	120.00	1.030	57.60	0.642	0.96	0.000	0.650	0.65	1.00	0.65
18.66	120.00	1.058	57.60	0.656	0.96	0.000	0.650	0.65	1.00	0.65
19.16	120.00	1.086	57.60	0.669	0.96	0.000	0.650	0.66	1.00	0.66
19.66	120.00	1.115	57.60	0.683	0.95	0.000	0.650	0.66	1.00	0.66
20.16	120.00	1.143	57.60	0.696	0.95	0.000	0.650	0.66	1.00	0.66
20.66	120.00	1.172	57.60	0.710	0.95	0.000	0.650	0.66	1.00	0.66
21.16	120.00	1.200	57.60	0.724	0.95	0.000	0.650	0.67	1.00	0.67
21.66	120.00	1.228	57.60	0.737	0.95	0.000	0.650	0.67	1.00	0.67
22.16	120.00	1.257	57.60	0.751	0.95	0.000	0.650	0.67	1.00	0.67
22.66	120.00	1.285	57.60	0.765	0.95	0.000	0.650	0.67	1.00	0.67
23.16	120.00	1.313	57.60	0.778	0.95	0.000	0.650	0.67	1.00	0.67
23.66	120.00	1.342	57.60	0.792	0.94	0.000	0.650	0.68	1.00	0.68
24.16	120.00	1.370	57.60	0.805	0.94	0.000	0.650	0.68	1.00	0.68
24.66	120.00	1.398	57.60	0.819	0.94	0.000	0.650	0.68	1.00	0.68
25.16	120.00	1.427	57.60	0.833	0.94	0.000	0.650	0.68	1.00	0.68
25.66	120.00	1.455	57.60	0.846	0.94	0.000	0.650	0.68	1.00	0.68
26.16	120.00	1.483	57.60	0.860	0.94	0.000	0.650	0.68	1.00	0.68
26.66	120.00	1.512	57.60	0.873	0.94	0.000	0.650	0.69	1.00	0.69
27.16	120.00	1.540	57.60	0.887	0.94	0.000	0.650	0.69	1.00	0.69
27.66	120.00	1.568	57.60	0.901	0.94	0.000	0.650	0.69	1.00	0.69
28.16	120.00	1.597	57.60	0.914	0.93	0.000	0.650	0.69	1.00	0.69
28.66	120.00	1.625	57.60	0.928	0.93	0.000	0.650	0.69	1.00	0.69
29.16	120.00	1.654	57.60	0.941	0.93	0.000	0.650	0.69	1.00	0.69
29.66	120.00	1.682	57.60	0.955	0.93	0.000	0.650	0.69	1.00	0.69
30.16	120.00	1.710	57.60	0.969	0.93	0.000	0.650	0.69	1.00	0.69
30.66	120.00	1.739	57.60	0.982	0.92	0.000	0.650	0.69	1.00	0.69
31.16	120.00	1.767	57.60	0.996	0.92	0.000	0.650	0.69	1.00	0.69
31.66	120.00	1.795	57.60	1.009	0.92	0.000	0.650	0.69	1.00	0.69
32.16	120.00	1.824	57.60	1.023	0.91	0.000	0.650	0.69	1.00	0.69
32.66	120.00	1.852	57.60	1.037	0.91	0.000	0.650	0.69	1.00	0.69
33.16	120.00	1.880	57.60	1.050	0.90	0.000	0.650	0.68	1.00	0.68
33.66	120.00	1.909	57.60	1.064	0.90	0.000	0.650	0.68	1.00	0.68
34.16	120.00	1.937	57.60	1.078	0.90	0.000	0.650	0.68	1.00	0.68
34.66	120.00	1.965	57.60	1.091	0.89	0.000	0.650	0.68	1.00	0.68
35.16	120.00	1.994	57.60	1.105	0.89	0.000	0.650	0.68	1.00	0.68

Page 3

	16-0107-CPT1.cal									
35.66	120.00	2.022	57.60	1.118	0.88	0.000	0.650	0.68	1.00	0.68
36.16	120.00	2.050	57.60	1.132	0.88	0.000	0.650	0.67	1.00	0.67
36.66	120.00	2.079	57.60	1.146	0.88	0.000	0.650	0.67	1.00	0.67
37.16	120.00	2.107	57.60	1.159	0.87	0.000	0.650	0.67	1.00	0.67
37.66	120.00	2.136	57.60	1.173	0.87	0.000	0.650	0.67	1.00	0.67
38.16	120.00	2.164	57.60	1.186	0.86	0.000	0.650	0.67	1.00	0.67
38.66	120.00	2.192	57.60	1.200	0.86	0.000	0.650	0.66	1.00	0.66
39.16	120.00	2.221	57.60	1.214	0.86	0.000	0.650	0.66	1.00	0.66
39.66	120.00	2.249	57.60	1.227	0.85	0.000	0.650	0.66	1.00	0.66
40.16	120.00	2.277	57.60	1.241	0.85	0.000	0.650	0.66	1.00	0.66
40.66	120.00	2.306	57.60	1.254	0.84	0.000	0.650	0.65	1.00	0.65
41.16	120.00	2.334	57.60	1.268	0.84	0.000	0.650	0.65	1.00	0.65
41.66	120.00	2.362	57.60	1.282	0.83	0.000	0.650	0.65	1.00	0.65
42.16	120.00	2.391	57.60	1.295	0.83	0.000	0.650	0.65	1.00	0.65
42.66	120.00	2.419	57.60	1.309	0.83	0.000	0.650	0.65	1.00	0.65
43.16	120.00	2.447	57.60	1.322	0.82	0.000	0.650	0.64	1.00	0.64
43.66	120.00	2.476	57.60	1.336	0.82	0.000	0.650	0.64	1.00	0.64
44.16	120.00	2.504	57.60	1.350	0.81	0.000	0.650	0.64	1.00	0.64
44.66	120.00	2.532	57.60	1.363	0.81	0.000	0.650	0.64	1.00	0.64
45.16	120.00	2.561	57.60	1.377	0.81	0.000	0.650	0.63	1.00	0.63
45.66	120.00	2.589	57.60	1.391	0.80	0.000	0.650	0.63	1.00	0.63
46.16	120.00	2.618	57.60	1.404	0.80	0.000	0.650	0.63	1.00	0.63
46.66	120.00	2.646	57.60	1.418	0.79	0.000	0.650	0.63	1.00	0.63
47.16	120.00	2.674	57.60	1.431	0.79	0.000	0.650	0.62	1.00	0.62
47.66	120.00	2.703	57.60	1.445	0.79	0.000	0.650	0.62	1.00	0.62
48.16	120.00	2.731	57.60	1.459	0.78	0.000	0.650	0.62	1.00	0.62
48.66	120.00	2.759	57.60	1.472	0.78	0.000	0.650	0.62	1.00	0.62
49.16	120.00	2.788	57.60	1.486	0.77	0.000	0.650	0.61	1.00	0.61
49.66	120.00	2.816	57.60	1.499	0.77	0.000	0.650	0.61	1.00	0.61
50.16	120.00	2.844	57.60	1.513	0.77	0.000	0.650	0.61	1.00	0.61
50.66	120.00	2.873	57.60	1.527	0.76	0.000	0.650	0.61	1.00	0.61
51.16	120.00	2.901	57.60	1.540	0.76	0.000	0.650	0.60	1.00	0.60
51.66	120.00	2.929	57.60	1.554	0.75	0.000	0.650	0.60	1.00	0.60
52.16	120.00	2.958	57.60	1.567	0.75	0.000	0.650	0.60	1.00	0.60
52.66	120.00	2.986	57.60	1.581	0.75	0.000	0.650	0.59	1.00	0.59
53.16	120.00	3.014	57.60	1.595	0.74	0.000	0.650	0.59	1.00	0.59
53.66	120.00	3.043	57.60	1.608	0.74	0.000	0.650	0.59	1.00	0.59
54.16	120.00	3.071	57.60	1.622	0.73	0.000	0.650	0.59	1.00	0.59
54.66	120.00	3.100	57.60	1.635	0.73	0.000	0.650	0.58	1.00	0.58
55.16	120.00	3.128	57.60	1.649	0.73	0.000	0.650	0.58	1.00	0.58
55.66	120.00	3.156	57.60	1.663	0.72	0.000	0.650	0.58	1.00	0.58
56.16	120.00	3.185	57.60	1.676	0.72	0.000	0.650	0.58	1.00	0.58
56.66	120.00	3.213	57.60	1.690	0.71	0.000	0.650	0.57	1.00	0.57
57.16	120.00	3.241	57.60	1.704	0.71	0.000	0.650	0.57	1.00	0.57
57.66	120.00	3.270	57.60	1.717	0.70	0.000	0.650	0.57	1.00	0.57
58.16	120.00	3.298	57.60	1.731	0.70	0.000	0.650	0.56	1.00	0.56
58.66	120.00	3.326	57.60	1.744	0.70	0.000	0.650	0.56	1.00	0.56
59.16	120.00	3.355	57.60	1.758	0.69	0.000	0.650	0.56	1.00	0.56
59.66	120.00	3.383	57.60	1.772	0.69	0.000	0.650	0.56	1.00	0.56
60.16	120.00	3.411	57.60	1.785	0.68	0.000	0.650	0.55	1.00	0.55
60.66	120.00	3.440	57.60	1.799	0.68	0.000	0.650	0.55	1.00	0.55
61.16	120.00	3.468	57.60	1.812	0.68	0.000	0.650	0.55	1.00	0.55
61.66	120.00	3.496	57.60	1.826	0.67	0.000	0.650	0.54	1.00	0.54

CSR is based on water table at 5.00 during earthquake
CRR Calculation from CPT data, using Modify Robertson's Method:

Depth ft	qc atm	conte fric. atm	is de	$\mathrm{rmined}_{\mathrm{Q}} \mathrm{~b}$	$\begin{aligned} & \text { y qc } \\ & \mathrm{Rf} \end{aligned}$	fric. Ic	Cq	Fines \%	Kc	$\begin{aligned} & \text { qc1n } \\ & \text { atm } \end{aligned}$	qc1f atm	CRR7. 5
0.16			1.00	1.00E-4	0.00	7.97						
0.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
0.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
0.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.65	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
5.16			1.00	5.55 E 1	4.59	2.55						

Page 4

	16-0107-CPT1.cal											
5.16	16.54	0.75	1.00	5.55E1	4.59	2.55	1.00	NoLiq	1.00	16.54	16.54	2.08
5.66			1.00	$4.35 \mathrm{E1}$	5.56	2.69						
5.66	14.29	0.78	1.00	$4.35 \mathrm{E1}$	5.56	2.69	1.00	NoLiq	1.00	14.29	14.29	2.08
6.16			1.00	3.99 El	6.00	2.74						
6.16	14.28	0.84	1.00	$3.99 E 1$	6.00	2.74	1.00	NoLiq	1.00	14.28	14.28	2.08
6.66			1.00	4.79 El	5.57	2.66						
6.66	18.46	1.01	1.00	4.79 El	5.57	2.66	1.00	NoLiq	1.00	18.46	18.46	2.08
7.16			1.00	$7.61 \mathrm{E1}$	3.27	2.35						
7.16	31.31	1.01	1.00	$7.61 \mathrm{E1}$	3.27	2.35	1.00	NoLiq	1.00	31.31	31.31	2.08
7.66			1.00	1.47 E 2	1.19	1.84						
7.66	64.19	0.76	1.00	1.47 E 2	1.19	1.84	1.00	NoLiq	1.00	64.19	64.19	2.08
8.16			1.00	1.78 E 2	1.06	1.74						
8.16	83.02	0.87	1.00	1.78 E 2	1.06	1.74	1.00	NoLiq	1.00	83.02	83.02	2.08
8.66			1.00	$5.77 \mathrm{E1}$	2.31	2.33						
8.66	28.82	0.65	1.00	5.77 El	2.31	2.33	1.00	NoLiq	1.00	28.82	28.82	2.08
9.16			1.00	2.88 El	3.30	2.66						
9.16	15.50	0.49	1.00	2.88 E 1	3.30	2.66	1.00	NoLiq	1.00	15.50	15.50	2.08
9.66			1.00	$4.05 \mathrm{E1}$	3.07	2.53						
9.66	22.74	0.68	1.00	4.05 E 1	3.07	2.53	1.00	NoLiq	1.00	22.74	22.74	2.08
10.16			1.00	$8.47 \mathrm{E1}$	1.78	2.13						
10.16			0.50	$6.48 \mathrm{E1}$	1.78	2.22						
10.16	49.02	0.86	0.50	6.48 El	1.78	2.22	1.32	19.57	0.39	64.83	106.08	0.19
10.66			1.00	4.43 El	3.56	2.54						
10.66			0.50	$3.47 \mathrm{E1}$	3.56	2.62						
10.66			0.70	3.86 E 1	3.56	2.59						
10.66	26.51	0.92	0.70	3.86 E 1	3.56	2.59	1.45	34.68	0.79	38.57	185.88	0.68
11.16			1.00	2.27E1	3.00	2.71						
11.16	14.24	0.41	1.00	2.27 E 1	3.00	2.71	1.00	NoLiq	1.00	14.24	14.24	2.08
11.66			1.00	5.19 E 1	1.03	2.14						
11.66			0.50	4.14 E 1	1.03	2.22						
11.66	32.44	0.33	0.50	4.14 E 1	1.03	2.22	1.28	19.84	0.40	41.44	68.64	0.11
12.16			1.00	3.59 El	1.67	2.40						
12.16			0.50	2.93E1	1.67	2.47						
12.16	23.15	0.37	0.50	2.93 E 1	1.67	2.47	1.26	29.30	0.65	29.26	83.33	0.13
12.66			1.00	$1.94 \mathrm{E1}$	2.33	2.70						
12.66	13.12	0.29	1.00	1.94 El	2.33	2.70	1.00	NoLiq	1.00	13.12	13.12	2.08
13.16			1.00	$1.47 \mathrm{E1}$	2.88	2.85						
13.16	10.35	0.28	1.00	1.47E1	2.88	2.85	1.00	NoLiq	1.00	10.35	10.35	2.08
13.66			1.00	$2.35 \mathrm{E1}$	2.37	2.64						
13.66	16.48	0.37	1.00	$2.35 \mathrm{E1}$	2.37	2.64	1.00	NoLiq	1.00	16.48	16.48	2.08
14.16			1.00	$1.45 \mathrm{E1}$	2.72	2.84						
14.16	10.65	0.27	1.00	$1.45 \mathrm{E1}$	2.72	2.84	1.00	NoLiq	1.00	10.65	10.65	2.08
14.66			1.00	9.09 EO	4.89	3.15						
14.66	7.14	0.31	1.00	9.09 EO	4.89	3.15	1.00	NoLiq	1.00	7.14	7.14	2.08
15.16			1.00	8.61 E 0	5.04	3.18						
15.16	6.96	0.31	1.00	8.61 E 0	5.04	3.18	1.00	NoLiq	1.00	6.96	6.96	2.08
15.66			1.00	1.14 E 1	5.21	3.10						
15.66	9.09	0.43	1.00	1.14E1	5.21	3.10	1.00	NoLiq	1.00	9.09	9.09	2.08
16.16			1.00	1.38 E 1	2.95	2.88						
16.16	11.09	0.30	1.00	1.38E1	2.95	2.88	1.00	NoLiq	1.00	11.09	11.09	2.08
16.66			1.00	2.23 E 1	2.66	2.68						
16.66	17.61	0.44	1.00	2.23 El	2.66	2.68	1.00	NoLiq	1.00	17.61	17.61	2.08
17.16			1.00	1.68 E 1	3.80	2.88						
17.16	13.80	0.49	1.00	1.68 El	3.80	2.88	1.00	NoLiq	1.00	13.80	13.80	2.08
17.66			1.00	3.93 E 1	1.90	2.40						
17.66	31.52	0.58	1.00	3.93 El	1.90	2.40	1.00	NoLiq	1.00	31.52	31.52	2.08
18.16			1.00	$1.57 \mathrm{E1}$	2.97	2.83						
18.16	13.43	0.37	1.00	$1.57 \mathrm{E1}$	2.97	2.83	1.00	NoLiq	1.00	13.43	13.43	2.08
18.66			1.00	$2.30 \mathrm{E1}$	3.26	2.73						
18.66	19.49	0.60	1.00	$2.30 \mathrm{E1}$	3.26	2.73	1.00	NoLiq	1.00	19.49	19.49	2.08
19.16			1.00	3.22 E 1	3.07	2.60						
19.16	27.39	0.81	1.00	3.22 E 1	3.07	2.60	1.00	NoLiq	1.00	27.39	27.39	2.08
19.66			1.00	5.72 E 1	2.93	2.40						
19.66	48.60	1.39	1.00	5.72 E 1	2.93	2.40	1.00	NoLiq	1.00	48.60	48.60	2.08
20.16			1.00	$7.44 \mathrm{E1}$	1.48	2.12						
20.16			0.50	$6.96 \mathrm{E1}$	1.48	2.14						
20.16	63.95	0.93	0.50	$6.96 \mathrm{E1}$	1.48	2.14	1.09	17.03	0.32	69.61	102.56	0.18
20.66			1.00	7.12 E 1	1.97	2.22						
20.66			0.50	$6.72 \mathrm{E1}$	1.97	2.23						
20.66	62.23	1.20	0.50	6.72 E 1	1.97	2.23	1.08	20.14	0.40	67.20	112.79	0.21
21.16			1.00	1.29 E 2	0.98	1.82						
21.16			0.50	1.21 E 2	0.98	1.84						
21.16	113.40	1.09	0.50	1.21 E 2	0.98	1.84	1.07	8.98	0.11	121.50	135.93	0.31
21.66			1.00	1.55 E 2	0.49	1.57						
21.66			0.50	1.47 E 2	0.49	1.59						
21.66	138.45	0.68	0.50	1.47 E 2	0.49	1.59	1.06	4.21	0.00	147.19	147.19	0.38
22.16			1.00	1.25 E 2	0.94	1.82						
22.16			0.50	1.20 E 2	0.94	1.83						
22.16	113.64	1.05	0.50	1.20 E 2	0.94	1.83	1.06	8.81	0.10	119.90	133.49	0.30
22.66			1.00	1.73 E 2	0.51	1.54						
22.66			0.50	1.66 E 2	0.51	1.55						
22.66	158.67	0.80	0.50	1.66 E 2	0.51	1.55	1.05	3.64	0.00	166.16	165.16	0.51
							Page					

23.16												
			1.00	$\begin{aligned} & 1.73 \mathrm{E} 2 \\ & 1.68 \mathrm{E} 2 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	1.43				168.09	168.09	
23.16			0.50			1.45						
23.16	161.72	0.53	0.50	1.68 E 2	0.33	1.45						
23.66			1.00	1.83 E 2	0.51	1.52	1.04	2.10	0.00			0.52
23.66			0.50	1.79E2	0.51	1.53						
23.66	173.48	0.88	0.50	1.79 E 2	0.51	1.53	1.03	3.28	0.00	179.01	179.01	0.61
24.16			1.00	2.54E2	0.52	1.42						
24.16			0.50	2.49 E 2	0.52	1.43						
24.16	242.99	1.26	0.50	2.49 E 2	0.52	1.43	1.02	1.85	0.00	248.94	248.94	1.51
24.66			1.00	4.67 E 2	0.61	1.28						
24.66			0.50	4.60E2	0.61	1.29						
24.66	452.69	2.74	0.50	4.60E2	0.61	1.29	1.02	0.28	0.00	460.50	460.50	2.08
25.16			1.00	6.18 E 2	0.49	1.13						
25.16			0.50	6.13 E 2	0.49	1.13						
25.16	607.13	2.94	0.50	6.13E2	0.49	1.13	1.01	0.00	0.00	500.00	500.00	2.08
25.66			1.00	6.38 E 2	0.20	0.85						
25.66			0.50	6.38 E 2	0.20	0.85						
25.66	635.67	1.30	0.50	6.38 E 2	0.20	0.85	1.00	0.00	0.00	500.00	500.00	2.08
26.16			1.00	7.97E2	0.35	0.95						
26.16			0.50	8.01 E 2	0.35	0.95						
26.16	804.05	2.78	0.50	8.01 E 2	0.35	0.95	1.00	0.00	0.00	500.00	500.00	2.08
26.66			1.00	4.90E2	0.41	1.14						
26.66			0.50	4.97E2	0.41	1.14						
26.66	501.85	2.07	0.50	4.97E2	0.41	1.14	0.99	0.00	0.00	496.71	496.71	2.08
27.16			1.00	5.74 E 2	0.38	1.07						
27.16			0.50	5.85E2	0.38	1.06						
27.16	595.17	2.26	0.50	5.85E2	0.38	1.06	0.98	0.00	0.00	500.00	500.00	2.08
27.66			1.00	5.64 E 2	0.55	1.20						
27.66			0.50	5.79E2	0.55	1.19						
27.66	592.98	3.25	0.50	5.79 E 2	0.55	1.19	0.98	0.00	0.00	500.00	500.00	2.08
28.16			1.00	$4.96 E 2$	0.54	1.23						
28.16			0.50	5.13E2	0.54	1.22						
28.16	528.29	2.85	0.50	5.13 E 2	0.54	1.22	0.97	0.00	0.00	500.00	500.00	2.08
28.66			1.00	4.87E2	0.36	1.11						
28.66			0.50	5.07E2	0.36	1.09						
28.66	525.35	1.91	0.50	5.07E2	0.36	1.09	0.96	0.00	0.00	500.00	500.00	2.08
29.16			1.00	$3.25 E 2$	0.24	1.13						
29.16			0.50	3.40E2	0.24	1.11						
29.16	355.19	0.84	0.50	3.40 E 2	0.24	1.11	0.96	0.00	0.00	340.39	340.39	2.08
29.66			1.00	3.21E2	0.72	1.45						
29.66			0.50	3.39E2	0.72	1.43						
29.66	355.99	2.56	0.50	3.39 E 2	0.72	1.43	0.95	1.90	0.00	339.04	339.04	2.08
30.16			1.00	3.89 E 2	0.74	1.40						
30.16			0.50	4.13 E 2	0.74	1.38						
30.16	435.98	3.20	0.50	4.13 E 2	0.74	1.38	0.95	1.32	0.00	412.69	412.69	2.08
30.66			1.00	4.80 E 2	0.53	1.23						
30.66			0.50	5.12E2	0.53	1.21						
30.66	544.51	2.87	0.50	5.12 E 2	0.53	1.21	0.94	0.00	0.00	500.00	500.00	2.08
31.16			1.00	5.63 E 2	0.58	1.22						
31.16			0.50	6.04 E 2	0.58	1.20						
31.16	645.63	3.74	0.50	6.04 E 2	0.58	1.20	0.94	0.00	0.00	500.00	500.00	2.08
31.66			1.00	4.46E2	0.75	1.37						
31.66			0.50	4.82 E 2	0.75	1.35						
31.66	518.14	3.88	0.50	4.82 E 2	0.75	1.35	0.93	0.93	0.00	481.72	481.72	2.08
32.16			1.00	4.31 E 2	0.62	1.31						
32.16			0.50	4.68 E 2	0.62	1.29						
32.16	505.81	3.14	0.50	4.68 E 2	0.62	1.29	0.92	0.32	0.00	467.52	467.52	2.08
32.66			1.00	3.64 E 2	0.31	1.16						
32.66			0.50	3.98 E 2	0.31	1.13						
32.66	432.79	1.35	0.50	3.98 E 2	0.31	1.13	0.92	0.00	0.00	397.72	397.72	2.08
33.16			1.00	5.11E2	0.42	1.14						
33.16			0.50	5.61 E 2	0.42	1.11						
33.16	614.27	2.57	0.50	5.61 E 2	0.42	1.11	0.91	0.00	0.00	500.00	500.00	2.08
33.66			1.00	5.46 E 2	0.53	1.20						
33.66			0.50	6.02 E 2	0.53	1.17						
33.66	662.71	3.52	0.50	6.02 E 2	0.53	1.17	0.91	0.00	0.00	500.00	500.00	2.08
34.16			1.00	4.31 E 2	0.37	1.15						
34.16			0.50	4.78 E 2	0.37	1.12						
34.16	529.30	1.95	0.50	4.78 E 2	0.37	1.12	0.90	0.00	0.00	478.24	478.24	2.08
34.66			1.00	4.25 E 2	0.61	1.31						
34.66			0.50	4.75 E 2	0.61	1.28						
34.66	528.30	3.24	0.50	4.75E2	0.61	1.28	0.90	0.24	0.00	474.71	474.71	2.08
35.16			1.00	3.81E2	0.49	1.27						
35.16			0.50	4.29E2	0.49	1.24						
35.16	479.60	2.33	0.50	4.29 E 2	0.49	1.24	0.89	0.00	0.00	428.60	428.60	2.08
35.66			1.00	3.91 E 2	0.56	1.31						
35.66			0.50	4.41 E 2	0.56	1.27						
35.66	496.51	2.76	0.50	4.41 E 2	0.56	1.27	0.89	0.12	0.00	441.32	441.32	2.08
36.16			1.00	4.38 E 2	0.56	1.27						
36.16			0.50	4.98 E 2	0.56	1.24						
36.16	562.79	3.12	0.50	4.98 E 2	0.56	1.24	0.88	0.00	0.00	497.56	497.56	2.08
36.66			1.00	4.01 E 2	0.30	1.11						
							Page					

	16-0107-CPT1.cal											
36.66			0.50	4.58 E 2	0.30	1.07						
36.66	520.94	1.55	0.50	4.58 E 2	0.30	1.07	0.88	0.00	0.00	458.13	458.13	2.08
37.16			1.00	3.86 E 2	0.60	1.33						
37.16			0.50	4.43 E 2	0.60	1.29						
37.16	506.82	3.01	0.50	4.43 E 2	0.60	1.29	0.87	0.32	0.00	443.39	443.39	2.08
37.66			1.00	4.03 E 2	0.39	1.19						
37.66			0.50	4.65 E 2	0.39	1.14						
37.66	534.69	2.09	0.50	4.65 E 2	0.39	1.14	0.87	0.00	0.00	465.35	465.35	2.08
38.16			1.00	3.68 E 2	0.52	1.30						
38.16			0.50	4.27 E 2	0.52	1.26						
38.16	492.71	2.56	0.50	4.27 E 2	0.52	1.26	0.87	0.00	0.00	426.62	426.62	2.08
38.66			1.00	3.62 E 2	0.22	1.07						
38.66			0.50	4.22 E 2	0.22	1.02						
38.66	489.65	1.07	0.50	4.22 E 2	0.22	1.02	0.86	0.00	0.00	421.82	421.82	2.08
39.16			1.00	2.94E2	0.29	1.21						
39.16			0.50	3.45 E 2	0.29	1.15						
39.16	401.98	1.15	0.50	3.45 E 2	0.29	1.15	0.86	0.00	0.00	344.57	344.57	2.08
39.66			1.00	3.10 E 2	0.39	1.27						
39.66			0.50	3.65 E 2	0.39	1.22						
39.66	428.14	1.68	0.50	3.65 E 2	0.39	1.22	0.85	0.00	0.00	365.16	365.16	2.08
40.16			1.00	3.05 E 2	0.32	1.22						
40.16			0.50	3.61 E 2	0.32	1.16						
40.16	425.86	1.34	0.50	3.61 E 2	0.32	1.16	0.85	0.00	0.00	361.43	361.43	2.08
40.66			1.00	$3.27 E 2$	0.36	1.23						
40.66			0.50	3.90 E 2	0.36	1.17						
40.66	461.19	1.65	0.50	3.90 E 2	0.36	1.17	0.84	0.00	0.00	389.52	389.52	2.08
41.16			1.00	3.02 E 2	0.32	1.23						
41.16			0.50	3.61 E 2	0.32	1.17						
41.16	429.50	1.38	0.50	3.61 E 2	0.32	1.17	0.84	0.00	0.00	361.01	361.01	2.08
41.66			1.00	1.68 E 2	0.67	1.63						
41.66			0.50	2.03 E 2	0.67	1.56						
41.66	242.30	1.61	0.50	2.03 E 2	0.67	1.56	0.84	3.79	0.00	202.69	202.69	0.85
42.16			1.00	3.29 E 2	0.39	1.25						
42.16			0.50	$3.97 \mathrm{E2}$	0.39	1.19						
42.16	476.90	1.83	0.50	3.97 E 2	0.39	1.19	0.83	0.00	0.00	397.04	397.04	2.08
42.66			1.00	3.28 E 2	0.85	1.49						
42.66			0.50	3.98 E 2	0.85	1.44						
42.66	480.20	4.06	0.50	3.98 E 2	0.85	1.44	0.83	2.04	0.00	397.92	397.92	2.08
43.16			1.00	2.70E2	0.83	1.54						
43.16			0.50	3.29 E 2	0.83	1.48						
43.16	399.03	3.29	0.50	3.29 E 2	0.83	1.48	0.82	2.62	0.00	329.12	329.12	2.08
43.66			1.00	1.45 E 2	1.56	1.93						
43.66			0.50	1.78 E 2	1.56	1.87						
43.66	217.37	3.34	0.50	1.78 E 2	1.56	1.87	0.82	9.57	0.12	178.47	203.27	0.86
44.16			1.00	4.33 E 1	2.74	2.47						
44.16			0.50	$5.51 \mathrm{E1}$	2.74	2.40						
44.16	67.39	1.78	0.50	5.51 El	2.74	2.40	0.82	26.22	0.57	55.08	127.04	0.27
44.66			1.00	$2.43 \mathrm{E1}$	2.48	2.64						
44.66	39.25	0.91	1.00	$2.43 \mathrm{E1}$	2.48	2.64	1.00	NoLiq	1.00	39.25	39.25	2.08
45.16			1.00	1.14 E 2	0.86	1.82						
45.16			0.50	1.43 E 2	0.86	1.75						
45.16	176.50	1.49	0.50	1.43 E 2	0.86	1.75	0.81	7.07	0.06	142.95	151.30	0.40
45.66			1.00	3.12 E 2	0.61	1.40						
45.66			0.50	3.89 E 2	0.61	1.34						
45.66	482.59	2.94	0.50	3.89 E 2	0.61	1.34	0.81	0.80	0.00	389.14	389.14	2.08
46.16			1.00	2.93 E 2	0.67	1.45						
46.16			0.50	3.67 E 2	0.67	1.38						
46.16	456.91	3.04	0.50	3.67 E 2	0.67	1.38	0.80	1.33	0.00	366.81	366.81	2.08
46.66			1.00	2.98 E 2	0.42	1.30						
46.66			0.50	3.75 E 2	0.42	1.23						
46.66	469.28	1.96	0.50	3.75 E 2	0.42	1.23	0.80	0.00	0.00	375.10	375.10	2.08
47.16			1.00	2.92 E 2	0.47	1.35						
47.16			0.50	3.69 E 2	0.47	1.27						
47.16	464.20	2.19	0.50	3.69 E 2	0.47	1.27	0.80	0.13	0.00	369.44	369.44	2.08
47.66			1.00	2.83E2	0.55	1.40						
47.66			0.50	3.59 E 2	0.55	1.32						
47.66	453.06	2.46	0.50	$3.59 E 2$	0.55	1.32	0.79	0.67	0.00	359.03	359.03	2.08
48.16			1.00	2.67E2	0.64	1.47						
48.16			0.50	3.40 E 2	0.64	1.39						
48.16	431.16	2.76	0.50	3.40 E 2	0.64	1.39	0.79	1.43	0.00	340.22	340.22	2.08
48.66			1.00	2.79E2	0.57	1.42						
48.66			0.50	3.57 E 2	0.57	1.34						
48.66	454.80	2.59	0.50	3.57 E 2	0.57	1.34	0.79	0.83	0.00	357.37	357.37	2.08
49.16			1.00	2.88 E 2	0.50	1.36						
49.16			0.50	3.70 E 2	0.50	1.29						
49.16	473.19	2.34	0.50	3.70E2	0.50	1.29	0.78	0.27	0.00	370.26	370.26	2.08
49.66			1.00	2.72E2	0.33	1.27						
49.66			0.50	3.51 E 2	0.33	1.18						
49.66	451.04	1.48	0.50	3.51 E 2	0.33	1.18	0.78	0.00	0.00	351.48	351.48	2.08
50.16			1.00	3.12 E 2	0.33	1.23						
50.16			0.50	4.04 E 2	0.33	1.14						
50.16	520.65	1.72	0.50	4.04 E 2	0.33	1.14	0.78	0.00	0.00	404.05	404.05	2.08

Page 7

Fines have been calculated, and correction is made by Modify Robertson Method.
Fines=NoLiq means the soils are not liquefiable.
CRR is based on water table at 10.00 during In-Situ Testing

* F.S.<1: Liquefaction Potential Zone. (If above water table: F.S.=5)
\wedge No-liquefiable Soils or above Water Table.
(F.S. is limited to 5, CRR is limited to 2 , CSR is limited to 2)

CPT convert to SPT for Settlement Analysis:
Fines Correction for Settlement Analysis:

Page 10

					16-0107-CPT1.cal			
16.66	2.68	3.54	17.61	4.98	NoLiq	0.00	4.98	
17.16	2.88	3.18	13.80	4.33	NoLiq	0.00	4.33	
17.66	2.40	4.06	31.52	7.76	NoLiq	0.00	7.76	
18.16	2.83	3.26	13.43	4.12	NoLiq	0.00	4.12	
18.66	2.73	3.46	19.49	5.64	NoLiq	0.00	5.64	
19.16	2.60	3.69	27.39	7.41	NoLiq	0.00	7.41	v
19.66	2.40	4.06	48.60	11.98	NoLiq	0.00	11.98	
20.16	2.14	4.55	102.56	22.56	17.03	0.00	22.56	
20.66	2.23	4.37	112.79	25.79	20.14	0.00	25.79	
21.16	1.84	5.10	135.93	26.64	8.98	0.00	26.64	
21.66	1.59	5.56	147.19	26.47	4.21	0.00	26.47	
22.16	1.83	5.12	133.49	26.10	8.81	0.00	26.10	
22.66	1.55	5.63	166.16	29.52	3.64	0.00	29.52	
23.16	1.45	5.83	168.09	28.84	2.10	0.00	28.84	
23.66	1.53	5.67	179.01	31.57	3.28	0.00	31.57	
24.16	1.43	5.86	248.94	42.45	1.85	0.00	42.45	
24.66	1.29	6.12	460.50	75.23	0.28	0.00	75.23	
25.16	1.13	6.40	500.00	78.09	0.00	0.00	78.09	
25.66	0.85	6.93	500.00	72.19	0.00	0.00	72.19	
26.16	0.95	6.75	500.00	74.07	0.00	0.00	74.07	
26.66	1.14	6.39	496.71	77.70	0.00	0.00	77.70	
27.16	1.06	6.53	500.00	76.54	0.00	0.00	76.54	
27.66	1.19	6.30	500.00	79.39	0.00	0.00	79.39	
28.16	1.22	6.25	500.00	80.04	0.00	0.00	80.04	
28.66	1.09	6.48	500.00	77.17	0.00	0.00	77.17	
29.16	1.11	6.45	340.39	52.81	0.00	0.00	52.81	
29.66	1.43	5.86	339.04	57.88	1.90	0.00	57.88	
30.16	1.38	5.94	412.69	69.43	1.32	0.00	69.43	
30.66	1.21	6.26	500.00	79.86	0.00	0.00	79.86	
31.16	1.20	6.28	500.00	79.61	0.00	0.00	79.61	
31.66	1.35	6.01	481.72	80.20	0.93	0.00	80.20	
32.16	1.29	6.11	467.52	76.48	0.32	0.00	76.48	
32.66	1.13	6.42	397.72	61.98	0.00	0.00	61.98	
33.16	1.11	6.45	500.00	77.52	0.00	0.00	77.52	
33.66	1.17	6.34	500.00	78.92	0.00	0.00	78.92	
34.16	1.12	6.44	478.24	74.28	0.00	0.00	74.28	
34.66	1.28	6.13	474.71	77.46	0.24	0.00	77.46	
35.16	1.24	6.22	428.60	68.96	0.00	0.00	68.96	
35.66	1.27	6.15	441.32	71.75	0.12	0.00	71.75	
36.16	1.24	6.21	497.56	80.07	0.00	0.00	80.07	
36.66	1.07	6.53	458.13	70.17	0.00	0.00	70.17	
37.16	1.29	6.11	443.39	72.53	0.32	0.00	72.53	
37.66	1.14	6.39	465.35	72.83	0.00	0.00	72.83	
38.16	1.26	6.17	426.62	69.11	0.00	0.00	69.11	
38.66	1.02	6.62	421.82	63.68	0.00	0.00	63.68	
39.16	1.15	6.37	344.57	54.11	0.00	0.00	54.11	
39.66	1.22	6.24	365.16	58.48	0.00	0.00	58.48	
40.16	1.16	6.35	361.43	56.89	0.00	0.00	56.89	
40.66	1.17	6.33	389.52	61.50	0.00	0.00	61.50	
41.16	1.17	6.34	361.01	56.93	0.00	0.00	56.93	
41.66	1.56	5.61	202.69	36.14	3.79	0.00	36.14	
42.16	1.19	6.31	397.04	62.96	0.00	0.00	62.96	
42.66	1.44	5.84	397.92	68.18	2.04	0.00	68.18	
43.16	1.48	5.76	329.12	57.17	2.62	0.00	57.17	
43.66	1.87	5.05	203.27	40.22	9.57	0.00	40.22	
44.16	2.40	4.07	127.04	31.18	26.22	0.00	31.18	
44.66	2.64	3.63	39.25	10.82	NoLiq	0.00	10.82	
45.16	1.75	5.27	151.30	28.72	7.07	0.00	28.72	
45.66	1.34	6.03	389.14	64.54	0.80	0.00	64.54	
46.16	1.38	5.94	366.81	61.72	1.33	0.00	61.72	
46.66	1.23	6.23	375.10	60.23	0.00	0.00	60.23	
47.16	1.27	6.15	369.44	60.08	0.13	0.00	60.08	
47.66	1.32	6.05	359.03	59.32	0.67	0.00	59.32	
48.16	1.39	5.93	340.22	57.41	1.43	0.00	57.41	
48.66	1.34	6.02	357.37	59.33	0.83	0.00	59.33	
49.16	1.29	6.12	370.26	60.47	0.27	0.00	60.47	
49.66	1.18	6.31	351.48	55.67	0.00	0.00	55.67	
50.16	1.14	6.40	404.05	63.15	0.00	0.00	63.15	
50.66	1.17	6.33	423.62	66.93	0.00	0.00	66.93	
51.16	0.92	6.80	453.14	66.60	0.00	0.00	66.60	
51.66	1.22	6.25	442.35	70.72	0.00	0.00	70.72	
52.16	1.10	6.46	329.84	51.06	0.00	0.00	51.06	
52.66	1.41	5.89	268.72	45.66	1.71	0.00	45.66	
53.16	1.48	5.77	263.27	45.64	2.53	0.00	45.64	
53.66	1.43	5.85	274.62	46.92	1.93	0.00	46.92	
54.16	1.41	5.90	271.84	46.05	1.59	0.00	46.05	
54.66	1.30	6.09	277.98	45.62	0.43	0.00	45.62	
55.16	1.17	6.34	300.71	47.44	0.00	0.00	47.44	
55.66	1.34	6.02	293.90	48.84	0.87	0.00	48.84	
56.16	1.45	5.82	300.17	51.56	2.15	0.00	51.56	
56.66	1.38	5.96	295.00	49.53	1.25	0.00	49.53	
57.16	1.28	6.13	289.72	47.25	0.22	0.00	47.25	

Page 11

					$16-0107-$ CPT1.ca1		
57.66	1.26	6.16	302.14	49.01	0.05	0.00	49.01
58.16	1.30	6.10	289.93	47.51	0.38	0.00	47.51
58.66	1.30	6.11	305.66	50.06	0.36	0.00	50.06
59.16	1.34	6.02	308.02	51.19	0.87	0.00	51.19
59.66	1.36	5.98	331.82	55.46	1.08	0.00	55.46
60.16	1.35	6.00	373.59	62.26	0.97	0.00	62.26
60.66	1.18	6.32	382.63	60.51	0.00	0.00	60.51
61.16	1.13	6.42	360.40	56.16	0.00	0.00	56.16
61.66	1.13	6.41	409.21	63.87	0.00	0.00	63.87

(N1)60s has been fines corrected in liquefaction analysis, therefore $d(N 1) 60=0$. (N1) 60 is converted from qc1, (N1) 60s is after fines correction
Fines=NoLiq means the soils are not liquefiable.

Settlement of Saturated Sands:											
Depth	CSRsf	/ MSF*	$=$ CSRm	F.S.	Fines	(N1) 60 s	Dr	ec	dsz	dsp	
61.96	0.54	1.00	0.54	5.00	0.00	66.32	100.00	0.000	$0.0 E 0$	0.000	0.000
61.66	0.54	1.00	0.54	5.00	0.00	63.87	100.00	0.000	0.0 E 0	0.000	0.000
61.16	0.55	1.00	0.55	5.00	0.00	56.16	100.00	0.000	0.0 EO	0.000	0.000
60.66	0.55	1.00	0.55	5.00	0.00	60.51	100.00	0.000	0.0EO	0.000	0.000
60.16	0.55	1.00	0.55	4.99	0.97	62.26	100.00	0.000	0.0EO	0.000	0.000
59.66	0.56	1.00	0.56	4.97	1.08	55.46	100.00	0.000	0.0EO	0.000	0.000
59.16	0.56	1.00	0.56	4.95	0.87	51.19	100.00	0.000	0.0EO	0.000	0.000
58.66	0.56	1.00	0.56	4.93	0.36	50.06	100.00	0.000	0.0 EO	0.000	0.000
58.16	0.56	1.00	0.56	4.91	0.38	47.51	100.00	0.000	0.0 EO	0.000	0.000
57.66	0.57	1.00	0.57	4.89	0.05	49.01	100.00	0.000	0.050	0.000	0.000
57.16	0.57	1.00	0.57	4.88	0.22	47.25	100.00	0.000	0.0 EO	0.000	0.000
56.66	0.57	1.00	0.57	4.86	1.25	49.53	100.00	0.000	0.0 EO	0.000	0.000
56.16	0.58	1.00	0.58	4.84	2.15	51.56	100.00	0.000	0.0 EO	0.000	0.000
55.66	0.58	1.00	0.58	4.83	0.87	48.84	100.00	0.000	0.0 EO	0.000	0.000
55.16	0.58	1.00	0.58	4.81	0.00	47.44	100.00	0.000	0.000	0.000	0.000
54.66	0.58	1.00	0.58	4.79	0.43	45.62	100.00	0.000	0.0 EO	0.000	0.000
54.16	0.59	1.00	0.59	4.47	1.59	46.05	100.00	0.000	0.050	0.000	0.000
53.66	0.59	1.00	0.59	4.59	1.93	46.92	100.00	0.000	0.050	0.000	0.000
53.16	0.59	1.00	0.59	4.05	2.53	45.64	100.00	0.000	0.0 EO	0.000	0.000
52.66	0.59	1.00	0.59	4.29	1.71	45.66	100.00	0.000	0.0 EO	0.000	0.000
52.16	0.60	1.00	0.60	4.71	0.00	51.06	100.00	0.000	0.0 EO	0.000	0.000
51.66	0.60	1.00	0.60	4.70	0.00	70.72	100.00	0.000	0.0 EO	0.000	0.000
51.16	0.60	1.00	0.60	4.69	0.00	66.60	100.00	0.000	0.0EO	0.000	0.000
50.66	0.61	1.00	0.61	4.67	0.00	66.93	100.00	0.000	0.0 EO	0.000	0.000
50.16	0.61	1.00	0.61	4.66	0.00	63.15	100.00	0.000	0.0 EO	0.000	0.000
49.66	0.61	1.00	0.61	4.64	0.00	55.67	100.00	0.000	0.0 EO	0.000	0.000
49.16	0.61	1.00	0.61	4.63	0.27	60.47	100.00	0.000	0.0 EO	0.000	0.000
48.66	0.62	1.00	0.62	4.62	0.83	59.33	100.00	0.000	0.0 EO	0.000	0.000
48.16	0.62	1.00	0.62	4.60	1.43	57.41	100.00	0.000	0.0 EO	0.000	0.000
47.66	0.62	1.00	0.62	4.59	0.67	59.32	100.00	0.000	0.0 EO	0.000	0.000
47.16	0.62	1.00	0.62	4.58	0.13	60.08	100.00	0.000	$0.0 E 0$	0.000	0.000
46.66	0.63	1.00	0.63	4.57	0.00	60.23	100.00	0.000	0.0 EO	0.000	0.000
46.16	0.63	1.00	0.63	4.56	1.33	61.72	100.00	0.000	0.0E0	0.000	0.000
45.66	0.63	1.00	0.63	4.52	0.80	64.54	100.00	0.000	O.OEO	0.000	0.000
45.16	0.63	1.00	0.63	0.87	7.07	28.72	87.24	0.759	$4.6 \mathrm{E}-3$	0.005	0.005
44.66	0.64	1.00	0.64	5.00	NoLig	10.82	52.46	0.000	0.0 E 0	0.030	0.035
44.16	0.64	1.00	0.64	0.58	26.22	31.18	92.79	0.826	$5.0 \mathrm{E}-3$	0.005	0.040
43.66	0.64	1.00	0.64	1.84	9.57	40.22	100.00	0.000	0.0EO	0.030	0.069
43.16	0.64	1.00	0.64	4.43	2.62	57.17	100.00	0.000	0.0 EO	0.000	0.069
42.66	0.65	1.00	0.65	4.42	2.04	68.18	100.00	0.000	0.0 EO	0.000	0.069
42.16	0.65	1.00	0.65	4.40	0.00	62.96	100.00	0.000	0.0 EO	0.000	0.069
41.66	0.65	1.00	0.65	1.80	3.79	36.14	100.00	0.000	0.0 EO	0.000	0.069
41.16	0.65	1.00	0.65	4.37	0.00	56.93	100.00	0.000	0.0 EO	0.000	0.069
40.66	0.65	1.00	0.65	4.35	0.00	61.50	100.00	0.000	0.0 EO	0.000	0.069
40.16	0.66	1.00	0.66	4.34	0.00	56.89	100.00	0.000	O.0EO	0.000	0.069
39.66	0.66	1.00	0.66	4.33	0.00	58.48	100.00	0.000	0.0 EO	0.000	0.069
39.16	0.66	1.00	0.66	4.31	0.00	54.11	100.00	0.000	0.0 EO	0.000	0.069
38.66	0.66	1.00	0.66	4.30	0.00	63.68	100.00	0.000	0.0 EO	0.000	0.069
38.16	0.67	1.00	0.67	4.28	0.00	69.11	100.00	0.000	0.0 EO	0.000	0.069
37.66	0.67	1.00	0.67	4.27	0.00	72.83	100.00	0.000	0.0 EO	0.000	0.069
37.16	0.67	1.00	0.67	4.26	0.32	72.53	100.00	0.000	O.OEO	0.000	0.069
36.66	0.67	1.00	0.67	4.25	0.00	70.17	100.00	0.000	0.0EO	0.000	0.069
36.16	0.67	1.00	0.67	4.23	0.00	80.07	100.00	0.000	0.0 EO	0.000	0.069
35.66	0.68	1.00	0.68	4.22	0.12	71.75	100.00	0.000	0.0EO	0.000	0.069
35.16	0.68	1.00	0.68	4.21	0.00	68.96	100.00	0.000	0.0 EO	0.000	0.069
34.66	0.68	1.00	0.68	4.20	0.24	77.46	100.00	0.000	0.0EO	0.000	0.069
34.16	0.68	1.00	0.68	4.19	0.00	74.28	100.00	0.000	0.0 EO	0.000	0.069
33.66	0.68	1.00	0.68	4.18	0.00	78.92	100.00	0.000	0.0 EO	0.000	0.069
33.16	0.68	1.00	0.68	4.17	0.00	77.52	100.00	0.000	0.0EO	0.000	0.069
32.66	0.69	1.00	0.69	4.16	0.00	61.98	100.00	0.000	0.0 E 0	0.000	0.069
32.16	0.69	1.00	0.69	4.15	0.32	76.48	100.00	0.000	0.0 EO	0.000	0.069
31.66	0.69	1.00	0.69	4.14	0.93	80.20	100.00	0.000	0.0EO	0.000	0.069

	16-0107-CPT1. cal										
31.16	0.69	1.00	0.69	4.13	0.00	79.61	100.00	0.000	0.0 EO	0.000	0.069
30.66	0.69	1.00	0.69	4.12	0.00	79.86	100.00	0.000	0.0 EO	0.000	0.069
30.16	0.69	1.00	0.69	4.12	1.32	69.43	100.00	0.000	0.0 EO	0.000	0.069
29.66	0.69	1.00	0.69	4.12	1.90	57.88	100.00	0.000	0.0 O	0.000	0.069
29.16	0.69	1.00	0.69	4.12	0.00	52.81	100.00	0.000	0.0 O 0	0.000	0.069
28.66	0.69	1.00	0.69	4.13	0.00	77.17	100.00	0.000	0.0 OO	0.000	0.069
28.16	0.69	1.00	0.69	4.13	0.00	80.04	100.00	0.000	0.0 OO	0.000	0.069
27.66	0.69	1.00	0.69	4.14	0.00	79.39	100.00	0.000	0.0 EO	0.000	0.069
27.16	0.69	1.00	0.69	4.15	0.00	76.54	100.00	0.000	0.0 EO	0.000	0.069
26.66	0.69	1.00	0.69	4.16	0.00	77.70	100.00	0.000	0.0EO	0.000	0.069
26.16	0.68	1.00	0.68	4.16	0.00	74.07	100.00	0.000	0.0 E 0	0.000	0.069
25.66	0.68	1.00	0.68	4.17	0.00	72.19	100.00	0.000	0.0 E 0	0.000	0.069
25.16	0.68	1.00	0.68	4.18	0.00	78.09	100.00	0.000	0.0 E 0	0.000	0.069
24.66	0.68	1.00	0.68	4.19	0.28	75.23	100.00	0.000	0.0 O 0	0.000	0.069
24.16	0.68	1.00	0.68	3.06	1.85	42.45	100.00	0.000	0.0 E 0	0.000	0.069
23.66	0.68	1.00	0.68	1.24	3.28	31.57	93.71	0.152	9.1E-4	0.001	0.070
23.16	0.67	1.00	0.67	1.06	2.10	28.84	87.50	0.427	2.6E-3	0.035	0.105
22.66	0.67	1.00	0.67	1.03	3.64	29.52	88.99	0.434	2.6E-3	0.028	0.133
22.16	0.67	1.00	0.67	0.62	8.81	26.10	81.85	1.529	9.2E-3	0.058	0.191
21.66	0.67	1.00	0.67	0.77	4.21	26.47	82.58	1.129	6.8E-3	0.094	0.285
21.16	0.67	1.00	0.67	0.65	8.98	26.64	82.93	1.406	8.4E-3	0.075	0.360
20.66	0.66	1.00	0.66	0.44	20.14	25.79	81.25	1.692	1. $0 \mathrm{E}-2$	0.102	0.462
20.16	0.66	1.00	0.66	0.37	17.03	22.56	75.16	1.964	1.2E-2	0.107	0.568
19.66	0.66	1.00	0.66	5.00	NoLiq	11.98	55.06	0.000	0.0 EO	0.036	0.604
19.16	0.66	1.00	0.66	5.00	NoLiq	7.41	43.90	0.000	0.0EO	0.000	0.604
18.66	0.65	1.00	0.65	5.00	NoLiq	5.64	38.75	0.000	0.0 OO	0.000	0.604
18.16	0.65	1.00	0.65	5.00	NoLiq	4.12	33.88	0.000	0.0 O 0	0.000	0.604
17.66	0.65	1.00	0.65	5.00	NoLiq	7.76	44.83	0.000	0.0EO	0.000	0.604
17.16	0.64	1.00	0.64	5.00	NoLiq	4.33	34.60	0.000	0.0 EO	0.000	0.604
16.66	0.64	1.00	0.64	5.00	NoLiq	4.98	36.69	0.000	0.0 O 0	0.000	0.604
16.16	0.63	1.00	0.63	5.00	NoLiq	3.48	31.72	0.000	0.0 O 0	0.000	0.604
15.66	0.63	1.00	0.63	5.00	NoLiq	3.27	30.97	0.000	0.0 EO	0.000	0.604
15.16	0.63	1.00	0.63	5.00	NoLiq	2.65	28.76	0.000	0.050	0.000	0.604
14.66	0.62	1.00	0.62	5.00	NoLiq	2.67	28.84	0.000	$0.0 E O$	0.000	0.604
14.16	0.62	1.00	0.62	5.00	NoLiq	3.28	31.00	0.000	0.0 EO	0.000	0.604
13.66	0.61	1.00	0.61	5.00	NoLiq	4.54	35.28	0.000	0.0EO	0.059	0.663
13.16	0.60	1.00	0.60	5.00	Noliq	3.20	30.73	0.000	0.0 E 0	0.000	0.663
12.66	0.60	1.00	0.60	5.00	NoLiq	3.74	32.59	0.000	0.0 EO	0.053	0.716
12.16	0.59	1.00	0.59	0.31	29.30	21.16	72.62	2.078	1.2E-2	0.075	0.791
11.66	0.58	1.00	0.58	0.26	19.84	15.64	62.51	2.651	1.6E-2	0.114	0.906
11.16	0.58	1.00	0.58	5.00	NoLiq	4.08	33.75	0.000	0.0 E 0	0.135	1.040
10.66	0.57	1.00	0.57	1.63	34.68	49.95	100.00	0.000	0.0EO	0.000	1.040
10.16	0.56	1.00	0.56	0.47	19.57	24.09	78.00	1.836	1.1E-2	0.074	1.114
9.66	0.55	1.00	0.55	5.00	NoLiq	5.94	39.64	0.000	0.0 EO	0.032	1.147
9.16	0.54	1.00	0.54	5.00	NoLiq	4.32	34.55	0.000	0.0 EO	0.000	1.147
8.66	0.53	1.00	0.53	5.00	NoLiq	6.87	42.37	0.000	0.0 EO	0.000	1.147
8.16	0.52	1.00	0.52	5.00	NoLiq	15.72	62.66	0.000	0.0 EO	0.000	1.147
7.66	0.51	1.00	0.51	5.00	NoLiq	12.58	56.36	0.000	0.0 EO	0.000	1.147
7.16	0.49	1.00	0.49	5.00	NoLiq	7.54	44.24	0.000	0.0 EO	0.000	1.147
6.66	0.48	1.00	0.48	5.00	NoLiq	5.15	37.22	0.000	0.0E0	0.000	1.147
6.16	0.46	1.00	0.46	5.00	NoLiq	4.15	33.98	0.000	0.0 O0	0.000	1.147
5.66	0.44	1.00	0.44	5.00	NoLiq	4.04	33.62	0.000	0.0 OO	0.000	1.147
5.16	0.42	1.00	0.42	5.00	NoLiq	4.37	34.73	0.000	0.0 EO	0.000	1.147
5.01	0.42	1.00	0.42	5.00	NoLiq	2.62	28.63	0.000	0.0EO	0.000	1.147

Settlement of Saturated Sands=1.147 in.
qc1 and (N1) 60 is after fines correction in liquefaction analysis
(N1) 60 s is converted from qcl and after fines correction
dsz is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth

4.96	0.28	0.18	1.36	0.42	211.62	$5.6 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.000												
4.66	0.26	0.17	0.10	0.42	86.09	$1.3 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000
4.16	0.24	0.15	0.10	0.42	81.34	$1.2 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.000												
3.66	0.21	0.13	0.10	0.42	76.30	$1.1 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.000												
3.16	0.18	0.12	0.10	0.42	70.90	$1.1 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000
0.000												
2.66	0.15	0.10	0.10	0.42	65.05	$9.7 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000
0.000												
2.16	0.12	0.08	0.10	0.42	58.62	$8.8 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000
1.66	0.09	0.06	0.10	0.42	51.39	$7.7 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.000												
1.16	0.07	0.04	0.10	0.42	42.95	$6.5 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000
0.000												
0.66	0.04	0.02	0.10	0.42	32.40	$4.9 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.000												
0.16	0.01	0.01	0.10	0.42	15.95	$2.4 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.000												

Settlement of Unsaturated Sands

Settlement of Unsaturated Sands $=0.000$ in.
(N1) 60 s is converted from qc1 and after fines correction
dsz is per each segment, $\mathrm{dz}=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth
Total Settlement of Saturated and Unsaturated Sands=1.147 in. Differential Settlement=0.573 to 0.757 in .

Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in.

$\begin{aligned} & 1 \text { atm (at } \\ & 1 \text { atm (at } \end{aligned}$	$\mathrm{e})=1.0581 \mathrm{tsf}(1 \mathrm{tsf}=1 \mathrm{ton} / \mathrm{ft2}=2 \mathrm{kip} / \mathrm{ft2} 2)$ $\mathrm{e})$
SPT	Field data from Standard Penetration Test (SPT)
BPT	Field data from Becker Penetration Test (BPT)
qc	Field data from Cone Penetration Test (CPT) [atm (tsf)]
fs	Friction from CPT testing [atm (tsf)]
Rf	Ratio of fs/qc (\%)
gamma	Total unit weight of soil
gamma'	Effective unit weight of soil
Fines	Fines content [\%]
D50	Mean grain size
Dr	Relative Density
sigma	Total vertical stress [atm]
sigma'	Effective vertical stress [atm]
sigC'	Effective confining pressure [atm]
rd	Acceleration reduction coefficient by Seed
a_max.	Peak Ground Acceleration (PGA) in ground surface
mZ	Linear acceleration reduction coefficient X depth
a_min.	Minimum acceleration under linear reduction, mZ
CRRV	CRR after overburden stress correction, CRRV=CRR7.5 * Ksig
CRR7. 5	Cyclic resistance ratio ($M=7.5$)
Ksig	Overburden stress correction factor for CRR7.5
CRRm	After magnitude scaling correction CRRm=CRRv * MSF
MSF	Magnitude scaling factor from M=7.5 to user input M
CSR	Cyclic stress ratio induced by earthquake
CSRfs	CSRfs=CSR*fsi (Default fsi=1)
fs1	First CSR curve in graphic defined in \#9 of Advanced page
fs 2	2nd CSR curve in graphic defined in \#9 of Advanced page
F.S.	Calculated factor of safety against liquefaction F.S.=CRRm/CSRsf
Cebs	Energy Ratio, Borehole Dia., and Sampling Method Corrections
Cr	Rod Length Corrections
Cn	Overburden Pressure Correction
(N1) 60	SPT after corrections, (N1) 60=SPT * Cr * Cn * Cebs
d(N1) 60	Fines correction of SPT
(N1) 60 f	(N1) 60 after fines corrections, (N1) $60 \mathrm{f}=(\mathrm{N} 1) 60+\mathrm{d}(\mathrm{N} 1) 60$
Cq	Overburden stress correction factor
qc1	CPT after Overburden stress correction
dqc1	Fines correction of CPT
qcif	CPT after Fines and Overburden correction, qc1f=qc1 + dqc1
qc1n	CPT after normalization in Robertson's method
Kc	Fine correction factor in Robertson's Method
qcif	CPT after Fines correction in Robertson's Method
Ic	Soil type index in Suzuki's and Robertson's Methods
(N1)60s	(N1)60 after settlement fines corrections
CSRm	After magnitude scaling correction for Settlement calculation CSRm=CSRsf / MSF*
CSRfs	Cyclic stress ratio induced by earthquake with user inputed fs
MSF*	Scaling factor from CSR, MSF* $=1$, based on Item 2 of Page C.
ec	Volumetric strain for saturated sands
dz	Calculation segment, $\mathrm{dz}=0.050 \mathrm{ft}$
dsz	Settlement in each segment, $d z$
dp	User defined print interval
dsp	Settlement in each print interval, dp
$G_{\text {max }}$	Shear Modulus at low strain
g_eff	gamma_eff, Effective shear Strain
g* $\mathrm{Ce} / \mathrm{Cm}$	gamma_eff * G_eff/G_max, Strain-modulus ratio
ec7. 5	Volumetric Strain for magnitude=7.5
Cec	Magnitude correction factor for any magnitude
ec	Volumetric strain for unsaturated sands, ec=Cec * ec7.5
NoLiq	No-Liquefy Soils

References:

1. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Youd, T.L., and Idriss, I.M., eds., Technical Report NCEER 97-0022.

SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for

Analyzing and Mitigating Liquefaction in California. University of Southern California. March 1999.
2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL-2, PROCEEDINGS: Fourth

International Conference on Recent Advances in Ceotechnical Earthquake Engineering and Soil Dynamics, San

Diego, CA, March 2001.
3. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK, Earthquake

Page 14

Engineering Research Center,
Report No. EERC 2003-06 by R.B Seed and etc. April 2003.
Note: Print Interval you selected does not show complete results. To get complete results, you should select 'Segment' in Print Interval (Item 12, Page C).
GEEGG

Col 1i	Col 2 i	Col 3i	Col 41	Col $5 i$	Col 61	Col 71	Col 8 i	Col 9i	Col 10i	Col 11i	Col 12i	Col 13i	Col 141	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, $\sigma^{\prime} v$	Normalized cone resistance, Qt\|	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pef)	(tsf)	(tsf)	(tsf)			
8.300	27.231	652.235	3.774	12.828		652.42	0.58	10	127	1.585	0.506	1.079	603.24	0.58	0.00
8.400	27.559	625.717	3.612	8.640		625.84	0.58	10	127	1.606	0.517	1.090	572.93	0.58	0.00
8.500	27.887	542.800	4.058	4.856		542.87	0.75	10	127	1.627	0.527	1.100	491.95	0.75	0.00
8.600	28.215	463.433	4.210	8.376		463.55	0.91	10	127	1.648	0.537	1.111	415.82	0.91	0.00
8.700	28.543	344.981	1.613	10.671		345.13	0.47	10	127	1.669	0.547	1.121	306.26	0.47	0.00
8.800	28.871	264.322	1.034	10.633		264.48	0.39	10	127	1.690	0.557	1.132	232.11	0.39	0.00
8.900	29.199	338.680	. 3.275	9.877		338.82	0.97	9	124	1.710	0.568	1.142	295.13	0.97	0.00
9.000	29.528	471.593	4.471	11.012		471.75	0.95	10	127	1.731	0.578	1.153	407.68	0.95	0.00
9.100	29.856	482.477	3.201	12.967		482.66	0.66	10	127	1.752	0.588	1.164	413.31	0.67	0.00
9.200	30.184	413.120	2.867	15.667		413.35	0.69	10	127	1.773	0.598	1.174	350.51	0.70	0.00
9.300	30.512	436.887	3.018	17.647		437.14	0.69	10	127	1.794	0.609	1.185	367.42	0.69	0.00
9.400	30.840	547.214	3.190	19.867		547.50	0.58	10	127	1.814	0.619	1.196	456.45	0.58	0.00
9.500	31.168	596.857	3.305	17.962		597.12	0.55	10	127	1.835	0.629	1.206	493.53	0.56	0.00
9.600	31.496	524.842	3.357	11.820		525.01	0.64	10	127	1.856	0.639	1.217	429.94	0.64	0.00
9.700	31.824	397.347	3.179	11.744		397.52	0.80	10	127	1.877	0.650	1.227	322.32	0.80	0.00
9.800	32.152	176.636	3.132	11.050		176.80	1.77	8	121	1.897	0.660	1.237	141.38	1.79	0.00
9.900	32.480	48.695	2.532	12.677		48.88	5.18	3	111	1.915	0.670	1.245	37.72	5.39	0.01
10.000	32.808	219.810	1.758	20.397		220.10	0.80	9	124	1.936	0.680	1.255	173.81	0.81	0.00
10.100	33.136	404.040	3.321	22.049		404.36	0.82	10	127	1.956	0.691	1.266	317.88	0.83	0.00
10.200	33.465	496.363	2.100	22.163		496.68	0.42	10	127	1.977	0.701	1.277	387.54	0.42	0.00
10.300	33.793	386.528	1.445	20.649		386.83	0.37	10	127	1.998	0.711	1.287	298.97	0.38	0.00
10.400	34.121	311.502	1.288	19.223		311.78	0.41	10	127	2.019	0.721	1.298	238.68	0.42	0.00
10.500	34.449	326.457	2.922	18.732		326.73	0.89	9	124	2.039	0.732	1.308	248.24	0.90	0.00
10.600	34.777	419.301	4.279	19.324		419.58	1.02	9	124	2.060	0.742	1.318	316.76	1.02	0.00
10.700	35.105	495.731	3.199	16.890		495.97	0.64	10	127	2.081	0.752	1.329	371.70	0.65	0.00
10.800	35.433	567.226	2.635	16.108		567.46	0.46	10	127	2.102	0.762	1.339	422.10	0.47	0.00
10.900	35.761	677.414	3.672	17.924		677.67	0.54	10	127	2.122	0.772	1.350	500.40	0.54	0.00
11.000	36.089	727.066	4.672	26.691		727.45	0.64	10	127	2.143	0.783	1.361	533.05	0.64	0.00
11.100	36.417	691.217	4.336	31.018		691.66	0.63	10	127	2.164	0.793	1.371	502.80	0.63	0.00
11.200	36.745	745.349	1.225	34.171		745.84	0.16	10	127	2.185	0.803	1.382	538.11	0.16	0.00
11.300	37.073	574.355	1.477	24.269		574.70	0.26	10	127	2.206	0.813	1.393	411.09	0.26	0.00
11.400	37.402	235.722	3.413	11.441		235.89	1.45	9	124	2.226	0.824	1.403	166.57	1.46	0.00
11.500	37.730	540.978	2.265	15.565		541.20	0.42	10	127	2.247	0.834	1.413	381.32	0.42	0.00
11.600	38.058	339.869	1.572	15.629		340.09	0.46	10	127	2.268	0.844	1.424	237.23	0.47	0.00
11.700	38.386	301.547	1.972	15.213		301.77	0.65	10	127	2.289	0.854	1.435	208.74	0.66	0.00
11.800	38.714	494.941	3.690	15.982		495.17	0.75	10	127	2.310	0.865	1.445	341.00	0.75	0.00
11.900	39.042	511.895	2.899	16.663		512.13	0.57	10	127	2.331	0.875	1.456	350.14	0.57	0.00
12.000	39.370	363.756	2.085	16.600		364.00	0.57	10	127	2.352	0.885	1.467	246.58	0.58	0.00
12.100	39.698	322.395	2.098	16.814		322.64	0.65	10	127	2.373	0.895	1.477	216.79	0.65	0.00
12.200	40.026	334.060	1.892	17.344		334.31	0.57	10	127	2.393	0.906	1.488	223.07	0.57	0.00
12.300	40.354	362.344	1.544	17.596		362.60	0.43	10	127	2.414	0.916	1.499	240.35	0.43	0.00
12.400	40.682	371.796	1.001	17.773		372.05	0.27	10	127	2.435	0.926	1.509	244.90	0.27	0.00
12.500	41.011	313.035	0.840	17.672		313.29	0.27	10	127	2.456	0.936	1.520	204.51	0.27	0.00
12.600	41.339	292.847	0.936	17.470		293.10	0.32	10	127	2.477	0.946	1.531	189.88	0.32	0.00
12.700	41.667	226.316	1.206	17.256		226.56	0.53	9	124	2.497	0.957	1.541	145.43	0.54	0.00
12.800	41.995	90.716	1.897	16.348		90.95	2.09	7	118	2.517	0.967	1.550	57.06	2.15	0.00
12.900	42.323	36.528	1.519	18.593		36.80	4.13	5	115	2.535	0.977	1.558	21.99	4.43	0.01
13.000	42.651	36.370	1.129	68.140		37.35	3.02	6	115	2.554	0.987	1.567	22.21	3.25	0.11
13.100	42.979	134.345	2.254	208.193		137.34	1.64	8	121	2.574	0.998	1.576	85.49	1.67	0.10
13.200	43.307	480.079	3.733	194.582		482.88	0.77	10	127	2.595	1.008	1.587	302.61	0.78	0.03

$\left\|\begin{array}{c} \bar{N} \\ \overline{0} \end{array}\right\|$														$\stackrel{m}{\square}$																													－	
$\left\|\begin{array}{c} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{array}\right\|$														$\begin{aligned} & \bar{n} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$																														
$\left\|\begin{array}{c} i- \\ \overline{\mathrm{N}} \end{array}\right\|$		苞												$\stackrel{m}{\infty}$																														
$\left\|\begin{array}{c} \ddot{0} \\ \stackrel{0}{0} \\ \hline 0 \end{array}\right\|$		붕웅	$\stackrel{\leftrightarrow}{\stackrel{\pi}{n}}$	$\stackrel{N}{\sim}$		$\stackrel{N}{\Gamma}$	$\begin{aligned} & m \\ & 5 \\ & \end{aligned}$	志	$\stackrel{N}{7}$				$\underset{\sim}{i}$	$\underset{\sim}{寸}$	$\stackrel{8}{8} \stackrel{(6}{\square}$	$\stackrel{0}{0}$	\％	ñ	$\underset{\sim}{\mathbb{N}}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { 合 } \end{aligned}$		\pm	$\bar{\infty}$			$\stackrel{\circ}{8}$	$\stackrel{\underset{\circ}{\circ}}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\frac{\mathrm{O}}{\mathrm{G}}$	\mathfrak{m}	F－	$\begin{aligned} & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	\％	$\stackrel{\substack{\mathrm{m} \\ \underset{\sim}{2}}}{ }$	等	$\stackrel{\stackrel{\rightharpoonup}{7}}{\underset{\sim}{2}}$	$\frac{m}{n}$	$\underset{\sim}{\tilde{N}}$	$\frac{j}{2}$	$\underset{\sim}{\underset{\sim}{c}}$	処	$\dot{\infty}$	$\begin{aligned} & \infty \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \bar{\sigma} \\ & \underset{\sim}{9} \\ & \\ & 0 \end{aligned}$
$\left\|\begin{array}{c} i \stackrel{N}{\mathrm{~N}} \\ \overline{\mathrm{O}} \end{array}\right\|$		⿹勹巳웅						$\left\|\begin{array}{l} 9 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	9	$\frac{8}{i} \stackrel{\alpha}{9}$	$\stackrel{\infty}{\infty} \underset{\sim}{\infty}$		$\stackrel{N}{\mathrm{~N}}$		－	$\stackrel{\sim}{\infty}$	ज	$\stackrel{\sim}{\mathrm{N}}$		－	－		N	욱		尺্ㅓN	$\underset{\sigma}{J}$	$\stackrel{\stackrel{4}{\mathrm{o}} \mathrm{~N}}{2}$	$\stackrel{8}{0}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$		9	4	$\underset{\underset{\sim}{\mathrm{N}}}{\stackrel{\rightharpoonup}{2}}$	$\underset{\sim}{n}$	$\stackrel{?}{8}$	$\mathbf{\infty}$	N	$\stackrel{\text { N }}{\stackrel{1}{5}}$	号	\＃			\％
$\left\|\begin{array}{l} \dot{F} \\ \mathrm{~N} \\ \mathbf{O} \end{array}\right\|$		$0 \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	g\％	¢ ¢ ¢	¢ ¢ ¢ ¢	0	＊	＇		\％	－	8	\％		\％ 9	－	\％	ก	18	$\stackrel{9}{7}$	＊	¢	＋	）	\％	f	ฑ	－		7		N	48	\％	$\stackrel{10}{\square}$	18	10	J	寸	\％	∞			909
$\left\|\begin{array}{c} \mathbf{N} \\ \overline{0} \end{array}\right\|$		Op	뀬	슫윽 ㅛㅛㅇ			단	0	4	\cdots	ำำ	$\stackrel{\square}{\square}$	\because		\cdots	우	内	∞	8	둔	앙	$\stackrel{\infty}{\square}$	N		m	$\stackrel{\square}{\square}$	\cdots	ㄲ	8	\％	안	\％	$\stackrel{\square}{\square}$	8	∞	8	\％	－	－	「	\％			\％
$\left\|\begin{array}{c} \stackrel{N}{N} \\ \overline{0} \end{array}\right\|$			ぶ¢	¢	寸	－	Ni	O	0	N	－	O		N	ल	${ }_{0}^{8}$	\％	¢	\％	\％	\bigcirc	\pm	oid	\％	¢	$\xrightarrow{\mathrm{N}}$	m	－	악	$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$	－	¢	$\stackrel{3}{6}$	4	\％	$\stackrel{+}{\substack{\text { ¢ }}}$	$\stackrel{N}{*}$	\％	0	ヘั	$\stackrel{\square}{¢}$	∞	－	
$\left\|\begin{array}{c} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{array}\right\|$	$\begin{aligned} & \stackrel{0}{2} \\ & \frac{5}{\omega} \end{aligned}$					－	¢	N	－	－	¢	O－	～～N	Nom	\％	N	宫	＋	¢	N	－	O	N－	$\stackrel{0}{\square}$	\％	－	爫	O	\mathfrak{l}	¢	$\stackrel{\square}{8}$	8	\bigcirc	¢		ก	is	9	－	－	N	$\stackrel{\varphi}{\varphi}$	앙	$\begin{array}{c\|c} 0 \\ \stackrel{y}{N} \\ \mathrm{~N} \end{array}$
$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \overline{\mathrm{O}} \end{gathered}\right.$								－	＋			cr｜r				\mathfrak{c}	N		¢		$\begin{gathered} t \\ 山 \\ \vdots \\ 0 \\ m \end{gathered}$	$\begin{gathered} \text { N} \\ \text { 山̈ } \\ \vdots \\ \end{gathered}$	N	$\begin{aligned} & \stackrel{N}{山} \\ & \stackrel{\rightharpoonup}{\mathrm{~m}} \end{aligned}$	No	N					＋	N	¢	¢	＋	¢	N				¢	－	\bigcirc	
$\left\|\frac{\overline{9}}{\overline{0}}\right\|$									$\left\{\begin{array}{l} -\infty \\ \infty \\ \infty \\ \infty \end{array}\right.$				$\begin{aligned} & \text { G } \\ & \stackrel{\infty}{\infty} \\ & \text { in } \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \\ & \\ & \hline \end{aligned}$	N	M	¢	W	濁	$\begin{aligned} & \overline{5} \\ & \underset{寸}{4} \\ & \underset{y}{2} \end{aligned}$	N	＋	\％	$\begin{aligned} & \mathfrak{N} \\ & \underset{\sim}{9} \\ & \end{aligned}$	$0 \begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	－			¢	$\stackrel{?}{7}$	－	$\stackrel{0}{0}$	N	O	N	$\stackrel{\Gamma}{\sim}$			\％	N	N	
$\frac{\bar{\infty}}{\frac{1}{0}}$		$\stackrel{\underset{\sim}{c}}{\stackrel{\rightharpoonup}{4}}$		MU		$\stackrel{\text { no }}{\sim}$	$\stackrel{\sim}{-}$	－	－	－	－	No		$\underset{\sim}{N} \underset{\sim}{N}$	$\stackrel{\square}{-9}$	N	N	$\stackrel{\sim}{\sim}$	$\stackrel{9}{8}$	$\stackrel{5}{5}$			$\stackrel{\Im}{\underset{\sim}{~}}$	$\stackrel{\text { N}}{\sim}$	－	$\stackrel{8}{\square}$	$\stackrel{\leftrightarrow}{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{7}$	$\stackrel{\sim}{n}$	\＃	$\stackrel{\text { ¢ }}{\text { ¢ }}$	φ	\pm	$\stackrel{\square}{\square}$	\％	$\stackrel{\mathrm{C}}{\stackrel{\mathrm{H}}{+}}$	$\stackrel{?}{\stackrel{m}{+}}$	8	$\stackrel{N}{0}$	N	N	$\stackrel{\text { N }}{\text { N }}$	
$\left\|\begin{array}{l} i \\ \frac{i}{0} \\ \hline \mathbf{0} \end{array}\right\|$		N	－	Nor	$\cdots 0$	00	$0 \cdot$	－	0	\cdots	N	No		m \bullet	0	\cdots		\bullet	0	∞	ω	－	N	N	へ	，	ω	，		－	\bigcirc	N	－	－	ω	ω	－	－	ω	\bullet		m	\pm	00
$\left\lvert\, \begin{gathered} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{gathered}\right.$		$\underset{N}{N}$							$\begin{array}{ll} N \\ \vdots \\ \vdots \\ 0 \\ 0 \end{array}$			$\frac{0}{9}$				$\begin{aligned} & \text { n } \\ & \hline \\ & \hline \\ & \end{aligned}$	\mathfrak{m}	$\stackrel{\text { N}}{\text { ¢ }}$	$\begin{aligned} & \text { g } \\ & \text { g } \\ & \text { m } \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{\sim}{2} \end{gathered}$	$\stackrel{\leftrightarrow}{2}$		－	\％	$\stackrel{\sim}{\sim}$	$\begin{gathered} \stackrel{n}{c} \\ \stackrel{c}{\mathrm{~m}} \end{gathered}$	$\begin{gathered} \text { N } \\ \substack{0 \\ \vdots \\ m} \end{gathered}$	－	$\begin{aligned} & \infty \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\mathfrak{c}	\％	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { dien } \end{aligned}$	\％	g	O	W	N	$\stackrel{\rightharpoonup}{\square}$	$\xrightarrow{\text { d }}$	$\begin{aligned} & \hat{8} \\ & \frac{0}{8} \end{aligned}$	$\frac{18}{\frac{2}{8}}$	N	－	
$\bar{\circ}$		E	So				$\frac{8}{8} \frac{8}{9}$	－	－			$\begin{aligned} & 9.8 \\ & 80 \\ & 0 \\ & 0 \end{aligned}$	8 0 0			$$	－	－	0	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{1} \\ & 0 \end{aligned}$	0	－		\％	$\begin{gathered} 8 \\ \stackrel{\rightharpoonup}{2} \\ \underset{F}{2} \end{gathered}$	$\left\{\begin{array}{c} 0 \\ y \\ = \\ = \end{array}\right.$	吕	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & = \\ & = \end{aligned}$	¢	$\stackrel{\square}{\stackrel{-}{+}}$	$\begin{aligned} & 8 \\ & \hline \\ & \hline \end{aligned}$	¢	N	ผ	$\stackrel{\sim}{\sim}$	N	$\begin{aligned} & 8 \\ & 0 \\ & \text { n } \\ & \end{aligned}$	ㄴ	¢	－	－	$\stackrel{\mathrm{c}}{ }$	$$

Col 11	Col 21	Col 31	Col 41	Col5i	Col 61	Col 71	C018i	Col9i	Col 10i	Col 11i	Col 12i	Col 13 i	Col 141	Col 15i	Col 16i
Depth	Depth		is	u	Other	qt	Rf	SBT	Unit Weight, y	$\begin{array}{\|c\|} \hline \text { Total } \\ \hline \text { Overburden } \\ \hline \text { Stress, } \sigma v \\ \hline \end{array}$	Insitu pore pressure, uo	Effective overburden stress, $\sigma^{\prime} \mathrm{V}$	Normalized cone resistance, Qtl	Normalized Friction raio, Fr	Normalized pore pressure ratio, Ba
(m)	(fi)	(ist)	(tsf)	(psi)		(tst)	(\%)		(pect)	(isf)	(tst)	(tst)			
13.300	43.635	554.892	5.280	118.394		556.60	0.95	10	127	2.616	1.018	1.598	346.72	0.95	0.01
13.400	43.963	470.162	5.913	92.574		471.49	1.25		124	2.636	1.028	1.608	291.60	1.26	0.01
13.500	44.291	470.171	6.686	79.897		471.32	1.42	9	124	2.657	1.039	1.618	289.65	1.43	0.01
13.600	44.619	446.079	5.979	76.289		447.18	1.34	9	124	2.677	1.049	1.628	273.01	1.35	0.01
13.700	44.948	461.973	4.198	78.837		463.11	0.91	10	127	2.698	1.059	1.639	280.94	0.91	0.01
13.800	45.276	518.011	3.896	78.408		519.14	0.75	10	127	2.719	1.069	1.649	313.09	0.75	0.01
13.900	45.604	519.628	4.546	75.028		520.71	0.87	10	127	2.740	1.080	1.660	312.01	0.88	0.01
14.000	45.932	522.305	4.841	69.869		523.31	0.93	10	127	2.761	1.090	1.671	311.57	0.93	0.01
14.100	46.260	524.322	4.704	67.081		525.29	0.90	10	127	2.781	1.100	1.681	310.76	0.90	0.01
14.200	46.588	530.150	4.357	67.548		531.12	0.82	10	127	2.802	1.110	1.692	312.24	0.82	0.01
14.300	46.916	531.832	4.266	70.335		532.84	0.80	10	127	2.823	1.120	1.703	311.28	0.80	0.01
14.400	47.244	532.371	3.182	70.877		533.39	0.60	10	127	2.844	1.131	1.713	309.65	0.60	0.01
14.500	47.572	538.701	1.801	69.755		539.71	0.33	10	127	2.865	1.141	1.724	311.39	0.34	0.01
14.600	47.900	578.835	1.393	70.890		579.86	0.24	10	127	2.886	1.151	1.735	332.61	0.24	0.01
14.700	48.228	639.148	2.231	90.000		640.44	0.35	10	127	2.907	1.161	1.745	365.29	0.35	0.01
14.800	48.556	568.406	3.711	103.207		569.89	0.65	10	127	2.928	1.172	1.756	322.88	0.65	0.01
14.900	48.885	536.749	3.719	91.237		538.06	0.69	10	127	2.949	1.182	1.767	302.91	0.69	0.01
15.000	49.213	561.519	2.893	86.885		562.77	0.51	10	127	2.969	1.192	1.777	314.98	0.52	0.01
15.100	49.541	570.442	2.439	78.080		571.57	0.43	10	127	2.990	1.202	1.788	318.01	0.43	0.01
15.200	49.869	517.407	3.824	62.401		518.31	0.74	10	127	3.011	1.213	1.799	286.51	0.74	0.01
15.300	50.197	476.872	1.464	59.740		477.73	0.31	10	127	3.032	1.223	1.809	262.38	0.31	0.01

23.29
$\begin{array}{lll}246.50 & 1.64 & 0.66 \\ 286.70 & 1.13 & 0.39\end{array}$
16-0107-CPT2.ca1
23.29
23.78
24.27 24.77 25.26
25.75 25.75
26.24 26.73 27.23
27.72 28.21
28.70 29.19 29.69
30.18 30.67
31.16 31.16 31.66
32.15

32.64 33.13 33.62 $\begin{array}{ll}276.80 & 0.99 \\ 178.90 & 1.61\end{array}$ $\begin{array}{ll}32.23 & 1.13 \\ 37.11 & 1.10\end{array}$ $\begin{array}{ll}37.11 & 1.10 \\ 131.50 & 2.02\end{array}$ $\begin{array}{ll}526.20 & 3.11 \\ 648.10 & 4.77\end{array}$ $\begin{array}{ll}551.80 & 4.01 \\ 464.90 & 5.09\end{array}$ $\begin{array}{ll}464.90 & 5.09 \\ 292.90 & 0.81 \\ 327.40 & 3.39 \\ 513.60 & 2.88\end{array}$ $\begin{array}{ll}513.60 & 2.88 \\ 397.70 & 2.74\end{array}$ $\begin{array}{ll}475.70 & 3.48 \\ 639.70 & 3.07 \\ 493.90 & 3.49\end{array}$ | 2.15 |
| :--- |
| 32.64 | 34.12

34.61 35.10
35.59 36.08 36.58
37.07 37.56 38.05
38.54 38.54
39.04 39.53 40.02 40.51
41.01 $41.01 \quad 311.40 \quad 1.14$ $41.50 \quad 302.10$ 41.99
42.48 42.48 $\begin{array}{lll}42.97 & 50.27 & 0.96 \\ 43.27 & 5.34\end{array}$ 43.47
43.96 44.45
$\begin{array}{ll}44.94 & 45 \\ 45.43 & 51\end{array}$
$45.93 \quad 5$
$46.42 \quad 5$
46.91
47.40
47.40
47.90
48.39
48.88
49.37
$\begin{array}{lll}49.86 & 508.50 & 3.99\end{array}$
0.39
0.36
0.90

163.90	3.49	0.71
	3.30	2.01

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:
Calculation segment, dz=0.050 ft
User defined Print Interval, $d p=0.50 \mathrm{ft}$
Peak Ground Acceleration (PGA), a_max $=0.65 \mathrm{~g}$

$\begin{aligned} & \text { Depth } \\ & \mathrm{ft} \end{aligned}$	gamma pcf	sigma atm	gamma' pcf	sigma' atm	rd	$\begin{aligned} & \mathrm{mZ} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & a(z) \\ & g \end{aligned}$	CSR	x fs1	$=$ CSRfs
0.16	120.00	0.009	120.00	0.009	1.00	0.000	0.650	0.42	1.00	0.42
0.66	120.00	0.037	120.00	0.037	1.00	0.000	0.650	0.42	1.00	0.42
1.16	120.00	0.066	120.00	0.066	1.00	0.000	0.650	0.42	1.00	0.42
1.66	120.00	0.094	120.00	0.094	1.00	0.000	0.650	0.42	1.00	0.42
2.16	120.00	0.122	120.00	0.122	0.99	0.000	0.650	0.42	1.00	0.42
2.66	120.00	0.151	120.00	0.151	0.99	0.000	0.650	0.42	1.00	0.42
3.16	120.00	0.179	120.00	0.179	0.99	0.000	0.650	0.42	1.00	0.42
3.66	120.00	0.208	120.00	0.208	0.99	0.000	0.650	0.42	1.00	0.42
4.16	120.00	0.236	120.00	0.236	0.99	0.000	0.650	0.42	1.00	0.42
4.66	120.00	0.264	120.00	0.264	0.99	0.000	0.650	0.42	1.00	0.42
5.16	120.00	0.293	57.60	0.288	0.99	0.000	0.650	0.42	1.00	0.42
5.66	120.00	0.321	57.60	0.302	0.99	0.000	0.650	0.44	1.00	0.44
6.16	120.00	0.349	57.60	0.315	0.99	0.000	0.650	0.46	1.00	0.46

Page 2

Page 3

				$16-0107$-CPT2.cal						
47.66	120.00	2.703	57.60	1.445	0.79	0.000	0.650	0.62	1.00	0.62
48.16	120.00	2.731	57.60	1.459	0.78	0.000	0.650	0.62	1.00	0.62
48.66	120.00	2.759	57.60	1.472	0.78	0.000	0.650	0.62	1.00	0.62
49.16	120.00	2.788	57.60	1.486	0.77	0.000	0.650	0.61	1.00	0.61
49.66	120.00	2.816	57.60	1.499	0.77	0.000	0.650	0.61	1.00	0.61

CSR is based on water table at 5.00 during earthquake
CRR Calculation from CPT data, using Modify Robertson's Method:

Depth ft	qc atm	fric. atm	n	Q	Rf	Ic	Cq	Fines $\%$	KC	$\begin{aligned} & \text { qc1n } \\ & \text { atm } \end{aligned}$	$\begin{aligned} & \text { qclf } \\ & \text { atm } \end{aligned}$	CRR7. 5
0.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
0.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
0.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
0.66	0.00	0.00	1.00	1.00E-4	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
5.16			1.00	$9.07 \mathrm{E1}$	3.07	2.28						
5.16			0.50	4.96 E 1	3.07	2.46						
5.16	26.84	0.81	0.50	4.96 El	3.07	2.46	1.85	29.01	0.64	49.63	138.22	0.33
5.66			1.00	9.09E1	2.97	2.27						
5.66			0.50	$5.21 \mathrm{E1}$	2.97	2.44						
5.66	29.50	0.87	0.50	$5.21 \mathrm{E1}$	2.97	2.44	1.77	27.96	0.61	52.08	134.57	0.31
6.16			1.00	8.83 El	3.35	2.32						
6.16			0.50	5.28 E 1	3.35	2.47						
6.16	31.20	1.03	0.50	5.28 E 1	3.35	2.47	1.69	29.34	0.65	52.79	150.83	0.40
6.66			1.00	1.07E2	3.04	2.23						
6.66			0.50	$6.66 \mathrm{E1}$	3.04	2.37						
6.66	40.95	1.23	0.50	6.66 E 1	3.04	2.37	1.63	25.14	0.54	66.64	144.16	0.36
7.16			1.00	1.34 E 2	2.14	2.05						
7.16			0.50	8.60E1	2.14	2.18						
7.16	54.80	1.16	0.50	8.60E1	2.14	2.18	1.57	18.40	0.36	86.01	133.94	0.30
7.66			1.00	2.26E2	1.19	1.71						
7.66			0.50	1.49 E 2	1.19	1.83						
7.66	98.50	1.17	0.50	1.49 E 2	1.19	1.83	1.52	8.84	0.10	149.46	166.52	0.51
8.16			1.00	2.57E2	0.76	1.53						
8.16			0.50	1.75 E 2	0.76	1.65						
8.16	119.29	0.91	0.50	1.75 E 2	0.76	1.65	1.47	5.20	0.01	175.36	176.29	0.59
8.66			1.00	2.73E2	0.79	1.52						
8.66			0.50	1.92 E 2	0.79	1.63						
8.66	134.74	1.06	0.50	1.92 E 2	0.79	1.63	1.43	4.84	0.00	192.28	192.28	0.74
9.16			1.00	2.10E2	0.91	1.64						
9.16			0.50	1.52 E 2	0.91	1.75						
9.16	109.62	0.99	0.50	1.52 E 2	0.91	1.75	1.39	7.00	0.05	152.09	160.65	0.47
9.66			1.00	6.29 El	2.11	2.28						
9.66			0.50	4.73E1	2.11	2.37						
9.66	34.98	0.73	0.50	4.73 E 1	2.11	2.37	1.35	25.14	0.54	47.27	102.23	0.18
10.16			1.00	$6.31 \mathrm{E1}$	1.93	2.25						
10.16			0.50	4.85E1	1.93	2.33						
10.16	36.68	0.70	0.50	4.85 E 1	1.93	2.33	1.32	23.80	0.50	48.51	97.39	0.17
10.66			1.00	$2.44 \mathrm{E1}$	2.95	2.68						
10.66	14.86	0.42	1.00	$2.44 \mathrm{E1}$	2.95	2.68	1.00	NoLiq	1.00	14.86	14.86	2.08
11.16			1.00	$4.51 \mathrm{E1}$	2.26	2.40						
11.16			0.50	3.57E1	2.26	2.48						
11.16	27.66	0.61	0.50	$3.57 \mathrm{E1}$	2.26	2.48	1.29	29.81	0.66	35.74	105.87	0.19
11.66			1.00	5.32 El	2.21	2.34						
11.66			0.50	$4.24 \mathrm{E1}$	2.21	2.42						
11.66	33.22	0.72	0.50	$4.24 \mathrm{E1}$	2.21	2.42	1.28	27.11	0.59	42.45	103.58	0.18
12.16			1.00	4.50 El	2.62	2.45						
12.16			0.50	$3.65 \mathrm{E1}$	2.62	2.51						
12.16	28.90	0.74	0.50	3.65 E 1	2.62	2.51	1.26	31.36	0.70	36.52	123.23	0.25
12.66			1.00	4.80 E 1	1.94	2.34						
12.66			0.50	3.93 E 1	1.94	2.41						
12.66	31.43	0.59	0.50	3.93 EL	1.94	2.41	1.25	26.66	0.58	39.29	93.19	0.16
13.16			1.00	1.70 E 1	3.28	2.83						
13.16	11.84	0.36	1.00	1.70 E 1	3.28	2.83	1.00	NoLiq	1.00	11.84	11.84	2.08

Page 4

	16-0107-CPT2.cal											
13.66			1.00	$1.37 \mathrm{E1}$	3.21	2.90	龶					
13.66	9.93	0.29	1.00	$1.37 \mathrm{E1}$	3.21	2.90	1.00	NoLiq	1.00	9.93	9.93	2.08
14.16			1.00	$1.44 \mathrm{E1}$	3.25	2.89						
14.16	10.59	0.32	1.00	1.44 EL	3.25	2.89	1.00	NoLiq	1.00	10.59	10.59	2.08
14.66			1.00	1.34 EI	4.01	2.97						
14.66	10.11	0.37	1.00	$1.34 \mathrm{E1}$	4.01	2.97	1.00	NoLiq	1.00	10.11	10.11	2.08
15.16			1.00	$1.17 \mathrm{E1}$	4.29	3.03						
15.16	9.17	0.36	1.00	$1.17 \mathrm{E1}$	4.29	3.03	1.00	NoLiq	1.00	9.17	9.17	2.08
15.66			1.00	$1.25 \mathrm{E1}$	5.38	3.07						
15.66	9.90	0.49	1.00	1.25 E 1	5.38	3.07	1.00	NoLiq	1.00	9.90	9.90	2.08
16.16			1.00	8.43 EO	6.02	3.24						
16.16	7.12	0.37	1.00	8.43 EO	6.02	3.24	1.00	NoLiq	1.00	7.12	7.12	2.08
16.66			1.00	$1.07 \mathrm{E1}$	3.61	3.02						
16.66	8.93	0.29	1.00	$1.07 \mathrm{E1}$	3.61	3.02	1.00	NoLiq	1.00	8.93	8.93	2.08
17.16			1.00	1.52 E 1	2.07	2.76						
17.16	12.56	0.24	1.00	1.52 EI	2.07	2.76	1.00	NoLiq	1.00	12.56	12.56	2.08
17.66			1.00	1.27 El	2.09	2.82						
17.66	10.88	0.21	1.00	1.27 El	2.09	2.82	1.00	NoLiq	1.00	10.88	10.88	2.08
18.16			1.00	1.50 E 1	2.65	2.82						
18.16	12.85	0.31	1.00	$1.50 \mathrm{E1}$	2.65	2.82	1.00	NoLiq	1.00	12.85	12.85	2.08
18.66			1.00	$1.52 \mathrm{E1}$	4.02	2.93						
18.66	13.25	0.49	1.00	1.52 El	4.02	2.93	1.00	NoLiq	1.00	13.25	13.25	2.08
19.16			1.00	3.03 E 1	3.38	2.65						
19.16	25.85	0.84	1.00	$3.03 \mathrm{E1}$	3.38	2.65	1.00	NoLiq	1.00	25.85	25.85	2.08
19.66			1.00	$2.07 \mathrm{E1}$	4.11	2.83						
19.66	18.32	0.71	1.00	2.07 E 1	4.11	2.83	1.00	NoLiq	1.00	18.32	18.32	2.08
20.16			1.00	1.76 El	3.81	2.86						
20.16	16.03	0.57	1.00	1.76 E 1	3.81	2.86	1.00	NoLiq	1.00	16.03	16.03	2.08
20.66			1.00	$2.51 \mathrm{E1}$	3.85	2.75						
20.66	22.69	0.83	1.00	$2.51 \mathrm{E1}$	3.85	2.75	1.00	NoLiq	1.00	22.69	22.69	2.08
21.16			1.00	$4.28 \mathrm{E1}$	1.82	2.36						
21.16	38.50	0.68	1.00	4.28 E 1	1.82	2.36	1.00	NoLiq	1.00	38.50	38.50	2.08
21.66			1.00	3.59 E 1	3.28	2.58						
21.66	32.96	1.04	1.00	3.59 E 1	3.28	2.58	1.00	NoLiq	1.00	32.96	32.96	2.08
22.16			1.00	6.93 E 1	1.89	2.21						
22.16			0.50	6.70 E 1	1.89	2.22						
22.16	63.55	1.18	0.50	6.70 El	1.89	2.22	1.06	19.79	0.39	67.05	110.79	0.21
22.66			1.00	7.62 EI	2.13	2.22						
22.66			0.50	$7.41 \mathrm{E1}$	2.13	2.23						
22.66	70.78	1.48	0.50	$7.41 \mathrm{E1}$	2.13	2.23	1.05	19.91	0.40	74.11	123.13	0.25
23.16			1.00	2.34 E 2	0.98	1.64						
23.16			0.50	2.26 E 2	0.98	1.65						
23.16	217.58	2.12	0.50	$2.26 E 2$	0.98	1.65	1.04	5.16	0.00	226.16	227.15	1.17
23.66			1.00	2.96 E 2	0.44	1.32						
23.66			0.50	2.88 E 2	0.44	1.33						
23.66	279.05	1.22	0.50	2.88 E 2	0.44	1.33	1.03	0.70	0.00	287.94	287.94	2.08
24.16			1.00	2.82 E 2	0.38	1.29						
24.16	270.33	1.02	1.00	2.82 E 2	0.38	1.29	1.00	NoLiq	1.00	270.33	270.33	2.08
24.66			1.00	2.43 E 2	0.54	1.44						
24.66	236.66	1.28	1.00	2.43 E 2	0.54	1.44	1.00	NoLiq	1.00	236.66	236.66	2.08
25.16			1.00	4.29 El	3.20	2.52						
25.16	43.51	1.35	1.00	$4.29 \mathrm{E1}$	3.20	2.52	1.00	NoLiq	1.00	43.51	43.51	2.08
25.66			1.00	3.73 E 1	2.78	2.52						
25.66	38.49	1.03	1.00	3.73 E 1	2.78	2.52	1.00	NoLiq	1.00	38.49	38.49	2.08
26.16			1.00	$8.47 \mathrm{E1}$	2.59	2.25						
26.16			0.50	$8.65 \mathrm{E1}$	2.59	2.24						
26.16	86.77	2.21	0.50	8.65 El	2.59	2.24	1.00	20.38	0.41	86.46	146.70	0.37
26.66			1.00	4.80 E 2	0.65	1.30						
26.66			0.50	4.87 E 2	0.65	1.30						
26.66	491.75	3.18	0.50	4.87E2	0.65	1.30	0.99	0.36	0.00	486.71	486.71	2.08
27.16			1.00	6.18 E 2	0.66	1.24						
27.16			0.50	6.30E2	0.66	1.24						
27.16	641.00	4.25	0.50	6.30E2	0.66	1.24	0.98	0.00	0.00	500.00	500.00	2.08
27.66			1.00	5.57E2	0.67	1.27						
27.66			0.50	5.72E2	0.67	1.27						
27.66	585.69	3.93	0.50	5.72 E 2	0.67	1.27	0.98	0.08	0.00	500.00	500.00	2.08
28.16			1.00	4.57 E 2	1.02	1.47						
28.16			0.50	4.73 E 2	1.02	1.46						
28.16	486.93	4.96	0.50	4.73 E 2	1.02	1.46	0.97	2.35	0.00	472.58	472.58	2.08
28.66			1.00	$2.85 E 2$	0.29	1.23						
28.66			0.50	2.97E2	0.29	1.21						
28.66	307.71	0.90	0.50	2.97E2	0.29	1.21	0.96	0.00	0.00	296.74	296.74	2.08
29.16			1.00	2.86 E 2	0.96	1.57						
29.16			0.50	3.00 E 2	0.96	1.56						
29.16	312.70	2.99	0.50	3.00 E 2	0.96	1.56	0.96	3.72	0.00	299.67	299.67	2.08
29.66			1.00	4.56 E 2	0.66	1.32						
29.66			0.50	4.80 E 2	0.66	1.30						
29.66	504.43	3.32	0.50	4.80 E 2	0.66	1.30	0.95	0.45	0.00	480.41	480.41	2.08
30.16			1.00	3.60 E 2	0.70	1.40						
30.16			0.50	3.82 E 2	0.70	1.39						
30.16	403.63	2.82	0.50	3.82E2	0.70	1.39	0.95	1.37	0.00	382.07	382.07	2.08
30.66			1.00	4.18 E 2	0.73	1.38						
							Page					

	16-0107-CPT2.cal											
30.66			0.50	4.45E2	0.73	1.36						
30.66	473.49	3.46	0.50	4.45 E 2	0.73	1.36	0.94	1.06	0.00	445.48	445.48	2.08
31.16			1.00	5.58 E 2	0.48	1.16						
31.16			0.50	5.98 E 2	0.48	1.14						
31.16	639.66	3.07	0.50	5.98 E 2	0.48	1.14	0.94	0.00	0.00	500.00	500.00	2.08
31.66			1.00	4.25 E 2	0.71	1.36						
31.66			0.50	4.59 E 2	0.71	1.34						
31.66	493.95	3.49	0.50	4.59 E 2	0.71	1.34	0.93	0.84	0.00	459.24	459.24	2.08
32.16			1.00	1.33 E 2	2.10	2.05						
32.16			0.50	1.46 EL	2.10	2.02						
32.16	157.89	3.28	0.50	1.46E2	2.10	2.02	0.92	13.52	0.23	145.93	188.91	0.71
32.66			1.00	5.77E1	2.83	2.39						
32.66			0.50	$6.45 \mathrm{E1}$	2.83	2.36						
32.66	70.16	1.93	0.50	$6.45 \mathrm{E1}$	2.83	2.36	0.92	24.65	0.52	64.48	135.63	0.31
33.16			1.00	3.46 E 2	1.13	1.58						
33.16			0.50	3.80E2	1.13	1.55						
33.16	416.08	4.66	0.50	3.80 E 2	1.13	1.55	0.91	3.60	0.00	380.19	380.19	2.08
33.66			1.00	3.53 E 2	0.35	1.20						
33.66			0.50	3.91 E 2	0.35	1.16						
33.66	429.80	1.49	0.50	3.91 E 2	0.35	1.16	0.91	0.00	0.00	390.51	390.51	2.08
34.16			1.00	2.47E2	0.38	1.35						
34.16			0.50	2.75E2	0.38	1.31						
34.16	304.19	1.16	0.50	2.75E2	0.38	1.31	0.90	0.49	0.00	274.84	274.84	2.01
34.66			1.00	3.28 E 2	1.24	1.62						
34.66			0.50	3.66 E 2	1.24	1.60						
34.66	407.79	5.03	0.50	3.66 E 2	1.24	1.60	0.90	4.29	0.00	366.42	366.42	2.08
35.16			1.00	4.12 E 2	0.59	1.31						
35.16			0.50	4.62 E 2	0.59	1.28						
35.16	517.46	3.06	0.50	4.62 E 2	0.59	1.28	0.89	0.19	0.00	462.43	462.43	2.08
35.66			1.00	4.97 E 2	0.45	1.16						
35.66			0.50	$5.61 \mathrm{E2}$	0.45	1.13						
35.66	631.61	2.81	0.50	5.61 E 2	0.45	1.13	0.89	0.00	0.00	500.00	500.00	2.08
36.16			1.00	5.64 E 2	0.62	1.24						
36.16			0.50	6.40 E 2	0.62	1.21						
36.16	723.39	4.49	0.50	6.40 E 2	0.62	1.21	0.88	0.00	0.00	500.00	500.00	2.08
36.66			1.00	5.47E2	0.26	0.97						
36.66			0.50	6.23 E 2	0.26	0.93						
36.66	708.97	1.83	0.50	6.23 E 2	0.26	0.93	0.88	0.00	0.00	500.00	500.00	2.08
37.16			1.00	3.06 E 2	0.62	1.41						
37.16			0.50	3.51 E 2	0.62	1.37						
37.16	401.78	2.47	0.50	3.51E2	0.62	1.37	0.87	1.17	0.00	351.49	351.49	2.08
37.66			1.00	4.38 E 2	0.43	1.19						
37.66			0.50	5.06 E 2	0.43	1.15						
37.66	580.91	2.49	0.50	5.06 E 2	0.43	1.15	0.87	0.00	0.00	500.00	500.00	2.08
38.16			1.00	2.07 E 2	0.56	1.51						
38.16			0.50	2.41 E 2	0.56	1.46						
38.16	278.11	1.54	0.50	2.41 E 2	0.56	1.46	0.87	2.22	0.00	240.81	240.81	1.38
38.66			1.00	3.54 E 2	0.85	1.47						
38.66			0.50	4.13E2	0.85	1.43						
38.66	479.04	4.06	0.50	4.13E2	0.85	1.43	0.86	1.93	0.00	412.69	412.69	2.08
39.16			1.00	3.25 E 2	0.54	1.35						
39.16			0.50	3.81 E 2	0.54	1.30						
39.16	444.72	2.39	0.50	3.81 E 2	0.54	1.30	0.86	0.43	0.00	381.20	381.20	2.08
39.66			1.00	$2.29 E 2$	0.66	1.52						
39.66			0.50	2.71E2	0.66	1.47						
39.66	317.50	2.09	0.50	2.71E2	0.66	1.47	0.85	2.43	0.00	270.80	270.80	1.93
40.16			1.00	2.43 E 2	0.53	1.44						
40.16			0.50	2.88 E 2	0.53	1.38						
40.16	339.38	1.78	0.50	2.88 E 2	0.53	1.38	0.85	1.30	0.00	288.04	288.04	2.08
40.66			1.00	2.72E2	0.26	1.21						
40.66			0.50	3.25 E 2	0.26	1.15						
40.66	384.24	1.00	0.50	3.25 E 2	0.26	1.15	0.84	0.00	0.00	324.53	324.53	2.08
41.16			1.00	2.03 E 2	0.30	1.35						
41.16			0.50	2.44 E 2	0.30	1.29						
41.16	289.73	0.85	0.50	2.44 E 2	0.30	1.29	0.84	0.26	0.00	243.53	243.53	1.42
41.66			1.00	1.62 E 2	0.51	1.56						
41.66			0.50	1.96 E 2	0.51	1.50						
41.66	234.25	1.17	0.50	1.96 E 2	0.51	1.50	0.84	2.80	0.00	195.95	195.95	0.78
42.16			1.00	$3.02 \mathrm{E1}$	4.68	2.74						
42.16	45.94	2.04	1.00	$3.02 \mathrm{E1}$	4.68	2.74	1.00	NoLiq	1.00	45.94	45.94	2.08
42.66			1.00	2.27E1	2.48	2.66						
42.66	35.42	0.82	1.00	2.27E1	2.48	2.66	1.00	NoLiq	1.00	35.42	35.42	2.08
43.16			1.00	2.28 E 2	0.89	1.61						
43.16	337.03	2.97	1.00	2.28 E 2	0.89	1.61	1.00	NoLiq	1.00	337.03	337.03	2.08
43.66			1.00	3.73 E 2	1.01	1.52						
43.66	555.11	5.56	1.00	3.73 E 2	1.01	1.52	1.00	NoLiq	1.00	555.11	555.11	2.08
44.16			1.00	3.04 E 2	1.41	1.69						
44.16			0.50	3.74 E 2	1.41	1.64						
44.16	457.87	6.40	0.50	3.74 E 2	1.41	1.64	0.82	4.96	0.00	374.21	374.21	2.08
44.66			1.00	2.88 E 2	1.28	1.67						
44.66			0.50	3.57 E 2	1.28	1.61						
44.66	438.26	5.58	0.50	3.57 E 2	1.28	1.61	0.81	4.60	0.00	356.56	356.56	2.08
							Page					

Fines have been calculated, and correction is made by Modify Robertson Method.
Fines=NoLiq means the soils are not liquefiable.
CRR is based on water table at 10.00 during In-Situ Testing

16-0107-CPT2.cal

* F.S.<1: Liquefaction Potential Zone. (If above water table: F.S.=5)
\wedge No-1iquefiable Soils or above Water Table.
(F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)
CPT convert to SPT for Settlement Analysis:
Fines Correction for Settlement Analysis:

Depth ft	Ic	qc/N60	qc1	(N1) 60	Fines	d(N1) 60 (N1) $60 s$	
0.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
0.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
1.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
1.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
2.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
2.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
3.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
3.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
4.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
4.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
5.16	2.46	3.95	138.22	34.99	29.01	0.00	34.99
5.66	2.44	4.00	134.57	33.67	27.96	0.00	33.67
6.16	2.47	3.94	150.83	38.32	29.34	0.00	38.32
6.66	2.37	4.12	144.16	34.96	25.14	0.00	34.96

Page 8

					16-0107-CPT2.ca1		
48.16	0.99	6.66	500.00	75.04	0.00	0.00	75.04
48.66	1.36	5.98	431.93	72.18	1.07	0.00	72.18
49.16	1.30	6.09	434.48	71.33	0.45	0.00	71.33
49.66	1.26	6.18	433.95	70.27	0.00	0.00	70.27

(N1) 60 s has been fines corrected in liquefaction analysis, therefore $d(N 1) 60=0$.
(N1) 60 is converted from qc1, (N1) 60 s is after fines correction
Fines=NoLiq means the soils are not liquefiable.

Settlement of Saturated Sands:

$\begin{aligned} & \text { Sett1 } \\ & \text { Depth } \end{aligned}$ ft	CSRsf	/ MSF*	$=C S R m$	F.S.	Fines \%	(N1) 60 s	$\begin{aligned} & \text { Dr } \\ & \text { \% } \end{aligned}$	$\begin{aligned} & \text { ec } \\ & \% \end{aligned}$	$\begin{aligned} & \text { dsz } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { dsp } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { in. } \end{aligned}$
49.96	0.61	1.00	0.61	4.65	1.74	67.22	100.00	0.000	0.0 EO	0.000	0.000
49.66	0.61	1.00	0.61	4.64	0.00	70.27	100.00	0.000	0.0 EO	0.000	0.000
49.16	0.61	1.00	0.61	4.63	0.45	71.33	100.00	0.000	0.0 EO	0.000	0.000
48.66	0.62	1.00	0.62	4.62	1.07	72.18	100.00	0.000	0.0 EO	0.000	0.000
48.16	0.62	1.00	0.62	4.60	0.00	75.04	100.00	0.000	0.0 EO	0.000	0.000
47.66	0.62	1.00	0.62	4.59	0.00	67.00	100.00	0.000	0.0 EO	0.000	0.000
47.16	0.62	1.00	0.62	4.58	1.30	71.21	100.00	0.000	0.050	0.000	0.000
46.66	0.63	1.00	0.63	4.57	1.52	71.91	100.00	0.000	0.0 EO	0.000	0.000
46.16	0.63	1.00	0.63	4.56	2.13	72.16	100.00	0.000	0.0 EO	0.000	0.000
45.66	0.63	1.00	0.63	4.52	2.13	72.04	100.00	0.000	0.0 EO	0.000	0.000
45.16	0.63	1.00	0.63	4.50	1.21	70.39	100.00	0.000	0.0 EO	0.000	0.000
44.66	0.64	1.00	0.64	4.48	4.60	64.63	100.00	0.000	0.0 EO	0.000	0.000
44.16	0.64	1.00	0.64	4.46	4.96	68.32	100.00	0.000	0.0 EO	0.000	0.000
43.66	0.64	1.00	0.64	5.00	NoLiq	97.46	100.00	0.000	0.0 E 0	0.000	0.000
43.16	0.64	1.00	0.64	5.00	NoLiq	61.07	100.00	0.000	0.0 EO	0.000	0.000
42.66	0.65	1.00	0.65	5.00	NoLiq	9.88	50.25	0.000	0.0 EO	0.000	0.000
42.16	0.65	1.00	0.65	5.00	NoLiq	13.40	58.08	0.000	0.0 EO	0.000	0.000
41.66	0.65	1.00	0.65	1.64	2.80	34.18	100.00	0.000	0.0 E 0	0.035	0.035
41.16	0.65	1.00	0.65	2.99	0.26	39.77	100.00	0.000	0.0 EO	0.000	0.035
40.66	0.65	1.00	0.65	4.35	0.00	50.92	100.00	0.000	0.0 EO	0.000	0.035
40.16	0.66	1.00	0.66	4.34	1.30	48.43	100.00	0.000	0.0 EO	0.000	0.035
39.66	0.66	1.00	0.66	4.01	2.43	46.83	100.00	0.000	0.0 EO	0.000	0.035
39.16	0.66	1.00	0.66	4.31	0.43	62.57	100.00	0.000	0.0 EO	0.000	0.035
38.66	0.66	1.00	0.66	4.30	1.93	70.52	100.00	0.000	0.0 EO	0.000	0.035
38.16	0.67	1.00	0.67	2.84	2.22	41.44	100.00	0.000	0.0 EO	0.000	0.035
37.66	0.67	1.00	0.67	4.27	0.00	78.35	100.00	0.000	0.0 EJ	0.000	0.035
37.16	0.67	1.00	0.67	4.26	1.17	58.89	100.00	0.000	0.0 E 0	0.000	0.035
36.66	0.67	1.00	0.67	4.25	0.00	73.64	100.00	0.000	0.0 EO	0.000	0.035
36.16	0.67	1.00	0.67	4.23	0.00	79.87	100.00	0.000	0.0 EO	0.000	0.035
35.66	0.68	1.00	0.68	4.22	0.00	77.97	100.00	0.000	0.0 EO	0.000	0.035
35.16	0.68	1.00	0.68	4.21	0.19	75.35	100.00	0.000	0.0 EO	0.000	0.035
34.66	0.68	1.00	0.68	4.20	4.29	66.00	100.00	0.000	0.010	0.000	0.035
34.16	0.68	1.00	0.68	4.05	0.49	45.19	100.00	0.000	0.0 EO	0.000	0.035
33.66	0.68	1.00	0.68	4.18	0.00	61.47	100.00	0.000	0.0 EO	0.000	0.035
33.16	0.68	1.00	0.68	4.17	3.60	67.50	100.00	0.000	0.0 EO	0.000	0.035
32.66	0.69	1.00	0.69	0.62	24.65	32.71	96.53	0.373	$2.2 \mathrm{E}-3$	0.007	0.042
32.16	0.69	1.00	0.69	1.41	13.52	39.64	100.00	0.000	0.0 EO	0.000	0.042
31.66	0.69	1.00	0.69	4.14	0.84	76.26	100.00	0.000	0.0 E 0	0.000	0.042
31.16	0.69	1.00	0.69	4.13	0.00	78.16	100.00	0.000	0.0 EO	0.000	0.042
30.66	0.69	1.00	0.69	4.12	1.06	74.42	100.00	0.000	0.0 EO	0.000	0.042
30.16	0.69	1.00	0.69	4.12	1.37	64.36	100.00	0.000	0.0 EO	0.000	0.042
29.66	0.69	1.00	0.69	4.12	0.45	78.89	100.00	0.000	0.0 E 0	0.000	0.042
29.16	0.69	1.00	0.69	4.12	3.72	53.34	100.00	0.000	0.0 EO	0.000	0.042
28.66	0.69	1.00	0.69	4.13	0.00	47.39	100.00	0.000	0.0 EO	0.000	0.042
28.16	0.69	1.00	0.69	4.13	2.35	81.57	100.00	0.000	0.0 EO	0.000	0.042
27.66	0.69	1.00	0.69	4.14	0.08	81.19	100.00	0.000	0.0 EO	0.000	0.042
27.16	0.69	1.00	0.69	4.15	0.00	80.52	100.00	0.000	0.0 EO	0.000	0.042
26.66	0.69	1.00	0.69	4.16	0.36	79.71	100.00	0.000	0.0 E 0	0.000	0.042
26.16	0.68	1.00	0.68	0.75	20.38	33.65	98.95	0.090	5.4E-4	0.003	0.045
25.66	0.68	1.00	0.68	5.00	NoLiq	10.04	50.63	0.000	0.0 EO	0.000	0.045
25.16	0.68	1.00	0.68	5.00	NoLiq	11.32	53.60	0.000	0.0 EO	0.000	0.045
24.66	0.68	1.00	0.68	5.00	NoLiq	40.58	100.00	0.000	0.0 EO	0.000	0.045
24.16	0.68	1.00	0.68	5.00	NoLiq	44.25	100.00	0.000	0.0 EO	0.000	0.045
23.66	0.68	1.00	0.68	4.21	0.70	47.63	100.00	0.000	0.0 EO	0.000	0.045
23.16	0.67	1.00	0.67	2.38	5.16	41.63	100.00	0.000	0.0 EO	0.000	0.045
22.66	0.67	1.00	0.67	0.52	19.91	28.08	85.88	1.458	$8.7 \mathrm{E}-3$	0.027	0.072
22.16	0.67	1.00	0.67	0.42	19.79	25.23	80.15	1.739	1.0E-2	0.108	0.180
21.66	0.67	1.00	0.67	5.00	NoLiq	8.85	47.70	0.000	0.0 EO	0.030	0.210
21.16	0.67	1.00	0.67	5.00	NoLiq	9.30	48.84	0.000	0.0 EO	0.000	0.210
20.66	0.66	1.00	0.66	5.00	NoLiq	6.63	41.68	0.000	0.0EO	0.000	0.210
20.16	0.66	1.00	0.66	5.00	NoLiq	4.99	36.72	0.000	0.0 EO	0.000	0.210
19.66	0.66	1.00	0.66	5.00	NoLiq	5.60	38.62	0.000	0.0 EO	0.000	0.210
19.16	0.66	1.00	0.66	5.00	NoLiq	7.17	43.21	0.000	0.0 EO	0.000	0.210
18.66	0.65	1.00	0.65	5.00	NoLiq	4.29	34.45	0.000	0.0 EO	0.000	0.210
18.16	0.65	1.00	0.65	5.00	NoLiq	3.91	33.19	0.000	0.0 E 0	0.000	0.210
17.66	0.65	1.00	0.65	5.00	NoLiq	3.31	31.12	0.000	0.0 EO	0.000	0.210
17.16	0.64	1.00	0.64	5.00	NoLiq	3.69	32.42	0.000	0.050	0.000	0.210

Settlement of Saturated Sands $=0.845 \mathrm{in}$.
qc and (N1) 60 is after fines correction in liquefaction analysis
(N1) 60 s is converted from qc and after fines correction
dst is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth

Settlement of Unsaturated Sands $=0.000$ in.
(N1) 60 s is converted from qc1 and after fines correction
dsz is per each segment, $d z=0.05 \mathrm{ft}$
dip is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth
Total Settlement of Saturated and Unsaturated Sands =0.845 in. Differential Settlement $=0.422$ to 0.557 in.

Units: Unit: qc, ifs, Stress or Pressure $=$ atm (1.0581tsf); Unit Weight $=$ pf; Depth $=f t ;$ Settlement $=$ in.

CRRV CRR7.	CRR after overburden stress correction, CRRv=CRR7.5 * Ksig Cyclic resistance ratio ($M=7.5$)
CRR7. 5	Cyclic resistance ratio ($M=7.5$)
Ksig	Overburden stress correction factor for CRR7.5
CRRm	After magnitude scaling correction CRRm=CRRV * MSF
MSF	Magnitude scaling factor from M=7.5 to user input M
CSR	Cyclic stress ratio induced by earthquake
CSRfs	CSRfs $=C S R * f s 1$ (Default fsl=1)
fsi	First CSR curve in graphic defined in \#9 of Advanced page
fs2	2nd CSR curve in graphic defined in \#9 of Advanced page
F.S.	Calculated factor of safety against liquefaction F.S.=CRRm/CSRsf
Cebs	Energy Ratio, Borehole Dia., and Sampling Method Corrections
Cr	Rod Length Corrections
C	Overburden Pressure Correction
(N1) 60	SPT after corrections, (N1)60=SPT * Cr * Cn * Cebs
d(N1) 60	Fines correction of SPT
(N1) 60 f	(N1) 60 after fines corrections, (N1) $60 \mathrm{f}=(\mathrm{N} 1) 60+\mathrm{d}(\mathrm{N} 1) 60$
Cq	Overburden stress correction factor
qc1	CPT after Overburden stress correction
dqc1	Fines correction of CPT
qc1f	CPT after Fines and Overburden correction, qc1f=qc1 + dqc1
qcin	CPT after normalization in Robertson's method
Kc	Fine correction factor in Robertson's Method
qclf	CPT after Fines correction in Robertson's Method
If	Soil type index in Suzuki's and Robertson's Methods
(N1) 605	(N1) 60 after settlement fines corrections
CSRm	After magnitude scaling correction for Settlement calculation CSRm=CSRsf / MSF*
CSRfs	Cyclic stress ratio induced by earthquake with user inputed fs
MSF*	Scaling factor from CSR, MSF* $=1$, based on Item 2 of Page C.
ec	Volumetric strain for saturated sands
$\mathrm{d} z$	Calculation segment, $\mathrm{dz}=0.050 \mathrm{ft}$
dsz	Settlement in each segment, dz
dp	User defined print interval
dsp	Settlement in each print interval, dp
G max	Shear Modulus at low strain
g_eff	gamma_eff, Effective shear Strain
9*Ge/Gm	gamma_eff * G_eff/G_max, Strain-modulus ratio
ec7.5	Volumetric Strain for magnitude=7.5
Cec	Magnitude correction factor for any magnitude
ec	Volumetric strain for unsaturated sands, ec=Cec * ec7.5
NoLiq	No-Liquefy Soils

References:

1. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Youd, T.L., and Idriss, I.M., eds., Technical Report NCEER 97-0022.

SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for

Analyzing and Mitigating Liquefaction in California. University of Southern California. March 1999.
2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL-2, PROCEEDINGS: Fourth

International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March 2001.
3. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK, Earthquake

Engineering Research Center,
Report No. EERC 2003-06 by R.B Seed and etc. April 2003.
Note: Print Interval you selected does not show complete results. To get complete results, you should select 'Segment' in Print Interval (Item 12, Page C).

Col 1i	Col 21	Col 3 i	Col 4i	Col $5 i$	Col 6 i	Col 71	Col 81	Col 9i	Col 10 i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	ac	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qtl	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
3.300	10.827	152.275	1.274	4.478		152.34	0.84	9	124	0.622	0.000	0.622	243.77	0.84	0.00
3.400	11.155	140.954	1.270	4.339		141.02	0.90	9	124	0.643	0.005	0.638	220.02	0.90	0.00
3.500	11.483	111.294	0.924	4.200		111.35	0.83	8	121	0.663	0.015	0.648	170.92	0.83	0.00
3.600	11.811	86.942	0.531	4.112		87.00	0.61	8	121	0.682	0.025	0.657	131.34	0.62	0.00
3.700	12.139	46.232	0.481	3.860		46.29	1.04	7	118	0.702	0.035	0.666	68.42	1.05	0.01
3.800	12.467	23.432	0.405	3.771		23.49	1.72	6	115	0.721	0.046	0.675	33.73	1.78	0.01
3.900	12.795	27.977	0.479	3.885		28.03	1.71	6	115	0.739	0.056	0.683	39.94	1.75	0.01
4.000	13.123	35.468	0.519	3.898		35.52	1.46	7	118	0.759	0.066	0.693	50.20	1.49	0.01
4.100	13.451	28.469	0.367	3.835		28.52	1.29	7	118	0.778	0.076	0.702	39.55	1.32	0.01
4.200	13.780	18.487	0.248	3.809		18.54	1.34	6	115	0.797	0.087	0.710	24.99	1.40	0.01
4.300	14.108	10.094	0.175	3.809		10.15	1.73	5	115	0.816	0.097	0.719	12.99	1.88	0.02
4.400	14.436	6.664	0.126	3.860		6.72	1.87	4	115	0.834	0.107	0.727	8.09	2.14	0.03
4.500	14.764	6.395	0.129	3.935		6.45	2.00	4	115	0.853	0.117	0.736	7.61	2.30	0.03
4.600	15.092	6.265	0.153	4.024		6.32	2.41	4	115	0.872	0.128	0.744	7.32	2.80	0.03
4.700	15.420	7.445	0.240	4.099		7.50	3.20	3	111	0.890	0.138	0.752	8.79	3.63	0.02
4.800	15.748	9.164	0.348	4.276		9.23	3.77	3	111	0.909	0.148	0.760	10.94	4.18	0.02
4.900	16.076	9.202	0.456	4.402		9.27	4.92	3	111	0.927	0.158	0.769	10.85	5.46	0.02
5.000	16.404	11.414	0.514	4.516		11.48	4.47	3	111	0.945	0.169	0.777	13.57	4.88	0.01
5.100	16.732	13.143	0.519	4.705		13.21	3.93	3	111	0.963	0.179	0.785	15.61	4.24	0.01
5.200	17.060	13.942	0.563	4.944		14.01	4.02	3	111	0.982	0.189	0.793	16.44	4.32	0.01
5.300	17.388	13.273	0.530	5.046		13.35	3.97		111	1.000	0.199	0.801	15.42	4.29	0.01
5.400	17.717	12.603	0.575	5.096		12.68	4.53	3	111	1.018	0.209	0.809	14.42	4.93	0.01
5.500	18.045	12.325	0.521	5.171		12.40	4.20	3	111	1.036	0.220	0.817	13.91	4.59	0.01
5.600	18.373	11.916	0.370	5.247		11.99	3.09	4	115	1.055	0.230	0.825	13.25	3.39	0.01
5.700	18.701	11.711	0.328	5.562		11.79	2.78	5	115	1.074	0.240	0.834	12.85	3.06	0.01
5.800	19.029	11.060	0.328	6.117		11.15	2.94	4	115	1.093	0.250	0.842	11.94	3.26	0.02
5.900	19.357	13.310	0.379	6.345		13.40	2.83	5	115	1.112	0.261	0.851	14.44	3.09	0.02
6.000	19.685	14.537	0.404	6.471		14.63	2.76	5	115	1.130	0.271	0.860	15.71	3.00	0.01
6.100	20.013	14.128	0.478	6.711		14.22	3.36	4	115	1.149	0.281	0.868	15.06	3.66	0.02
6.200	20.341	16.954	0.699	7.164		17.06	4.10	4	115	1.168	0.291	0.877	18.12	4.40	0.01
6.300	20.669	17.846	0.783	7.745		17.96	4.36	3	111	1.186	0.302	0.885	18.96	4.67	0.02
6.400	20.997	31.341	0.956	8.842		31.47	3.04	5	115	1.205	0.312	0.893	33.88	3.16	0.01
6.500	21.325	63.250	1.391	9.612		63.39	2.19	7	118	1.224	0.322	0.902	68.89	2.24	0.01
6.600	21.654	49.225	1.138	9.183		49.36	2.31	6	115	1.243	0.332	0.911	52.82	2.37	0.01
6.700	21.982	18.841	0.517	9.019		18.97	2.73	5	115	1.262	0.343	0.919	19.26	2.92	0.02
6.800	22.310	19.500	0.558	9.611		19.64	2.84	5	115	1.281	0.353	0.928	19.78	3.04	0.02
6.900	22.638	22.159	0.555	10.393		22.31	2.49	5	115	1.300	0.363	0.937	22.43	2.64	0.02
7.000	22.966	25.867	0.593	11.302		26.03	2.28	6	115	1.318	0.373	0.945	26.15	2.40	0.02
7.100	23.294	34.158	1.021	11.857		34.33	2.97	6	115	1.337	0.383	0.954	34.59	3.09	0.01
7.200	23.622	111.313	1.314	12.576		111.49	1.18	8	121	1.357	0.394	0.963	114.33	1.19	0.00
7.300	23.950	188.691	1.371	12.576		188.87	0.73	9	124	1.377	0.404	0.973	192.61	0.73	0.00
7.400	24.278	175.548	1.209	12.361		175.73	0.69	9	124	1.398	0.414	0.984	177.24	0.69	0.00
7.500	24.606	144.346	0.943	12.210		144.52	0.65	9	124	1.418	0.424	0.994	144.01	0.66	0.00
7.600	24.934	109.194	1.239	11.983		109.37	1.13	8	121	1.438	0.435	1.003	107.57	1.15	0.00
7.700	25.262	79.376	1.495	11.844		79.55	1.88	7	118	1.457	0.445	1.012	77.13	1.91	0.01
7.800	25.591	81.997	1.672	11.403		82.16	2.04	7	118	1.477	0.455	1.021	78.99	2.07	0.00
7.900	25.919	85.232	2.122	11.087		85.39	2.49	7	118	1.496	0.465	1.031	81.41	2.53	0.00
8.000	26.247	86.812	2.170	10.961		86.97	2.50	7	118	1.515	0.476	1.040	82.20	2.54	0.00
8.100	26.575	74.338	2.002	10.835		74.49	2.69	6	115	1.534	0.486	1.048	69.61	2.74	0.00
8.200	26.903	40.292	1.143	10.634		40.45	2.83	6	115	1.553	0.496	1.057	36.80	2.94	0.01

Col 1i	Col $2 i$	Col 171	Col $18 i$	Col 19i	Col 20i	Col 211	Col 22i	Col $23 i$	Col 241	Col $25 i$	Col 261	Col 271	Col $28 i$	Col 291
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, Ic	Normalized Cone resistance, Qtn	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ (\mathbf{N} 1) 60 \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	$\begin{gathered} \text { Young's } \\ \text { modulus, Es } \\ \hline \end{gathered}$	Small strain shear modulus, Go	Undrained shear strength, su	Undrained strength ratio, su/ब'v	Over consolidation ratio, OCR
(m)	(tt)				(ft/sec)	(blows/ft)	(blows/ft)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
3.300	10.827	6	1.58	186.96	$3.00 \mathrm{E}-4$	25.8	33.6	73	45	609	836			
3.400	11.155	6	1.63	170.85	3.00E-4	24.3	31.3	70	45	564	822			
3.500	11.483	6	1.68	134.58	$3.00 \mathrm{E}-4$	19.5	24.9	62	43	445	763			
3.600	11.811	6	1.69	104.21	$3.00 \mathrm{E}-4$	15.3	19.4	55	42	348	707			
3.700	12.139	6	2.05	57.50	$3.00 \mathrm{E}-4$	9.3	11.7	41	38	185	575			
3.800	12.467	5	2.44	29.99	3.00E-6	5.5	6.9	29	34	94	461			
3.900	12.795	5	2.37	35.34	$3.00 \mathrm{E}-6$	6.4	8.0	32	35	112	491			
4.000	13.123	5	2.25	43.90	3.00E-6	7.7	9.6	35	37	142	533			
4.100	13.451	5	2.30	34.95	$3.00 \mathrm{E}-6$	6.3	7.8	32	35	114	498			
4.200	13.780	5	2.48	22.64	3.00E-6	4.5	5.4	25	32	74	433			
4.300	14.108	4	2.79	12.23	$3.00 \mathrm{E}-8$	2.9	3.5				507	0.62	0.87	3.9
4.400	14.436	3	2.99	7.81	1.00E-9	2.1	2.6				336	0.39	0.54	2.4
4.500	14.764	3	3.03	7.39	$1.00 \mathrm{E}-9$	2.1	2.5				323	0.37	0.51	2.3
4.600	15.092	3	3.09	7.16	$1.00 \mathrm{E}-9$	2.1	2.5				316	0.36	0.49	2.2
4.700	15.420	3	3.09	8.60	1.00E-9	2.5	3.0				375	0.44	0.59	2.6
4.800	15.748	3	3.05	10.66	1.00E-9	3.0	3.6				461	0.55	0.73	3.3
4.900	16.076	3	3.12	10.66	1.00E-9	3.2	3.7				463	0.56	0.72	3.3
5.000	16.404	3	3.02	13.21	1.00E-9	3.7	4.3				574	0.70	0.90	4.1
5.100	16.732	3	2.93	15.09	1.00E-9	4.0	4.7				661	0.82	1.04	4.7
5.200	17.060	3	2.92	15.90	1.00E-9	4.2	4.9				701	0.87	1.10	4.9
5.300	17.388	3	2.94	14.95	$1.00 \mathrm{E}-9$	4.1	4.7				667	0.82	1.03	4.6
5.400	17.717	3	3.00	14.06	$1.00 \mathrm{E}-9$	4.0	4.6				634	0.78	0.96	4.3
5.500	18.045	3	2.99	13.58	1.00E-9	3.9	4.5				620	0.76	0.93	4.2
5.600	18.373	3	2.93	12.88	1.00E-9	3.6	4.1				600	0.73	0.88	4.0
5.700	18.701	3	2.91	12.50	1.00E-9	3.6	4.0				590	0.71	0.86	3.9
5.800	19.029	3	2.95	11.65	1.00E-9	3.4	3.9				557	0.67	0.80	3.6
5.900	19.357	3	2.87	14.04	1.00E-9	3.9	4.4				670	0.82	0.96	4.3
6.000	19.685	4	2.84	15.25	3.00E-8	4.2	4.7				731	0.90	1.05	4.7
6.100	20.013	3	2.90	14.71	1.00E-9	4.3	4.7				711	0.87	1.00	4.5
6.200	20.341	3	2.89	17.71	1.00E-9	5.1	5.6				853	1.06	1.21	5.4
6.300	20.669	3	2.89	18.54	1.00E-9	5.3	5.9				898	1.12	1.26	5.7
6.400	20.997	4	2.59	32.67	3.00E-8	8.0	8.7				1573	2.02	2.26	10.2
6.500	21.325	5	2.26	65.55	$3.00 \mathrm{E}-6$	13.8	15.0	43	39	254	707			
6.600	21.654	5	2.37	50.63	3.00E-6	11.3	12.1	38	37	197	652			
6.700	21.982	4	2.76	18.82	$3.00 \mathrm{E}-8$	5.2	5.6				949	1.18	1.28	5.8
6.800	22.310	4	2.76	19.36	3.00E-8	5.4	5.8				982	1.22	1.32	5.9
6.900	22.638	4	2.68	21.92	$3.00 \mathrm{E}-8$	5.9	6.3				1115	1.40	1.50	6.7
7.000	22.966	4	2.60	25.53	3.00E-8	6.6	7.0				1301	1.65	1.74	7.8
7.100	23.294	4	2.58	33.82	3.00E-8	8.6	9.1				1716	2.20	2.31	10.4
7.200	23.622	6	1.92	109.94	3.00E-4	21.2	22.2	56	41	446	872			
7.300	23.950	6	1.61	184.74	3.00E-4	32.2	33.6	73	44	755	1043			
7.400	24.278	6	1.62	170.88	3.00E-4	30.1	31.2	70	43	703	1022			
7.500	24.606	6	1.67	139.65	$3.00 \mathrm{E}-4$	25.2	26.0	63	42	578	961			
7.600	24.934	6	1.93	105.23	$3.00 \mathrm{E}-4$	20.9	21.4	55	41	437	878			
7.700	25.262	5	2.18	75.99	3.00E-6	16.8	17.2	47	39	318	792			
7.800	25.591	5	2.20	78.07	3.00E-6	17.5	17.8	47	39	329	803			
7.900	25.919	5	2.25	80.73	3.00E-6	18.6	18.8	48	39	342	816			
8.000	26.247	5	2.25	81.74	3.00E-6	18.9	19.1	48	40	348	823			
8.100	26.575	5	2.32	69.41	3.00E-6	16.7	16.8	45	39	298	784			
8.200	26.903	4	2.54	36.79	3.00E-8	10.0	10.0				2022	2.59	2.45	11.0

Col 1i	Col 2i	Col 3 i	Col 4i	Col 5	Col 6 i	Col 71	Col 8 i	Col 9 i	Col 10i	Col 111	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, $\sigma^{\prime} \mathrm{V}$	Normalized cone resistance, Qtl	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(tt)	(tsf)	(tsf)	(psi)		(tst)	(\%)		(paf)	(tsf)	(tsf)	(tsf)			
8.300	27.231	19.881	0.505	10.747		20.04	2.52	5	115	1.572	0.506	1.065	17.33	2.73	0.01
8.400	27.559	19.677	0.480	11.239		19.84	2.42	5	115	1.590	0.517	1.074	16.99	2.63	0.02
8.500	27.887	26.062	0.829	12.349		26.24	3.16	5	115	1.609	0.527	1.082	22.76	3.36	0.01
8.600	28.215	47.923	1.239	14.102		48.13	2.57	6	115	1.628	0.537	1.091	42.62	2.66	0.01
8.700	28.543	50.944	1.149	14.682		51.16	2.25	6	115	1.647	0.547	1.100	45.03	2.32	0.01
8.800	28.871	29.511	0.989	15.616		29.74	3.32	5	115	1.666	0.557	1.108	25.33	3.52	0.02
8.900	29.199	30.198	0.935	16.726		30.44	3.07	5	115	1.684	0.568	1.117	25.75	3.25	0.02
9.000	29.528	68.762	0.647	17.193		69.01	0.94	8	121	1.704	0.578	1.126	59.76	0.96	0.01
9.100	29.856	71.420	0.916	16.701		71.66	1.28	7	118	1.724	0.588	1.135	61.60	1.31	0.01
9.200	30.184	70.872	1.371	16.284		71.11	1.93	7	118	1.743	0.598	1.144	60.61	1.98	0.01
9.300	30.512	92.733	1.430	16.032		92.96	1.54	8	121	1.763	0.609	1.154	79.03	1.57	0.01
9.400	30.840	145.378	1.424	15.881		145.61	0.98	9	124	1.783	0.619	1.164	123.54	0.99	0.00
9.500	31.168	211.435	1.351	15.981		211.67	0.64	9	124	1.803	0.629	1.174	178.71	0.64	0.00
9.600	31.496	207.466	1.912	16.007		207.70	0.92	9	124	1.824	0.639	1.184	173.82	0.93	0.00
9.700	31.824	106.898	2.487	15.805		107.13	2.32	7	118	1.843	0.650	1.194	88.21	2.36	0.00
9.800	32.152	52.236	2.124	16.524		52.47	4.05	5	115	1.862	0.660	1.202	42.10	4.20	0.01
9.900	32.480	37.578	1.230	17.672		37.83	3.25	5	115	1.881	0.670	1.211	29.70	3.42	0.02
10.000	32.808	36.909	1.022	18.215		37.17	2.75	6	115	1.900	0.680	1.219	28.93	2.90	0.02
10.100	33.136	23.980	0.757	18.315		24.24	3.12	5	115	1.918	0.691	1.228	18.18	3.39	0.03
10.200	33.465	23.943	0.544	19.072		24.22	2.24	6	115	1.937	0.701	1.236	18.02	2.44	0.03
10.300	33.793	33.953	0.840	20.081		34.24	2.45	6	115	1.956	0.711	1.245	25.94	2.60	0.02
10.400	34.121	30.988	0.773	20.674		31.29	2.47	6	115	1.975	0.721	1.253	23.38	2.64	0.03
10.500	34.449	22.920	0.409	21.683		23.23	1.76	6	115	1.994	0.732	1.262	16.83	1.92	0.04
10.600	34.777	22.446	0.304	23.424		22.78	1.33	6	115	2.012	0.742	1.271	16.35	1.46	0.05
10.700	35.105	21.610	0.339	28.103		22.01	1.54	6	115	2.031	0.752	1.279	15.62	1.69	0.06
10.800	35.433	21.434	0.338	36.025		21.95	1.54	6	115	2.050	0.762	1.288	15.46	1.70	0.09
10.900	35.761	21.210	0.323	41.878		21.81	1.48	6	115	2.069	0.772	1.296	15.23	1.64	0.11
11.000	36.089	20.922	0.348	46.167		21.59	1.61	6	115	2.088	0.783	1.305	14.94	1.78	0.13
11.100	36.417	19.444	0.362	49.434		20.16	1.79	6	115	2.106	0.793	1.313	13.74	2.00	0.15
11.200	36.745	19.361	0.334	53.243		20.13	1.66	6	115	2.125	0.803	1.322	13.62	1.86	0.17
11.300	37.073	20.048	0.475	56.422		20.86	2.28	6	115	2.144	0.813	1.330	14.07	2.54	0.17
11.400	37.402	31.295	1.289	56.825		32.11	4.01	5	115	2.163	0.824	1.339	22.37	4.30	0.11
11.500	37.730	43.090	1.695	45.839		43.75	3.87	5	115	2.181	0.834	1.348	30.85	4.08	0.06
11.600	38.058	60.955	1.591	40.516		61.54	2.59	6	115	2.200	0.844	1.356	43.75	2.68	0.03
11.700	38.386	80.315	1.208	35.395		80.83	1.49	7	118	2.220	0.854	1.365	57.58	1.54	0.02
11.800	38.714	63.362	1.244	30.740		63.80	1.95	7	118	2.239	0.865	1.374	44.80	2.02	0.02
11.900	39.042	44.280	1.365	29.378		44.70	3.05	6	115	2.258	0.875	1.383	30.69	3.22	0.03
12.000	39.370	45.683	1.703	29.302		46.10	3.69	5	115	2.277	0.885	1.391	31.50	3.88	0.03
12.100	39.698	134.066	2.099	29.655		134.49	1.56	8	121	2.296	0.895	1.401	94.35	1.59	0.01
12.200	40.026	305.813	2.184	29.592		306.24	0.71	9	124	2.317	0.906	1.411	215.37	0.72	0.00
12.300	40.354	402.022	1.875	30.033		402.45	0.47	10	127	2.338	0.916	1.422	281.41	0.47	0.00
12.400	40.682	467.410	3.339	30.829		467.85	0.71	10	127	2.358	0.926	1.432	324.96	0.72	0.00
12.500	41.011	657.291	3.750	29.264		657.71	0.57	10	127	2.379	0.936	1.443	454.10	0.57	0.00
12.600	41.339	672.915	2.787	22.642		673.24	0.41	10	127	2.400	0.946	1.454	461.44	0.42	0.00
12.700	41.667	624.983	2.005	30.437		625.42	0.32	10	127	2.421	0.957	1.464	425.42	0.32	0.00
12.800	41.995	555.487	2.587	37.905		556.03	0.47	10	127	2.442	0.967	1.475	375.29	0.47	0.00
12.900	42.323	603.048	1.911	42.521		603.66	0.32	10	127	2.463	0.977	1.486	404.65	0.32	0.00
13.000	42.651	653.322	1.476	33.553		653.81	0.23	10	127	2.484	0.987	1.496	435.26	0.23	0.00
13.100	42.979	662.952	3.074	27.283		663.34	0.46	10	127	2.505	0.998	1.507	438.50	0.47	0.00
13.200	43.307	651.473	3.030	29.693		651.90	0.46	10	127	2.526	1.008	1.518	427.87	0.47	0.00

Col 1 i	Col 2i	Col 17i	Col 18i	Col 19i	Col 20 i	Col 21i	Col 22i	Col 23i	Col 24i	Col 25i	Col 26i	Col 27 i	Col 28i	Col 29i
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, lc	Normalized Cone resistance, Qtn	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ \text { (N1) } 60 \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	Young's modulus, Es	Small strain shear modulus, Go	Undrained shear strength, su	Undrained strength ratio, su/大'v	Over consolidation ratio, OCR
(m)	(ft)				(ft/sec)	(blows/ft)	(blows/ft)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
8.300	27.231	4	2.78	17.35	$3.00 \mathrm{E}-8$	5.6	5.6				1002	1.23	1.16	5.2
8.400	27.559	4	2.78	17.03	$3.00 \mathrm{E}-8$	5.5	5.5				992	1.22	1.13	5.1
8.500	27.887	4	2.74	22.84	$3.00 \mathrm{E}-8$	7.2	7.1				1312	1.64	1.52	6.8
8.600	28.215	5	2.47	42.95	$3.00 \mathrm{E}-6$	11.5	11.3	35	36	193	687			
8.700	28.543	5	2.41	45.49	$3.00 \mathrm{E}-6$	11.9	11.7	36	36	205	703			
8.800	28.871	4	2.72	25.54	$3.00 \mathrm{E}-8$	8.0	7.8				1487	1.87	1.69	7.6
8.900	29.199	4	2.69	26.01	$3.00 \mathrm{E}-8$	8.1	7.9				1522	1.92	1.72	7.7
9.000	29.528	6	2.08	61.15	3.00E-4	13.9	13.5	42	38	276	783			
9.100	29.856	5	2.15	63.13	$3.00 \mathrm{E}-6$	14.9	14.4	42	38	287	795			
9.200	30.184	5	2.27	62.11	3:00E-6	15.5	14.9	42	38	284	795			
9.300	30.512	5	2.12	81.52	3.00E-6	19.1	18.3	48	39	372	872			
9.400	30.840	6	1.84	128.85	$3.00 \mathrm{E}-4$	26.9	25.7	61	42	582	1015			
9.500	31.168	6	1.59	188.27	$3.00 \mathrm{E}-4$	36.0	34.2	73	44	847	1153			
9.600	31.496	6	1.71	183.46	$3.00 \mathrm{E}-4$	36.7	34.7	72	43	831	1149			
9.700	31.824	5	2.21	91.79	3.00E-6	22.8	21.5	51	40	429	924			
9.800	32.152	4	2.61	43.24	$3.00 \mathrm{E}-8$	13.4	12.6				2624	3.37	2.81	12.6
9.900	32.480	4	2.66	30.48	$3.00 \mathrm{E}-8$	9.9	9.3				1892	2.40	1.98	8.9
10.000	32.808	4	2.62	29.79	$3.00 \mathrm{E}-8$	9.5	8.9				1859	2.35	1.93	8.7
10.100	33.136	4	2.82	18.58	$3.00 \mathrm{E}-8$	6.9	6.4				1212	1.49	1.21	5.5
10.200	33.465	4	2.74	18.51	$3.00 \mathrm{E}-8$	6.6	6.1				1211	1.49	1.20	5.4
10.300	33.793	4	2.63	26.81	$3.00 \mathrm{E}-8$	8.8	8.1				1712	2.15	1.73	7.8
10.400	34.121	4	2.67	24.16	$3.00 \mathrm{E}-8$	8.2	7.5				1564	1.95	1.56	7.0
10.500	34.449	4	2.70	17.38	$3.00 \mathrm{E}-8$	6.2	5.7				1162	1.42	1.12	5.0
10.600	34.777	4	2.65	16.95	$3.00 \mathrm{E}-8$	5.9	5.4				1139	1.38	1.09	4.9
10.700	35.105	4	2.70	16.17	$3.00 \mathrm{E}-8$	5.8	5.3				1101	1.33	1.04	4.7
10.800	35.433	4	2.70	16.02	$3.00 \mathrm{E}-8$	5.8	5.2				1098	1.33	1.03	4.6
10.900	35.761	4	2.70	15.81	$3.00 \mathrm{E}-8$	5.7	5.2				1091	1.32	1.02	4.6
11.000	36.089	4	2.73	15.50	$3.00 \mathrm{E}-8$	5.7	5.1				1079	1.30	1.00	4.5
11.100	36.417	4	2.78	14.22	$3.00 \mathrm{E}-8$	5.5	4.9				1008	1.20	0.92	4.1
11.200	36.745	4	2.77	14.12	$3.00 \mathrm{E}-8$	5.4	4.8				1006	1.20	0.91	4.1
11.300	37.073	4	2.83	14.53	$3.00 \mathrm{E}-8$	5.8	5.2				1043	1.25	0.94	4.2
11.400	37.402	3	2.82	23.16	$1.00 \mathrm{E}-9$	9.0	8.0				1606	2.00	1.49	6.7
11.500	37.730	4	2.70	32.24	$3.00 \mathrm{E}-8$	11.6	10.3				2188	2.77	2.06	9.3
11.600	38.058	5	2.46	46.59	$3.00 \mathrm{E}-6$	14.6	12.9	36	36	246	802			
11.700	38.386	5	2.21	62.59	$3.00 \mathrm{E}-6$	17.2	15.2	42	38	323	880			
11.800	38.714	5	2.37	48.20	$3.00 \mathrm{E}-6$	14.6	12.8	37	36	255	815			
11.900	39.042	4	2.63	32.41	$3.00 \mathrm{E}-8$	11.5	10.1				2235	2.83	2.05	9.2
12.000	39.370	4	2.68	33.17	$3.00 \mathrm{E}-8$	12.1	10.6				2305	2.92	2.10	9.4
12.100	39.698	5	2.06	104.78	$3.00 \mathrm{E}-6$	27.0	23.5	55	40	538	1052			
12.200	40.026	6	1.57	248.72	$3.00 \mathrm{E}-4$	51.5	44.6	84	44	1225	1387			
12.300	40.354	6	1.35	326.21	$3.00 \mathrm{E}-4$	63.4	54.7	97	46	1610	1523			
12.400	40.682	6	1.44	378.10	$3.00 \mathrm{E}-4$	75.7	65.0	104	46	1871	1605			
12.500	41.011	7	1.27	530.33	$3.00 \mathrm{E}-2$	101.0	86.5	123	48	2631	1803			
12.600	41.339	7	1.16	540.89	$3.00 \mathrm{E}-2$	100.1	85.4	124	48	2693	1821			
12.700	41.667	7	1.11	500.48	$3.00 \mathrm{E}-2$	91.6	77.9	120	47	2502	1781			
12.800	41.995	7	1.26	443.11	$3.00 \mathrm{E}-2$	85.1	72.1	113	47	2224	1717			
12.900	42.323	7	1.13	479.49	$3.00 \mathrm{E}-2$	88.8	74.9	117	47	2415	1769			
13.000	42.651	7	1.01	517.62	$3.00 \mathrm{E}-2$	93.1	78.3	122	48	2615	1821			
13.100	42.979	7	1.21	523.32	$3.00 \mathrm{E}-2$	100.1	83.9	122	48	2653	1834			
13.200	43.307	7	1.22	512.44	3.00E-2	98.6	82.4	121	47	2608	1828			

产					80.80							$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$				0	8.	O	O		Bo					－5：	O	O						8.8			So		8.8
$\overline{0}$				x_{0}^{∞}							$\begin{aligned} & \text { Won } \\ & 0 \end{aligned}$	$\hat{n}_{0}^{n} 0$	fon	$\mathfrak{b l}$	\dot{B}_{6}^{∞}	x_{0}^{∞}	\％	\％	fien	$\mathfrak{C B}$					N	\％	18	\％											$\stackrel{\circ}{\circ}$
$\left\lvert\, \begin{aligned} & \frac{v}{0} \\ & \hline \end{aligned}\right.$							BiNu ix ix ix		\dot{c}				$\underbrace{2}_{n}$	0		\mathfrak{c}	－	กัֹ		\mathfrak{c}	$\underset{\sim}{n}$	No	$\underset{寸}{\dot{F}} \underset{\sim}{F}$	$=\begin{gathered} \substack{0 \\ 0 \\ d \\ d} \end{gathered}$	－		F	－	㫛			等	$\underset{\sim}{\infty}$		en			$\underset{\sim}{8}$	
$\left\lvert\, \frac{9}{\overline{0}}\right.$		國范			－		Nocoub		Cuem					8	$\underset{\sim}{\underset{\sim}{N}}$	可					\％${ }^{\circ}$	9	O\％	N	¢	㤩：	O	$\stackrel{+}{\circ}$		$\bar{\sigma}$	$\underset{\sim}{\sim}$	nio	款	\％				∞	Nod
\mid					$\stackrel{-}{\text { O－}}$				Nㅜㄷ										$\stackrel{+}{+}$			廻	）	ค	－		$\stackrel{+}{\square}$		W	$\stackrel{\text {－}}{\sim}$	$\stackrel{\substack{9}}{\stackrel{\rightharpoonup}{7}}$	$\stackrel{\square}{\square}$		等罢			\％	\％	$\stackrel{\text { On }}{\substack{\text { ¢ }}}$
$\overline{0}$		준						$\underset{N}{N} \underset{\sim}{N} \underset{\sim}{N}$	$\stackrel{t}{*} \underset{\sim}{c}$						N	ホ	Nim				\％	m	－	¢	－	さicin				－	Noల్లు	¢	No				4	$\underset{y}{N}$	Nomen
$\stackrel{\bar{\rightharpoonup}}{\overline{0}}$		Bib		$\underset{N}{N}$		$\underset{\sim}{\mathrm{N}}$	NㅓN		N			$\underset{N}{N}$		NㅓN	$\underset{-}{\mathrm{N}}$			춖	$\underset{\sim}{N}$			\cdots	N	차N	N	N				N	N	$\underset{N}{N}$	N		N				N
$\overline{\overline{0}} \mid$	占		응ㅇ？	으으안	웅ㅇ앙				으안	웅ㅇㅇ	우안	우앙		으응	앙	앙	$0)$						－								으앙			웅					0 －
$\left\lvert\, \begin{aligned} & \bar{\infty} \\ & \overline{0} \\ & \hline 0 \end{aligned}\right.$	区	00	\mathfrak{m}	$\overbrace{0}^{\infty}: \neq 0$		Nom	mote		$\underset{0}{y}$			$\begin{array}{ll} 10 \\ 0 \\ 0 \end{array}$	$\stackrel{8}{0}$		0	0	$\left.\right\|_{0} ^{20} 0$	8	$f:$	$\because 8$	\％	べ	岗		F.	8 \％			0	f	\mathfrak{m}			$\begin{aligned} K \\ 0 \\ 0 \end{aligned}$			∞		－
$\left\|\begin{array}{l} i \\ \overline{0} \end{array}\right\|$		-							0			N 品志			$\dot{8}$				$\stackrel{\substack{\mathrm{N}} \underset{\sim}{i}}{\dot{\sim}}$		$\underset{\sim}{\circ}$		$\begin{gathered} \stackrel{y}{\infty} \\ \stackrel{y}{\infty} \\ \stackrel{y}{m} \\ \stackrel{y}{m} \end{gathered}$		Sive	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$													
$\left\|\frac{6}{0}\right\|$	$\begin{aligned} & \text { © } \\ & \stackrel{y}{0} \end{aligned}$																																						
$\left\|\frac{i n}{0}\right\|$		商							保荷		\mathfrak{m}																												$\frac{9}{n} \stackrel{N}{N}$ $\underset{\sim}{\infty}$
$\left\|\right\|$		電咨							$\mathfrak{c c}$						$\stackrel{\rightharpoonup}{\infty}$								$\stackrel{\sim}{0}$	－	$\stackrel{f}{f}$		－		$\stackrel{o}{2}$			No			$\begin{gathered} 9 \\ \hline \end{gathered}$	H	$\underset{\sim}{t} \underset{\sim}{t} \underset{\sim}{N}$		
$\left\lvert\, \frac{\overline{2}}{\overline{0}}\right.$		$\checkmark \text { G }$		0					Cll						\dot{f}																								
$\|\overline{\mathrm{O}}\|$		$\stackrel{\vdots}{0} \mathbf{C}$		$\dot{\sim}$											\dot{c}		$\begin{array}{ll} n \\ \\ \\ 0 \\ 0 \end{array}$						N\|p	$\stackrel{B}{n} \cdot \frac{\infty}{c}$						$\stackrel{y}{*}$					$\underset{\sim}{2}$	－8	$\begin{gathered} \mathrm{N} \\ \underset{\sim}{\circ} \end{gathered}$		m
－		$\stackrel{c}{c}-\begin{gathered} o \\ \vdots \end{gathered}$		$\stackrel{\rightharpoonup}{\mathrm{C}}$		Bo			$\underset{\sim}{c}$								$\begin{aligned} & 8 \\ & y \\ & y \\ & i n \\ & \\ & \hline \end{aligned}$						$\begin{aligned} & 8.8 \\ & \hline 8 \\ & \hline 6 \\ & \hline \end{aligned}$	0	$\begin{array}{r} 0 \\ \hline 0 \\ \hline \end{array}$							$\stackrel{N}{n}$					8		

$\left\lvert\, \frac{\bar{o}}{\bar{\circ}}\right.$			Boded bid		$8-8.8$
$\left\lvert\, \frac{\overline{0}}{0}\right.$		串區			
$\frac{\bar{x}}{\overline{0}}$		Non			
$\left\lvert\, \frac{\bar{x}}{\overline{0}}\right.$		움	瓦區答 N N		
$\mid \overline{\overline{0}}$				두우우웅	
\％		鹿			
－			NN	NiN	NิసN
$\frac{\bar{x}}{\bar{\circ}}$	占	우	웅ㅇ울	와웅ㅇㅇ	으으으으웅
$\begin{array}{\|c\|} \hline \frac{0}{0} \\ \hline \end{array}$	¢	e_{0}^{∞}			
$\stackrel{\bar{x}}{\overline{0}}$			8		
$\|\overline{0}\|$	繴				
$\|\overline{i n}\|$					
$\left\|\frac{9}{0}\right\|$					Beooge oro
$\left\lvert\, \frac{\bar{x}}{\overline{0}}\right.$		Bub			
$\|\overline{\overline{0}}\|$			Buex		
0					Bior io

Col 1 i	Col 21	Col 17i	Col 18 i	Col 19 i	Col 20i	Col 21i	Col 22i	Col 23i	Col 241	Col 25 i	Col 26 i	Col 27i	Col $28 i$	Col 291
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, lc	Normalized Cone resistance, Qtn	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ (\mathrm{N} 1) 60 \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	Young's modulus, Es	Small strain shear modulus, Go	Undrained shear strength, su	Undrained strength ratio su/o'v	Over consolidation ratio, OCR
(m)	(ft)				(ft/sec)	(blows/tt)	(blows/tt)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
18.300	60.039	6	1.58	343.07	$3.00 \mathrm{E}-4$	86.0	61.8	99	45	2035	1860			
18.400	60.367	6	1.55	352.49	$3.00 \mathrm{E}-4$	87.8	62.9	100	45	2096	1882			
18.500	60.696	6	1.59	352.76	$3.00 \mathrm{E}-4$	89.1	63.7	100	45	2103	1887			
18.600	61.024	6	1.47	342.00	3.00E-4	83.4	59.4	99	45	2045	1872			
18.700	61.352	6	1.39	359.10	3.00E-4	85.4	60.8	101	45	2152	1908			
18.800	61.680	6	1.36	375.21	3.00E-4	88.8	63.0	104	45	2253	1941			
18.900	62.008	7	1.31	383.52	3.00E-2	89.6	63.4	105	45	2309	1960			
19.000	62.336	7	1.29	410.06	3.00E-2	95.6	67.5	108	46	2474	2009			
19.100	62.664	7	1.19	427.59	$3.00 \mathrm{E}-2$	96.9	68.2	111	46	2585	2042			
19.200	62.992	7	1.18	463.97	$3.00 \mathrm{E}-2$	105.0	73.8	115	46	2811	2103			
19.300	63.320	7	1.04	501.71	$3.00 \mathrm{E}-2$	109.4	76.6	120	47	3046	2164			
19.400	63.648	7	0.98	507.47	$3.00 \mathrm{E}-2$	109.1	76.2	120	47	3089	2177			
19.500	63.976	7	0.91	519.32	3.00E-2	109.7	76.5	122	47	3168	2199			

Copyright by CivilTech Software
ww. civiltechsoftware.com

Font: Courier New, Regular, Size 8 is recommended for this report.
Licensed to , 6/2/2016 3:51:14 PM
Input File Name: G:\CS16\GS16-0107_Panama\Design \& Analysis ${ }^{\text {LLIQUEFACTION } 16 \text { 16-0107-CPT3.1iq }}$
Title: 12870 Panama Street
Subtitle: CPT 3
Input Data:
Surface Elev.=0
Hole No. = СРТ3
Depth of Hole=64.00 ft
Water Table during Earthquake $=5.00 \mathrm{ft}$
Water Table during In-Situ Testing= 10.00 ft
Max. Acceleration=0.65 g
Earthquake Magnitude $=6.63$
No-Liquefiable Soils: CL, OL are Non-Liq. Soi

1. CPT Calulation Method: Modify Robertson*
2. Settlement Analysis Method: Ishihara / Yoshimine
3. Fines Correction for Liquefaction: Stark/O1son et al.*
4. Fine Correction for Settlement: During Liquefaction*
5. Settlement Calculation in: All zones*
6. User request factor of safety (apply to CSR) , User= 1.1 Plot two CSR (fs1=1, fs2=User)
7. Average two input data between two Depths: Yes*

* Recommended Options

$\begin{aligned} & \text { In-Situ } \\ & \text { Depth } \\ & \text { ft } \end{aligned}$	Test Da qc atm	fs atm	$\begin{aligned} & \mathrm{Rf} \\ & \% \end{aligned}$	Camma pcf	Fines \%	$\begin{aligned} & \text { D50 } \\ & \mathrm{mm} \end{aligned}$
0.16	0.00	0.00	100.00	120.00	NoLiq	0.50
0.66	0.00	0.00	100.00	120.00	NoLiq	0.50
1.15	0.00	0.00	100.00	120.00	NoLiq	0.50
1.64	0.00	0.00	100.00	120.00	NoLiq	0.50
2.13	0.00	0.00	100.00	120.00	NoLiq	0.50
2.62	0.00	0.00	100.00	120.00	NoLiq	0.50
3.12	0.00	0.00	100.00	120.00	NoLiq	0.50
3.61	0.00	0.00	100.00	120.00	NoLiq	0.50
4.10	0.00	0.00	100.00	120.00	NoLiq	0.50
4.59	0.00	0.00	100.00	120.00	NoLiq	0.50
5.09	18.43	0.42	2.26	120.00	NoLiq	0.50
5.58	20.74	0.63	3.06	120.00	NoLiq	0.50
6.07	18.82	0.61	3.22	120.00	NoLiq	0.50
6.56	21.02	0.77	3.66	120.00	NoLiq	0.50
7.05	26.57	0.88	3.32	120.00	NoLiq	0.50
7.55	23.92	0.81	3.37	120.00	NoLiq	0.50
8.04	15.28	0.46	3.02	120.00	NoLiq	0.50
8.53	26.37	0.95	3.61	120.00	NoLiq	0.50
9.02	28.91	1.43	4.95	120.00	NoLiq	0.50
9.51	57.13	1.68	2.93	120.00	NoLiq	0.50
10.01	35.10	1.42	4.06	120.00	NoLiq	0.50
10.50	38.42	1.26	3.28	120.00	NoLiq	0.50
10.99	163.70	1.36	0.83	120.00	NoLiq	0.50
11.48	110.90	0.89	0.80	120.00	NoLiq	0.50
11.98	67.78	0.45	0.67	120.00	NoLiq	0.50
12.47	22.02	0.37	1.68	120.00	NoLiq	0.50
12.96	34.63	0.56	1.61	120.00	NoLiq	0.50
13.45	27.82	0.34	1.24	120.00	NoLiq	0.50
13.94	14.16	0.22	1.58	120.00	NoLiq	0.50
14.44	6.44	0.12	1.85	120.00	NoLiq	0.50
14.93	6.36	0.13	2.03	120.00	NoLiq	0.50
15.42	7.42	0.24	3.28	120.00	NoLiq	0.50
15.91	9.73	0.41	4.19	120.00	NoLiq	0.50
16.40	12.07	0.55	4.52	120.00	NoLiq	0.50
16.90	13.46	0.56	4.19	120.00	NoLiq	0.50
17.39	13.24	0.53	4.03	120.00	NoLiq	0.50
17.88	12.71	0.59	4.61	120.00	NoLiq	0.50
18.37	11.90	0.34	2.89	120.00	NoLiq	0.50
18.86	12.18	0.34	2.80	120.00	NoLiq	0.50
19.36	12.91	0.40	3.12	120.00	NoLiq	0.50
19.85	12.49	0.39	3.12	120.00	NoLiq	0.50
20.34	17.70	0.77	4.34	120.00	0.00	0.50
20.83	19.29	0.82	4.28	120.00	0.00	0.50
21.33	70.79	1.51	2.14	120.00	0.00	0.50
21.82	28.24	0.47	1.65	120.00	0.00	0.50
22.31	22.11	0.57	2.57	120.00	0.00	0.50
22.80	19.04	0.56	2.96	120.00	0.00	0.50

Page 1

					16-0107-CPT3.cal	
23.29	29.44	1.01	3.45	120.00	0.00	0.50
23.79	174.80	1.18	0.68	120.00	0.00	0.50
24.28	171.20	1.25	0.73	120.00	0.00	0.50
24.77	133.30	0.86	0.65	120.00	0.00	0.50
25.26	75.23	1.36	1.81	120.00	0.00	0.50
25.75	83.59	1.98	2.37	120.00	0.00	0.50
26.25	88.78	2.10	2.37	120.00	0.00	0.50
26.74	61.62	1.78	2.89	120.00	0.00	0.50
27.23	19.54	0.44	2.23	120.00	0.00	0.50
27.72	20.77	0.55	2.66	120.00	0.00	0.50
28.22	40.73	1.23	3.03	120.00	0.00	0.50
28.71	33.71	0.99	2.93	120.00	0.00	0.50
29.20	25.79	0.98	3.79	120.00	0.00	0.50
29.69	79.07	0.57	0.73	120.00	0.00	0.50
30.18	69.76	1.41	2.03	120.00	0.00	0.50
30.68	113.60	1.44	1.27	120.00	0.00	0.50
31.17	210.30	1.34	0.64	120.00	0.00	0.50
31.66	155.00	2.45	1.58	120.00	0.00	0.50
32.15	54.62	2.11	3.86	120.00	0.00	0.50
32.64	42.71	1.10	2.56	120.00	0.00	0.50
33.14	22.61	0.81	3.57	120.00	0.00	0.50
33.63	27.80	0.68	2.44	120.00	0.00	0.50
34.12	30.89	0.74	2.41	120.00	0.00	0.50
34.61	22.30	0.28	1.27	120.00	0.00	0.50
35.10	20.96	0.34	1.64	120.00	0.00	0.50
35.60	20.69	0.32	1.54	120.00	0.00	0.50
36.09	21.27	0.34	1.61	120.00	0.00	0.50
36.58	18.93	0.33	1.76	120.00	0.00	0.50
37.07	19.12	0.39	2.03	120.00	0.00	0.50
37.57	43.05	1.77	4.12	120.00	0.00	0.50
38.06	50.24	1.75	3.48	120.00	0.00	0.50
38.55	73.02	1.22	1.66	120.00	0.00	0.50
39.04	43.94	1.32	2.99	120.00	0.00	0.50
39.53	63.60	1.93	3.03	120.00	0.00	0.50
40.03	312.10	2.56	0.82	120.00	0.00	0.50
40.52	418.90	2.10	0.50	120.00	0.00	0.50
41.01	689.00	3.19	0.46	120.00	0.00	0.50
41.50	634.30	2.30	0.36	120.00	0.00	0.50
41.99	518.60	2.94	0.57	120.00	0.00	0.50
42.49	669.50	1.51	0.23	120.00	0.00	0.50
42.98	650.50	3.64	0.56	120.00	0.00	0.50
43.47	599.40	2.07	0.35	120.00	0.00	0.50
43.96	633.70	4.14	0.65	120.00	0.00	0.50
44.46	634.60	3.08	0.49	120.00	0.00	0.50
44.95	709.50	3.18	0.45	120.00	0.00	0.50
45.44	715.00	2.58	0.36	120.00	0.00	0.50
45.93	671.10	5.18	0.77	120.00	0.00	0.50
46.42	636.60	4.32	0.68	120.00	0.00	0.50
46.92	639.40	2.58	0.40	120.00	0.00	0.50
47.41	706.30	5.38	0.76	120.00	0.00	0.50
47.90	704.40	3.29	0.47	120.00	0.00	0.50
48.39	573.00	2.74	0.48	120.00	0.00	0.50
48.88	512.70	2.29	0.45	120.00	0.00	0.50
49.38	538.10	2.21	0.41	120.00	0.00	0.50
49.87	402.20	3.85	0.96	120.00	0.00	0.50
50.36	344.60	3.35	0.97	120.00	NoLiq	0.50
50.85	248.40	3.07	1.24	120.00	NoLiq	0.50
51.35	260.90	3.78	1.45	120.00	NoLiq	0.50
51.84	61.28	2.24	3.66	120.00	NoLiq	0.50
52.33	26.65	0.62	2.33	120.00	NoLiq	0.50
52.82	29.36	1.26	4.28	120.00	NoLiq	0.50
53.31	373.50	2.34	0.63	120.00	NoLiq	0.50
53.81	413.80	3.16	0.76	120.00	NoLiq	0.50
54.30	418.10	3.81	0.91	120.00	0.00	0.50
54.79	458.40	2.14	0.47	120.00	0.00	0.50
55.28	429.20	3.20	0.75	120.00	0.00	0.50
55.77	433.50	1.87	0.43	120.00	0.00	0.50
56.27	477.60	1.60	0.34	120.00	0.00	0.50
56.76	434.90	3.57	0.82	120.00	0.00	0.50
57.25	461.70	3.76	0.81	120.00	0.00	0.50
57.74	436.90	2.30	0.53	120.00	0.00	0.50
58.23	398.20	2.88	0.72	120.00	0.00	0.50
58.73	427.60	3.46	0.81	120.00	0.00	0.50
59.22	492.10	4.82	0.98	120.00	0.00	0.50
59.71	498.20	3.70	0.74	120.00	0.00	0.50
60.20	518.90	4.78	0.92	120.00	0.00	0.50
60.70	528.10	4.67	0.88	120.00	0.00	0.50
61.19	511.30	2.23	0.44	120.00	0.00	0.50
61.68	564.50	2.32	0.41	120.00	0.00	0.50
62.17	591.60	2.28	0.39	120.00	0.00	0.50
62.66	643.80	1.51	0.23	120.00	0.00	0.50
63.16	748.60	2.02	0.27	120.00	0.00	0.50

Page 2
$\begin{array}{lllllll}63.65 & 759.00 & 1.14 & 0.15 & 120.00 & 0.00 & 0.50\end{array}$
Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:
Calculation segment, $d z=0.050 \mathrm{ft}$
User defined Print Interval, $d p=0.50 \mathrm{ft}$
Peak Ground Acceleration (PGA), a_max $=0.65 \mathrm{~g}$

CSR Ca Depth ft	culation gamma pcf	sigma atm	gamma' pcf	sigma' atm	rd	$\begin{aligned} & \mathrm{mZ} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & a(z) \\ & g \end{aligned}$	CSR	x fsi	$=$ CSRfs
0.16	120.00	0.009	120.00	0.009	1.00	0.000	0.650	0.42	1.00	0.42
0.66	120.00	0.037	120.00	0.037	1.00	0.000	0.650	0.42	1.00	0.42
1.16	120.00	0.066	120.00	0.066	1.00	0.000	0.650	0.42	1.00	0.42
1.66	120.00	0.094	120.00	0.094	1.00	0.000	0.650	0.42	1.00	0.42
2.16	120.00	0.122	120.00	0.122	0.99	0.000	0.650	0.42	1.00	0.42
2.66	120.00	0.151	120.00	0.151	0.99	0.000	0.650	0.42	1.00	0.42
3.16	120.00	0.179	120.00	0.179	0.99	0.000	0.650	0.42	1.00	0.42
3.66	120.00	0.208	120.00	0.208	0.99	0.000	0.650	0.42	1.00	0.42
4.16	120.00	0.236	120.00	0.236	0.99	0.000	0.650	0.42	1.00	0.42
4.66	120.00	0.264	120.00	0.264	0.99	0.000	0.650	0.42	1.00	0.42
5.16	120.00	0.293	57.60	0.288	0.99	0.000	0.650	0.42	1.00	0.42
5.66	120.00	0.321	57.60	0.302	0.99	0.000	0.650	0.44	1.00	0.44
6.16	120.00	0.349	57.60	0.315	0.99	0.000	0.650	0.46	1.00	0.46
6.66	120.00	0.378	57.60	0.329	0.98	0.000	0.650	0.48	1.00	0.48
7.16	120.00	0.406	57.60	0.343	0.98	0.000	0.650	0.49	1.00	0.49
7.66	120.00	0.434	57.60	0.356	0.98	0.000	0.650	0.51	1.00	0.51
8.16	120.00	0.463	57.60	0.370	0.98	0.000	0.650	0.52	1.00	0.52
8.66	120.00	0.491	57.60	0.383	0.98	0.000	0.650	0.53	1.00	0.53
9.16	120.00	0.519	57.60	0.397	0.98	0.000	0.650	0.54	1.00	0.54
9.66	120.00	0.548	57.60	0.411	0.98	0.000	0.650	0.55	1.00	0.55
10.16	120.00	0.576	57.60	0.424	0.98	0.000	0.650	0.56	1.00	0.56
10.66	120.00	0.604	57.60	0.438	0.98	0.000	0.650	0.57	1.00	0.57
11.16	120.00	0.633	57.60	0.451	0.97	0.000	0.650	0.58	1.00	0.58
11.66	120.00	0.661	57.60	0.465	0.97	0.000	0.650	0.58	1.00	0.58
12.16	120.00	0.690	57.60	0.479	0.97	0.000	0.650	0.59	1.00	0.59
12.66	120.00	0.718	57.60	0.492	0.97	0.000	0.650	0.60	1.00	0.60
13.16	120.00	0.746	57.60	0.506	0.97	0.000	0.650	0.60	1.00	0.60
13.66	120.00	0.775	57.60	0.520	0.97	0.000	0.650	0.61	1.00	0.61
14.16	120.00	0.803	57.60	0.533	0.97	0.000	0.650	0.62	1.00	0.62
14.66	120.00	0.831	57.60	0.547	0.97	0.000	0.650	0.62	1.00	0.62
15.16	120.00	0.860	57.60	0.560	0.96	0.000	0.650	0.63	1.00	0.63
15.66	120.00	0.888	57.60	0.574	0.96	0.000	0.650	0.63	1.00	0.63
16.16	120.00	0.916	57.60	0.588	0.96	0.000	0.650	0.63	1.00	0.63
16.66	120.00	0.945	57.60	0.601	0.96	0.000	0.650	0.64	1.00	0.64
17.16	120.00	0.973	57.60	0.615	0.96	0.000	0.650	0.64	1.00	0.64
17.66	120.00	1.001	57.60	0.628	0.96	0.000	0.650	0.65	1.00	0.65
18.16	120.00	1.030	57.60	0.642	0.96	0.000	0.650	0.65	1.00	0.65
18.66	120.00	1.058	57.60	0.656	0.96	0.000	0.650	0.65	1.00	0.65
19.16	120.00	1.086	57.60	0.669	0.96	0.000	0.650	0.66	1.00	0.66
19.66	120.00	1.115	57.60	0.683	0.95	0.000	0.650	0.66	1.00	0.66
20.16	120.00	1.143	57.60	0.696	0.95	0.000	0.650	0.66	1.00	0.66
20.66	120.00	1.172	57.60	0.710	0.95	0.000	0.650	0.66	1.00	0.66
21.16	120.00	1.200	57.60	0.724	0.95	0.000	0.650	0.67	1.00	0.67
21.66	120.00	1.228	57.60	0.737	0.95	0.000	0.650	0.67	1.00	0.67
22.16	120.00	1.257	57.60	0.751	0.95	0.000	0.650	0.67	1.00	0.67
22.66	120.00	1.285	57.60	0.765	0.95	0.000	0.650	0.67	1.00	0.67
23.16	120.00	1.313	57.60	0.778	0.95	0.000	0.650	0.67	1.00	0.67
23.66	120.00	1.342	57.60	0.792	0.94	0.000	0.650	0.68	1.00	0.68
24.16	120.00	1.370	57.60	0.805	0.94	0.000	0.650	0.68	1.00	0.68
24.66	120.00	1.398	57.60	0.819	0.94	0.000	0.650	0.68	1.00	0.68
25.16	120.00	1.427	57.60	0.833	0.94	0.000	0.650	0.68	1.00	0.68
25.66	120.00	1.455	57.60	0.846	0.94	0.000	0.650	0.68	1.00	0.68
26.16	120.00	1.483	57.60	0.860	0.94	0.000	0.650	0.68	1.00	0.68
26.66	120.00	1.512	57.60	0.873	0.94	0.000	0.650	0.69	1.00	0.69
27.16	120.00	1.540	57.60	0.887	0.94	0.000	0.650	0.69	1.00	0.69
27.66	120.00	1.568	57.60	0.901	0.94	0.000	0.650	0.69	1.00	0.69
28.16	120.00	1.597	57.60	0.914	0.93	0.000	0.650	0.69	1.00	0.69
28.66	120.00	1.625	57.60	0.928	0.93	0.000	0.650	0.69	1.00	0.69
29.16	120.00	1.654	57.60	0.941	0.93	0.000	0.650	0.69	1.00	0.69
29.66	120.00	1.682	57.60	0.955	0.93	0.000	0.650	0.69	1.00	0.69
30.16	120.00	1.710	57.60	0.969	0.93	0.000	0.650	0.69	1.00	0.69
30.66	120.00	1.739	57.60	0.982	0.92	0.000	0.650	0.69	1.00	0.69
31.16	120.00	1.767	57.60	0.996	0.92	0.000	0.650	0.69	1.00	0.69
31.66	120.00	1.795	57.60	1.009	0.92	0.000	0.650	0.69	1.00	0.69
32.16	120.00	1.824	57.60	1.023	0.91	0.000	0.650	0.69	1.00	0.69
32.66	120.00	1.852	57.60	1.037	0.91	0.000	0.650	0.69	1.00	0.69
33.16	120.00	1.880	57.60	1.050	0.90	0.000	0.650	0.68	1.00	0.68

Page 3

	16-0107-СРT3.cal									
33.66	120.00	1.909	57.60	1.064	0.90	0.000	0.650	0.68	1.00	0.68
34.16	120.00	1.937	57.60	1.078	0.90	0.000	0.650	0.68	1.00	0.68
34.66	120.00	1.965	57.60	1.091	0.89	0.000	0.650	0.68	1.00	0.68
35.16	120.00	1.994	57.60	1.105	0.89	0.000	0.650	0.68	1.00	0.68
35.66	120.00	2.022	57.60	1.118	0.88	0.000	0.650	0.68	1.00	0.68
36.16	120.00	2.050	57.60	1.132	0.88	0.000	0.650	0.67	1.00	0.67
36.66	120.00	2.079	57.60	1.146	0.88	0.000	0.650	0.67	1.00	0.67
37.16	120.00	2.107	57.60	1.159	0.87	0.000	0.650	0.67	1.00	0.67
37.66	120.00	2.136	57.60	1.173	0.87	0.000	0.650	0.67	1.00	0.67
38.16	120.00	2.164	57.60	1.186	0.86	0.000	0.650	0.67	1.00	0.67
38.66	120.00	2.192	57.60	1.200	0.86	0.000	0.650	0.66	1.00	0.66
39.16	120.00	2.221	57.60	1.214	0.86	0.000	0.650	0.66	1.00	0.66
39.66	120.00	2.249	57.60	1.227	0.85	0.000	0.650	0.66	1.00	0.66
40.16	120.00	2.277	57.60	1.241	0.85	0.000	0.650	0.66	1.00	0.66
40.66	120.00	2.306	57.60	1.254	0.84	0.000	0.650	0.65	1.00	0.65
41.16	120.00	2.334	57.60	1.268	0.84	0.000	0.650	0.65	1.00	0.65
41.66	120.00	2.362	57.60	1.282	0.83	0.000	0.650	0.65	1.00	0.65
42.16	120.00	2.391	57.60	1.295	0.83	0.000	0.650	0.65	1.00	0.65
42.66	120.00	2.419	57.60	1.309	0.83	0.000	0.650	0.65	1.00	0.65
43.16	120.00	2.447	57.60	1.322	0.82	0.000	0.650	0.64	1.00	0.64
43.66	120.00	2.476	57.60	1.336	0.82	0.000	0.650	0.64	1.00	0.64
44.16	120.00	2.504	57.60	1.350	0.81	0.000	0.650	0.64	1.00	0.64
44.66	120.00	2.532	57.60	1.363	0.81	0.000	0.650	0.64	1.00	0.64
45.16	120.00	2.561	57.60	1.377	0.81	0.000	0.650	0.63	1.00	0.63
45.66	120.00	2.589	57.60	1.391	0.80	0.000	0.650	0.63	1.00	0.63
46.16	120.00	2.618	57.60	1.404	0.80	0.000	0.650	0.63	1.00	0.63
46.66	120.00	2.646	57.60	1.418	0.79	0.000	0.650	0.63	1.00	0.63
47.16	120.00	2.674	57.60	1.431	0.79	0.000	0.650	0.62	1.00	0.62
47.66	120.00	2.703	57.60	1.445	0.79	0.000	0.650	0.62	1.00	0.62
48.16	120.00	2.731	57.60	1.459	0.78	0.000	0.650	0.62	1.00	0.62
48.66	120.00	2.759	57.60	1.472	0.78	0.000	0.650	0.62	1.00	0.62
49.16	120.00	2.788	57.60	1.486	0.77	0.000	0.650	0.61	1.00	0.61
49.66	120.00	2.816	57.60	1.499	0.77	0.000	0.650	0.61	1.00	0.61
50.16	120.00	2.844	57.60	1.513	0.77	0.000	0.650	0.61	1.00	0.61
50.66	120.00	2.873	57.60	1.527	0.76	0.000	0.650	0.61	1.00	0.61
51.16	120.00	2.901	57.60	1.540	0.76	0.000	0.650	0.60	1.00	0.60
51.66	120.00	2.929	57.60	1.554	0.75	0.000	0.650	0.60	1.00	0.60
52.16	120.00	2.958	57.60	1.567	0.75	0.000	0.650	0.60	1.00	0.60
52.66	120.00	2.986	57.60	1.581	0.75	0.000	0.650	0.59	1.00	0.59
53.16	120.00	3.014	57.60	1.595	0.74	0.000	0.650	0.59	1.00	0.59
53.66	120.00	3.043	57.60	1.608	0.74	0.000	0.650	0.59	1.00	0.59
54.16	120.00	3.071	57.60	1.622	0.73	0.000	0.650	0.59	1.00	0.59
54.66	120.00	3.100	57.60	1.635	0.73	0.000	0.650	0.58	1.00	0.58
55.16	120.00	3.128	57.60	1.649	0.73	0.000	0.650	0.58	1.00	0.58
55.66	120.00	3.156	57.60	1.663	0.72	0.000	0.650	0.58	1.00	0.58
56.16	120.00	3.185	57.60	1.676	0.72	0.000	0.650	0.58	1.00	0.58
56.66	120.00	3.213	57.60	1.690	0.71	0.000	0.650	0.57	1.00	0.57
57.16	120.00	3.241	57.60	1.704	0.71	0.000	0.650	0.57	1.00	0.57
57.66	120.00	3.270	57.60	1.717	0.70	0.000	0.650	0.57	1.00	0.57
58.16	120.00	3.298	57.60	1.731	0.70	0.000	0.650	0.56	1.00	0.56
58.66	120.00	3.326	57.60	1.744	0.70	0.000	0.650	0.56	1.00	0.56
59.16	120.00	3.355	57.60	1.758	0.69	0.000	0.650	0.56	1.00	0.56
59.66	120.00	3.383	57.60	1.772	0.69	0.000	0.650	0.56	1.00	0.56
60.16	120.00	3.411	57.60	1.785	0.68	0.000	0.650	0.55	1.00	0.55
60.66	120.00	3.440	57.60	1.799	0.68	0.000	0.650	0.55	1.00	0.55
61.16	120.00	3.468	57.60	1.812	0.68	0.000	0.650	0.55	1.00	0.55
61.66	120.00	3.496	57.60	1.826	0.67	0.000	0.650	0.54	1.00	0.54
62.16	120.00	3.525	57.60	1.840	0.67	0.000	0.650	0.54	1.00	0.54
62.66	120.00	3.553	57.60	1.853	0.66	0.000	0.650	0.54	1.00	0.54
63.16	120.00	3.582	57.60	1.867	0.66	0.000	0.650	0.53	1.00	0.53
63.66	120.00	3.610	57.60	1.880	0.66	0.000	0.650	0.53	1.00	0.53

CSR is based on water table at 5.00 during earthquake
CRR Calculation from CPT data, using Modify Robertson's Method:

$\begin{aligned} & \text { Depth } \\ & \mathrm{ft} \end{aligned}$	qc atm	fric. atm	n	Q	Rf	Ic	Cq	Fines \%	Kc	$\begin{aligned} & \text { qc1n } \\ & \text { atm } \end{aligned}$	$\begin{aligned} & \text { qc1f } \\ & \text { atm } \end{aligned}$	CRR7. 5
0.16			1.00	1.00E-4	0.00	7.97						
0.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
0.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
0.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.16			1.00	1.00E-4	0.00	7.97						
1.16	0.00	0.00	1.00	1.00E-4	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.66	0.00	0.00	1.00	1.00E-4	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						

Page 4

		16-0107-CPT3.cal										
3.16	0.00	0.00	1.00	1.00E-4	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.16	0.00	0.00	1.00	1.00E-4	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
5.16			1.00	6.25 El	2.43	2.32						
5.16	18.59	0.44	1.00	6.25 E 1	2.43	2.32	1.00	NoLiq	1.00	18.59	18.59	2.08
5.66			1.00	6.23 EI	3.29	2.41						
5.66	20.31	0.66	1.00	6.23 EI	3.29	2.41	1.00	NoLiq	1.00	20.31	20.31	2.08
6.16			1.00	5.35 EI	3.47	2.48						
6.16	19.04	0.65	1.00	5.35 E 1	3.47	2.48	1.00	NoLiq	1.00	19.04	19.04	2.08
6.66			1.00	5.74 EI	3.62	2.47						
6.66	22.04	0.78	1.00	5.74 EI	3.62	2.47	1.00	NoLiq	1.00	22.04	22.04	2.08
7.16			1.00	6.49 El	3.38	2.41						
7.16	26.75	0.89	1.00	6.49 El	3.38	2.41	1.00	NoLiq	1.00	26.75	26.75	2.08
7.66			1.00	4.92 El	3.34	2.49						
7.66	21.79	0.71	1.00	$4.92 \mathrm{E1}$	3.34	2.49	1.00	NoLiq	1.00	21.79	21.79	2.08
8.16			1.00	3.03 El	3.41	2.65						
8.16	14.50	0.48	1.00	3.03 EI	3.41	2.65	1.00	NoLiq	1.00	14.50	14.50	2.08
8.66			1.00	6.47 E 1	3.59	2.43						
8.66	32.29	1.14	1.00	6.47 El	3.59	2.43	1.00	NoLiq	1.00	32.29	32.29	2.08
9.16			1.00	5.61 EI	4.93	2.57						
9.16	29.64	1.44	1.00	$5.61 \mathrm{E1}$	4.93	2.57	1.00	NoLiq	1.00	29.64	29.64	2.08
9.66			1.00	1.04 E 2	3.16	2.25						
9.66	57.62	1.80	1.00	1.04 E 2	3.16	2.25	1.00	NoLiq	1.00	57.62	57.62	2.08
10.16			1.00	7.42 EI	3.55	2.39						
10.16	42.99	1.51	1.00	$7.42 \mathrm{E1}$	3.55	2.39	1.00	NoLiq	1.00	42.99	42.99	2.08
10.66			1.00	2.19E2	0.89	1.63						
10.66	128.90	1.14	1.00	2.19E2	0.89	1.63	1.00	NoLiq	1.00	128.90	128.90	2.08
11.16			1.00	2.29 E 2	0.93	1.63						
11.16	137.53	1.28	1.00	$2.29 E 2$	0.93	1.63	1.00	NoLiq	1.00	137.53	137.53	2.08
11.66			1.00	1.65 E 2	0.69	1.64						
11.66	101.66	0.70	1.00	1.65 E 2	0.69	1.64	1.00	NoLiq	1.00	101.66	101.66	2.08
12.16			1.00	6.41 E 1	1.35	2.14						
12.16	40.81	0.54	1.00	$6.41 \mathrm{E1}$	1.35	2.14	1.00	NoLiq	1.00	40.81	40.81	2.08
12.66			1.00	$3.27 \mathrm{E1}$	2.02	2.48						
12.66	21.62	0.42	1.00	$3.27 \mathrm{E1}$	2.02	2.48	1.00	NoLiq	1.00	21.62	21.62	2.08
13.16			1.00	$5.39 \mathrm{E1}$	1.47	2.22						
13.16	35.97	0.52	1.00	$5.39 \mathrm{E1}$	1.47	2.22	1.00	NoLiq	1.00	35.97	35.97	2.08
13.66			1.00	3.07 E 1	1.34	2.40						
13.66	21.25	0.27	1.00	$3.07 \mathrm{E1}$	1.34	2.40	1.00	NoLiq	1.00	21.25	21.25	2.08
14.16			1.00	1.11 El	2.10	2.87						
14.16	8.34	0.16	1.00	$1.11 \mathrm{E1}$	2.10	2.87	1.00	NoLiq	1.00	8.34	8.34	2.08
14.66			1.00	7.98 E 0	2.32	3.02						
14.66	6.37	0.13	1.00	7.98 E 0	2.32	3.02	1.00	NoLiq	1.00	6.37	6.37	2.08
15.16			1.00	7.46 EO	3.04	3.11						
15.16	6.14	0.16	1.00	7.46 E 0	3.04	3.11	1.00	NoLiq	1.00	6.14	6.14	2.08
15.66			1.00	1.10 E 1	3.97	3.03						
15.66	8.84	0.32	1.00	1.10 EI	3.97	3.03	1.00	NoLiq	1.00	8.84	8.84	2.08
16.16			1.00	1.09 El	5.98	3.15						
16.16	8.94	0.48	1.00	1.09 E 1	5.98	3.15	1.00	NoLiq	1.00	8.94	8.94	2.08
16.66			1.00	$1.61 \mathrm{E1}$	4.16	2.92						
16.66	12.97	0.50	1.00	$1.61 \mathrm{E1}$	4.16	2.92	1.00	NoLiq	1.00	12.97	12.97	2.08
17.16			1.00	1.73 E 1	4.25	2.90						
17.16	14.13	0.56	1.00	1.73 E 1	4.25	2.90	1.00	NoLiq	1.00	14.13	14.13	2.08
17.66			1.00	1.49 El	5.09	3.00						
17.66	12.54	0.59	1.00	1.49 El	5.09	3.00	1.00	NoLiq	1.00	12.54	12.54	2.08
18.16			1.00	1.40 E 1	4.26	2.97						
18.16	12.06	0.47	1.00	1.40 El	4.26	2.97	1.00	NoLiq	1.00	12.06	12.06	2.08
18.66			1.00	1.27 EI	3.14	2.92						
18.66	11.27	0.32	1.00	1.27 EI	3.14	2.92	1.00	NoLiq	1.00	11.27	11.27	2.08
19.16			1.00	1.15 E 1	3.45	2.98						
19.16	10.47	0.32	1.00	1.15 E 1	3.45	2.98	1.00	NoLiq	1.00	10.47	10.47	2.08
19.66			1.00	1.66 E 1	2.99	2.82						
19.66	14.90	0.41	1.00	1.66 E 1	2.99	2.82	1.00	NoLiq	1.00	14.90	14.90	2.08
20.16			1.00	1.75 E 1	3.89	2.87						
20.16	15.90	0.57	1.00	1.75 E 1	3.89	2.87	1.00	NoLiq	1.00	15.90	15.90	2.08
20.66			1.00	1.88 E 1	4.86	2.91						
20.66	17.26	0.78	1.00	1.88 E 1	4.86	2.91	1.00	NoLiq	1.00	17.26	17.26	2.08
21.16			1.00	$5.75 \mathrm{E1}$	2.15	2.31						
21.16			0.50	5.50 E 1	2.15	2.32						
21.16	51.32	1.08	0.50	$5.50 \mathrm{E1}$	2.15	2.32	1.07	23.43	0.49	54.99	108.28	0.20
21.66			1.00	5.56E1	2.67	2.39						
21.66			0.50	$5.36 \mathrm{E1}$	2.67	2.40						
21.66	50.42	1.32	0.50	$5.36 \mathrm{E1}$	2.67	2.40	1.06	26.27	0.57	53.60	124.05	0.26
22.16			1.00	1.00 E 1	6.13	3.18						
22.16	10.27	0.55	1.00	1.00 E 1	6.13	3.18	1.00	NoLiq	1.00	10.27	10.27	2.08
22.66			1.00	$2.09 \mathrm{E1}$	2.89	2.73						
22.66	20.34	0.55	1.00	2.09 E 1	2.89	2.73	1.00	NoLiq	1.00	20.34	20.34	2.08
23.16			1.00	3.93 El	2.11	2.43						

Page 5

23.16	37.69	0.77	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 3.92 \mathrm{E1} \\ & 3.92 \mathrm{EI} \end{aligned}$	$\begin{aligned} & 2.11 \\ & 2.11 \end{aligned}$	$\begin{aligned} & 2.43 \\ & 2.43 \end{aligned}$	1.04	27.69	0.61	39.18	99.41	0.17
23.16												
23.66			1.00	1.45 E 2	1.01	1.79	1.03	8.09	0.08	141.61	154.34	0.42
23.66	137.23	1.37	0.50	1.42 Ez	1.01	1.80						
23.66			0.50	1.42 E 2	1.01	1.80						
24.16			1.00	1.98 E 2	0.67	1.57						
24.16	190.27	1.26	0.50	1.95 E 2	0.67	1.58	1.02	3.97	0.00	194.93	194.93	0.77
24.16			0.50	1.95 E 2	0.67	1.58						
24.66			1.00	1.43 E 2	0.62	1.66						
24.66	139.63	0.85	0.50	1.42 E 2	0.62	1.66	1.02	5.40	0.01	142.04	143.58	0.36
24.66			0.50	1.42 E 2	0.62	1.66						
25.16			1.00	8.28 El	1.91	2.16						
25.16	82.61	1.55	0.50	$8.34 \mathrm{E1}$	1.91	2.16	1.01	17.55	0.34	83.45	125.51	0.26
25.16			0.50	8.34 El	1.91	2.16						
25.66			1.00	8.43 EI	2.09	2.18						
25.66	85.24	1.75	0.50	$8.55 \mathrm{E1}$	2.09	2.18	1.00	18.21	0.35	85.51	132.14	0.29
25.66			0.50	8.55E1	2.09	2.18						
26.16			1.00	8.65 El	2.53	2.23						
26.16	88.62	2.20	0.50	8.83 El	2.53	2.23	1.00	19.89	0.40	88.30	146.57	0.37
26.16			0.50	$8.83 \mathrm{E1}$	2.53	2.23						
26.66			1.00	6.65 El	2.85	2.35						
26.66	69.44		0.50	$6.87 \mathrm{E1}$	2.85	2.34	0.99	24.00	0.51	68.73	139.50	0.33
26.66		1.94	0.50	$6.87 \mathrm{E1}$	2.85	2.34						
27.16			1.00	$1.84 \mathrm{E1}$	2.84	2.77						
27.16	20.61	0.54	1.00	$1.84 \mathrm{E1}$	2.84	2.77	1.00	NoLiq	1.00	20.61	20.61	2.08
27.66			1.00	$1.81 \mathrm{E1}$	2.78	2.77						
27.66	20.53	0.53	1.00	1.81 El	2.78	2.77	1.00	NoLiq	1.00	20.53	20.53	2.08
28.16			1.00	3.40 E 1	3.41	2.61						
28.16	37.67	1.23	1.00	3.40 E 1	3.41	2.61	1.00	NoLiq	1.00	37.67	37.67	2.08
28.66			1.00	$3.38 \mathrm{E1}$	2.89	2.57						
28.66			0.50	3.66E1	2.89	2.54						
28.66	37.98	1.05	0.50	$3.66 \mathrm{E1}$	2.89	2.54	0.96	32.55	0.74	36.63	138.54	0.33
29.16			1.00	2.20E1	4.13	2.81						
29.16	25.65	0.99	1.00	2.20 El	4.13	2.81	1.00	NoLiq	1.00	25.65	25.65	2.08
29.66			1.00	$7.17 \mathrm{E1}$	0.73	1.94						
29.66			0.50	7.68 EI	0.73	1.92						
29.66	80.68	0.57	0.50	7.68 El	0.73	1.92	0.95	10.83	0.16	76.84	91.00	0.15
30.16			1.00	$6.07 \mathrm{E1}$	2.06	2.28						
30.16			0.50	$6.58 \mathrm{E1}$	2.06	2.25						
30.16	69.47	1.40	0.50	6.58 E 1	2.06	2.25	0.95	20.87	0.42	65.76	114.09	0.22
30.66			1.00	$9.64 \mathrm{E1}$	1.32	2.00						
30.66			0.50	1.04 E 2	1.32	1.98						
30.66	110.70	1.44	0.50	1.04 E 2	1.32	1.98	0.94	12.31	0.20	104.15	129.43	0.28
31.16			1.00	1.81 E 2	0.65	1.59						
31.16			0.50	1.95 E 2	0.65	1.57						
31.16	208.29	1.34	0.50	1.95 E 2	0.65	1.57	0.94	3.85	0.00	194.80	194.80	0.77
31.66			1.00	1.32E2	1.60	1.96						
31.66			0.50	1.44 E 2	1.60	1.94						
31.66	155.08	2.45	0.50	1.44E2	1.60	1.94	0.93	11.26	0.17	144.18	173.09	0.56
32.16			1.00	4.41 El	4.03	2.58						
32.16			0.50	$4.94 \mathrm{E1}$	4.03	2.55						
32.16	53.47	2.08	0.50	4.94 El	4.03	2.55	0.92	32.82	0.74	49.42	192.15	0.74
32.66			1.00	$3.43 \mathrm{E1}$	2.68	2.54						
32.66			0.50	3.90 E 1	2.68	2.50						
32.66	42.42	1.09	0.50	3.90 El	2.68	2.50	0.92	30.65	0.68	38.98	123.68	0.26
33.16			1.00	1.72 E 1	3.75	2.87						
33.16	22.48	0.77	1.00	1.72 E 1	3.75	2.87	1.00	NoLiq	1.00	22.48	22.48	2.08
33.66			1.00	2.28 El	2.57	2.67						
33.66	29.49	0.71	1.00	$2.28 \mathrm{E1}$	2.57	2.67	1.00	NoLiq	1.00	29.49	29.49	2.08
34.16			1.00	2.24E1	2.56	2.67						
34.16	29.39	0.70	1.00	2.24 El	2.56	2.67	1.00	NoLiq	1.00	29.39	29.39	2.08
34.66			1.00	$1.67 \mathrm{E1}$	1.41	2.63						
34.66	22.66	0.29	1.00	$1.67 \mathrm{E1}$	1.41	2.63	1.00	NoLiq	1.00	22.66	22.66	2.08
35.16			1.00	1.55 E 1	1.79	2.71						
35.16	21.45	0.35	1.00	1.55 El	1.79	2.71	1.00	NoLiq	1.00	21.45	21.45	2.08
35.66			1.00	1.49 El	1.69	2.71						
35.66	20.94	0.32	1.00	1.49 E 1	1.69	2.71	1.00	NoLiq	1.00	20.94	20.94	2.08
36.16			1.00	1.46E1	1.90	2.75						
36.16	20.67	0.35	1.00	1.46 El	1.90	2.75	1.00	NoLiq	1.00	20.67	20.67	2.08
36.66			1.00	1.33E1	1.91	2.79						
36.66	19.22	0.33	1.00	1.33 E 1	1.91	2.79	1.00	NoLiq	1.00	19.22	19.22	2.08
37.16			1.00	1.39 El	2.99	2.88						
37.16	20.33	0.55	1.00	1.39E1	2.99	2.88	1.00	NoLiq	1.00	20.33	20.33	2.08
37.66			1.00	3.09 E 1	4.01	2.69						
37.66	42.95	1.64	1.00	3.09 El	4.01	2.69	1.00	NoLiq	1.00	42.95	42.95	2.08
38.16			1.00	5.43 El	1.98	2.30						
38.16			0.50	6.46 El	1.98	2.25						
38.16	74.57	1.43	0.50	6.46 El	1.98	2.25	0.87	20.67	0.42	64.57	111.02	0.21
38.66			1.00	$4.86 \mathrm{E1}$	1.87	2.33						
38.66			0.50	5.82E1	1.87	2.27						
38.66	67.61	1.22	0.50	5.82 E 1	1.87	2.27	0.86	21.27	0.43	58.25	102.98	0.18
39.16			1.00	2.70 El	3.91	2.73						
							Page					

	16-0107-CPT3.ca1											
39.16	39.03	1.44	1.00	2.70E1	3.91	2.73	1.00	NoLiq	1.00	39.03	39.03	2.08
39.66			1.00	7.67E1	2.11	2.21						
39.66			0.50	9.19E1	2.11	2.16						
39.66	107.69	2.23	0.50	9.19 E 1	2.11	2.16	0.85	17.63	0.34	91.85	138.56	0.33
40.16			1.00	2.67 E 2	0.56	1.42						
40.16			0.50	3.17 E 2	0.56	1.37						
40.16	373.62	2.06	0.50	3.17 E 2	0.56	1.37	0.85	1.13	0.00	317.10	317.10	2.08
40.56			1.00	3.17 E 2	0.65	1.41						
40.66			0.50	3.78 E 2	0.65	1.36						
40.66	447.10	2.87	0.50	3.78 E 2	0.65	1.36	0.84	1.09	0.00	377.61	377.61	2.08
41.16			1.00	5.26 E 2	0.42	1.13						
41.16			0.50	6.28 E 2	0.42	1.08						
41.16	746.71	3.14	0.50	6.28 E 2	0.42	1.08	0.84	0.00	0.00	500.00	500.00	2.08
41.66			1.00	4.39E2	0.27	1.05						
41.66			0.50	5.27E2	0.27	0.99						
41.66	629.70	1.70	0.50	5.27E2	0.27	0.99	0.84	0.00	0.00	500.00	500.00	2.08
42.16			1.00	3.70E2	0.52	1.30						
42.16			0.50	4.47E2	0.52	1.24						
42.16	536.56	2.78	0.50	4.47 E 2	0.52	1.24	0.83	0.00	0.00	446.72	446.72	2.08
42.66			1.00	4.41 E 2	0.25	1.04						
42.66			0.50	5.34E2	0.25	0.97						
42.66	644.75	1.63	0.50	5.34 E 2	0.25	0.97	0.83	0.00	0.00	500.00	500.00	2.08
4.3 .16			1.00	4.67 E 2	0.60	1.28						
43.16			0.50	5.68 E 2	0.60	1.23						
43.16	689.10	4.13	0.50	5.68E2	0.60	1.23	0.82	0.00	0.00	500.00	500.00	2.08
43.66			1.00	4.05E2	0.27	1.09						
43.66			0.50	4.95E2	0.27	1.02						
43.66	603.29	1.65	0.50	4.95 E 2	0.27	1.02	0.82	0.00	0.00	495.31	495.31	2.08
44.16			1.00	4.39 E 2	1.10	1.51						
44.16			0.50	5.39 E 2	1.10	1.46						
44.16	659.51	7.21	0.50	5.39E2	1.10	1.46	0.82	2.30	0.00	500.00	500.00	2.08
44.66			1.00	4.37E2	0.43	1.19						
44.66			0.50	5.40 E 2	0.43	1.13						
44.66	663.33	2.82	0.50	5.40E2	0.43	1.13	0.81	0.00	0.00	500.00	500.00	2.08
45.16			1.00	4.90 E 2	0.30	1.05						
45.16			0.50	6.07 E 2	0.30	0.98						
45.16	749.08	2.24	0.50	6.07 E 2	0.30	0.98	0.81	0.00	0.00	500.00	500.00	2.08
45.66			1.00	4.66E2	0.33	1.09						
45.66			0.50	5.80E2	0.33	1.02						
45.66	718.81	2.37	0.50	5.80 E 2	0.33	1.02	0.81	0.00	0.00	500.00	500.00	2.08
46.16			1.00	4.10 E 2	0.94	1.47						
46.16			0.50	5.13 E 2	0.94	1.42						
46.16	639.34	5.99	0.50	5.13 E 2	0.94	1.42	0.80	1.71	0.00	500.00	500.00	2.08
46.66			1.00	4.41 E 2	0.31	1.09						
46.66			0.50	5.54 E 2	0.31	1.02						
46.66	692.72	2.17	0.50	5.54 E 2	0.31	1.02	0.80	0.00	0.00	500.00	500.00	2.08
47.16			1.00	4.06 E 2	0.69	1.37						
47.16			0.50	5.12 E 2	0.69	1.31						
47.16	643.72	4.45	0.50	5.12 E 2	0.69	1.31	0.80	0.46	0.00	500.00	500.00	2.08
47.66			1.00	4.07 E 2	0.74	1.39						
47.66			0.50	5.16 E 2	0.74	1.33						
47.66	650.64	4.82	0.50	5.16 E 2	0.74	1.33	0.79	0.71	0.00	500.00	500.00	2.08
48.16			1.00	3.43 E 2	0.61	1.37						
48.16			0.50	4.37 E 2	0.61	1.30						
48.16	553.25	3.35	0.50	4.37 E 2	0.61	1.30	0.79	0.43	0.00	436.57	436.57	2.08
48.66			1.00	3.32 E 2	0.41	1.26						
48.66			0.50	4.24 E 2	0.41	1.19						
48.66	540.23	2.21	0.50	4.24 E 2	0.41	1.19	0.79	0.00	0.00	424.49	424.49	2.08
49.16			1.00	3.46 E 2	0.30	1.17						
49.16			0.50	4.44 E 2	0.30	1.08						
49.16	567.49	1.71	0.50	4.44 E 2	0.30	1.08	0.78	0.00	0.00	444.05	444.05	2.08
49.66			1.00	2.63 E 2	0.70	1.50						
49.66			0.50	3.40 E 2	0.70	1.42						
49.66	436.14	3.04	0.50	3.40 E 2	0.70	1.42	0.78	1.77	0.00	339.86	339.86	2.08
50.16			1.00	2.37E2	0.78	1.56						
50.16	395.61	3.08	1.00	2.37E2	0.78	1.56	1.00	NoLiq	1.00	395.61	395.61	2.08
50.66			1.00	2.06 E 2	1.20	1.74						
50.66	347.10	4.14	1.00	$2.06 E 2$	1.20	1.74	1.00	NoLiq	1.00	347.10	347.10	2.08
51.16			1.00	1.18 E 2	1.38	1.95						
51.16	201.57	2.75	1.00	1.18 E 2	1.38	1.95	1.00	NoLiq	1.00	201.57	201.57	2.08
51.66			1.00	9.59 E 1	1.84	2.10						
51.66	166.15	3.01	1.00	9.59E1	1.84	2.10	1.00	NoLiq	1.00	166.15	166.15	2.08
52.16			1.00	1.37E1	3.80	2.95						
52.16	26.44	0.89	1.00	1.37E1	3.80	2.95	1.00	NoLiq	1.00	26.44	26.44	2.08
52.66			1.00	$1.42 \mathrm{E1}$	6.49	3.08						
52.66	27.56	1.59	1.00	$1.42 \mathrm{E1}$	6.49	3.08	1.00	NoLiq	1.00	27.56	27.56	2.08
53.16			1.00	2.14 E 2	0.58	1.51						
53.16	375.57	2.17	1.00	2.14 E 2	0.58	1.51	1.00	NoLiq	1.00	375.57	375.57	2.08
53.66			1.00	2.25 E 2	0.68	1.54						
53.66	397.51	2.70	1.00	2.25 E 2	0.68	1.54	1.00	NoLiq	1.00	397.51	397.51	2.08
54.16			1.00	2.34 E 2	0.93	1.62						
54.16			0.50	3.13 E 2	0.93	1.54						

Page 7

16-0107-CPT3.cal												
54.16	416.53	3.84	0.50	3.13 E 2	0.93	1.54	0.75	3.37	0.00	313.14	313.14	2.08
54.66			1.00	2.42 E 2	0.66	1.50						
54.66			0.50	3.25 E 2	0.66	1.41						
54.66	433.92	2.85	0.50	3.25 E 2	0.66	1.41	0.75	1.70	0.00	324.97	324.97	2.08
55.16			1.00	2.46 E 2	0.65	1.49						
55.16			0.50	3.32 E 2	0.65	1.40						
55.16	445.47	2.86	0.50	3.32 E 2	0.65	1.40	0.75	1.54	0.00	332.36	332.36	2.08
55.66			1.00	2.40 E 2	0.44	1.39						
55.66			0.50	3.25 E 2	0.44	1.29						
55.66	437.51*	1.89	0.50	3.25 E 2	0.44	1.29	0.74	0.27	0.00	325.18	325.18	2.08
56.16			1.00	2.54 E 2	0.33	1.29						
56.16			0.50	3.45 E 2	0.33	1.19						
56.16	465.83	1.51	0.50	3.45 E 2	0.33	1.19	0.74	0.00	0.00	344.94	344.94	2.08
56.66			1.00	2.40 E 2	0.72	1.53						
56.66			0.50	3.28 E 2	0.72	1.44						
56.66	444.60	3.17	0.50	3.28 E 2	0.72	1.44	0.74	2.00	0.00	328.00	328.00	2.08
57.16			1.00	2.45 E 2	0.88	1.59						
57.16			0.50	3.35 E 2	0.88	1.50						
57.16	456.21	4.00	0.50	3.35 E 2	0.88	1.50	0.74	2.84	0.00	335.32	335.32	2.08
57.66			1.00	2.34 E 2	0.56	1.46						
57.66			0.50	3.22 E 2	0.56	1.36						
57.66	439.12	2.43	0.50	3.22 E 2	0.56	1.36	0.73	1.09	0.00	321.58	321.58	2.08
58.16			1.00	2.10 E 2	0.70	1.57						
58.16			0.50	2.90 E 2	0.70	1.47						
58.16	397.45	2.76	0.50	2.90 E 2	0.70	1.47	0.73	2.38	0.00	290.01	290.01	2.08
58.66			1.00	2.26E2	0.83	1.59						
58.66			0.50	3.13 E 2	0.83	1.50						
58.66	430.92	3.55	0.50	3.13 E 2	0.83	1.50	0.73	2.82	0.00	313.30	313.30	2.08
59.16			1.00	2.51 E 2	0.97	1.61						
59.16			0.50	3.49 E 2	0.97	1.52						
59.16	481.61	4.66	0.50	3.49 E 2	0.97	1.52	0.72	3.18	0.00	348.90	348.90	2.08
59.66			1.00	2.56E2	0.88	1.57						
59.66			0.50	3.57 E 2	0.88	1.48						
59.66	494.69	4.30	0.50	3.57 E 2	0.88	1.48	0.72	2.57	0.00	357.10	357.10	2.08
60.16			1.00	2.64 E 2	0.90	1.58						
60.16			0.50	3.69 E 2	0.90	1.48						
60.16	513.54	4.61	0.50	3.69 E 2	0.90	1.48	0.72	2.59	0.00	369.41	369.41	2.08
60.66			1.00	2.70E2	0.87	1.56						
60.66			0.50	3.79 E 2	0.87	1.46						
60.66	528.46	4.58	0.50	3.79 E 2	0.87	1.46	0.72	2.33	0.00	378.80	378.80	2.08
61.16			1.00	2.58 E 2	0.42	1.35						
61.16			0.50	3.64 E 2	0.42	1.24						
61.16	509.68	2.14	0.50	3.64 E 2	0.42	1.24	0.71	0.00	0.00	364.07	364.07	2.08
61.66			1.00	2.84 E 2	0.42	1.32						
61.66			0.50	4.01 E 2	0.42	1.21						
61.66	563.22	2.36	0.50	4.01 E 2	0.42	1.21	0.71	0.00	0.00	400.93	400.93	2.08
62.16			1.00	2.95 E 2	0.38	1.28						
62.16			0.50	4.19 E 2	0.38	1.17						
62.16	590.11	2.24	0.50	4.19 E 2	0.38	1.17	0.71	0.00	0.00	418.63	418.63	2.08
62.66			1.00	3.20 E 2	0.24	1.13						
62.66			0.50	4.55E2	0.24	1.01						
62.66	643.77	1.51	0.50	4.55 E 2	0.24	1.01	0.71	0.00	0.00	455.14	455.14	2.08
63.16			1.00	3.70E2	0.27	1.11						
63.16			0.50	5.27 E 2	0.27	0.99						
63.16	748.41	2.02	0.50	5.27 E 2	0.27	0.99	0.70	0.00	0.00	500.00	500.00	2.08
63.66			1.00	3.73 E 2	0.15	0.98						
63.66			0.50	5.33 E 2	0.15	0.84						
63.66	759.05	1.13	0.50	5.33 E 2	0.15	0.84	0.70	0.00	0.00	500.00	500.00	2.08

Fines have been calculated, and correction is made by Modify Robertson Method.
Fines $=$ NoLiq means the soils are not liquefiable.
CRR is based on water table at 10.00 during In-Situ Testing

Page 9

				$16-0107-$ CPT3.cal				
48.66	1.05	2.08	1.00	2.08	1.37	2.84	0.62	4.62
49.16	1.06	2.08	1.00	2.07	1.37	2.84	0.61	4.63
49.66	1.07	2.08	1.00	2.07	1.37	2.84	0.61	4.64
50.16	1.08	2.08	0.99	2.07	1.37	2.00	0.61	$5.00 \wedge$
50.66	1.09	2.08	0.99	2.06	1.37	2.00	0.61	$5.00 \wedge$
51.16	1.10	2.08	0.99	2.06	1.37	2.00	0.60	$5.00 \wedge$
51.66	1.11	2.08	0.99	2.06	1.37	2.00	0.60	$5.00 \wedge$
52.16	1.11	2.08	0.99	2.06	1.37	2.00	0.60	$5.00 \wedge$
52.66	1.12	2.08	0.99	2.05	1.37	2.00	0.59	$5.00 \wedge$
53.16	1.13	2.08	0.99	2.05	1.37	2.00	0.59	$5.00 \wedge$
53.66	1.14	2.08	0.98	2.05	1.37	2.00	0.59	$5.00 \wedge$
54.16	1.15	2.08	0.98	2.04	1.37	2.80	0.59	4.78
54.66	1.16	2.08	0.98	2.04	1.37	2.80	0.58	4.79
55.16	1.17	2.08	0.98	2.04	1.37	2.79	0.58	4.81
55.66	1.18	2.08	0.98	2.04	1.37	2.79	0.58	4.83
56.16	1.19	2.08	0.98	2.03	1.37	2.79	0.58	4.84
56.66	1.19	2.08	0.98	2.03	1.37	2.78	0.57	4.86
57.16	1.20	2.08	0.97	2.03	1.37	2.78	0.57	4.88
57.66	1.21	2.08	0.97	2.02	1.37	2.78	0.57	4.89
58.16	1.22	2.08	0.97	2.02	1.37	2.77	0.56	4.91
58.66	1.23	2.08	0.97	2.02	1.37	2.77	0.56	4.93
59.16	1.24	2.08	0.97	2.02	1.37	2.76	0.56	4.95
59.66	1.25	2.08	0.97	2.01	1.37	2.76	0.56	4.97
60.16	1.26	2.08	0.97	2.01	1.37	2.76	0.55	4.99
60.66	1.27	2.08	0.97	2.01	1.37	2.75	0.55	5.00
61.16	1.27	2.08	0.96	2.01	1.37	2.75	0.55	5.00
61.66	1.28	2.08	0.96	2.00	1.37	2.75	0.54	5.00
62.16	1.29	2.08	0.96	2.00	1.37	2.74	0.54	5.00
62.66	1.30	2.08	0.96	2.00	1.37	2.74	0.54	5.00
63.16	1.31	2.08	0.96	2.00	1.37	2.73	0.53	5.00
63.66	1.32	2.08	0.96	1.99	1.37	2.73	0.53	5.00

* F.S.<1: Liquefaction Potential Zone. (If above water table: F.S.=5)
^ No-liquefiable Soils or above Water Table.
(F.S. is limited to 5, CRR is limited to $2, \quad$ CSR is limited to 2)

CPT convert to SPT for Settlement Analysis:

					16-0107-СРТ3. cal		
20.16	2.87	3.20	15.90	4.97	NoLiq	0.00	4.97
20.66	2.91	3.13	17.26	5.52	NoLiq	0.00	5.52
21.16	2.32	4.21	108.28	25.75	23.43	0.00	25.75
21.66	2.40	4.07	124.05	30.47	26.27	0.00	30.47
22.16	3.18	2.62	10.27	3.92	NoLiq	0.00	3.92
22.66	2.73	3.46	20.34	5.88	NoLiq	0.00	5.88
23.16	2.43	4.01	99.41	24.80	27.69	0.00	24.80
23.66	1.80	5.18	154.34	29.81	8.09	0.00	29.81
24.16	1.58	5.59	194.93	34.88	3.97	0.00	34.88
24.66	1.66	5.43	143.58	26.44	5.40	0.00	26.44
25.16	2.16	4.52	125.51	27.79	17.55	0.00	27.79
25.66	2.18	4.48	132.14	29.51	18.21	0.00	29.51
26.16	2.23	4.39	146.57	33.42	19.89	0.00	33.42
26.66	2.34	4.18	139.50	33.39	24.00	0.00	33.39
27.16	2.77	3.39	20.61	6.08	NoLiq	0.00	6.08
27.66	2.77	3.38	20.53	6.07	NoLiq	0.00	6.07
28.16	2.61	3.67	37.67	10.26	NoLiq	0.00	10.26
28.66	2.54	3.80	138.54	36.41	32.55	0.00	36.41
29.16	2.81	3.31	25.65	7.75	NoLiq	0.00	7.75
29.66	1.92	4.96	91.00	18.36	10.83	0.00	18.36
30.16	2.25	4.33	114.09	26.32	20.87	0.00	26.32
30.66	1.98	4.85	129.43	26.70	12.31	0.00	26.70
31.16	1.57	5.60	194.80	34.77	3.85	0.00	34.77
31.66	1.94	4.92	173.09	35.15	11.26	0.00	35.15
32.16	2.55	3.79	192.15	50.65	32.82	0.00	50.65
32.66	2.50	3.88	123.68	31.86	30.65	0.00	31.86
33.16	2.87	3.21	22.48	7.01	NoLiq	0.00	7.01
33.66	2.67	3.57	29.49	8.26	NoLiq	0.00	8.26
34.16	2.67	3.56	29.39	8.25	NoLiq	0.00	8.25
34.66	2.63	3.64	22.66	6.23	NoLiq	0.00	6.23
35.16	2.71	3.49	21.45	6.15	NoLiq	0.00	6.15
35.66	2.71	3.49	20.94	6.01	NoLiq	0.00	6.01
36.16	2.75	3.42	20.67	6.05	NoLiq	0.00	6.05
36.66	2.79	3.35	19.22	5.73	NoLiq	0.00	5.73
37.16	2.88	3.18	20.33	6.39	NoLiq	0.00	6.39
37.66	2.69	3.53	42.95	12.18	NoLiq	0.00	12.18
38.16	2.25	4.34	111.02	25.55	20.67	0.00	25.55
38.66	2.27	4.31	102.98	23.87	21.27	0.00	23.87
39.16	2.73	3.46	39.03	11.28	NoLiq	0.00	11.28
39.66	2.16	4.51	138.56	30.71	17.63	0.00	30.71
40.16	1.37	5.97	317.10	53.08	1.13	0.00	53.08
40.66	1.36	5.98	377.61	63.14	1.09	0.00	63.14
41.16	1.08	6.50	500.00	76.87	0.00	0.00	76.87
41.66	0.99	6.66	500.00	75.04	0.00	0.00	75.04
42.16	1.24	6.20	446.72	72.04	0.00	0.00	72.04
42.66	0.97	6.71	500.00	74.55	0.00	0.00	74.55
43.16	1.23	6.23	500.00	80.27	0.00	0.00	80.27
43.66	1.02	6.62	495.31	74.82	0.00	0.00	74.82
44.16	1.46	5.80	500.00	86.20	2.30	0.00	86.20
44.66	1.13	6.42	500.00	77.89	0.00	0.00	77.89
45.16	0.98	6.69	500.00	74.72	0.00	0.00	74.72
45.66	1.02	6.61	500.00	75.65	0.00	0.00	75.65
46.16	1.42	5.89	500.00	84.96	1.71	0.00	84.96
46.66	1.02	6.61	500.00	75.60	0.00	0.00	75.60
47.16	1.31	6.09	500.00	82.14	0.46	0.00	82.14
47.66	1.33	6.04	500.00	82.72	0.71	0.00	82.72
48.16	1.30	6.09	436.57	71.65	0.43	0.00	71.65
48.66	1.19	6.31	424.49	67.28	0.00	0.00	67.28
49.16	1.08	6.50	444.05	68.29	0.00	0.00	68.29
49.66	1.42	5.88	339.86	57.84	1.77	0.00	57.84
50.16	1.56	5.61	395.61	70.50	Noliq	0.00	70.50
50.66	1.74	5.28	347.10	65.69	NoLiq	0.00	65.69
51.16	1.95	4.89	201.57	41.19	NoLiq	0.00	41.19
51.66	2.10	4.62	166.15	36.00	NoLiq	0.00	36.00
52.16	2.95	3.05	26.44	8.66	NoLiq	0.00	8.66
52.66	3.08	2.80	27.56	9.83	NoLiq	0.00	9.83
53.16	1.51	5.72	375.57	65.70	NoLiq	0.00	65.70
53.66	1.54	5.66	397.51	70.25	NoLiq	0.00	70.25
54.16	1.54	5.66	313.14	55.32	3.37	0.00	55.32
54.66	1.41	5.89	324.97	55.21	1.70	0.00	55.21
55.16	1.40	5.91	332.36	56.23	1.54	0.00	56.23
55.66	1.29	6.12	325.18	53.12	0.27	0.00	53.12
56.16	1.19	6.31	344.94	54.67	0.00	0.00	54.67
56.66	1.44	5.84	328.00	56.13	2.00	0.00	56.13
57.16	1.50	5.73	335.32	58.55	2.84	0.00	58.55
57.66	1.36	5.98	321.58	53.77	1.09	0.00	53.77
58.16	1.47	5.79	290.01	50.09	2.38	0.00	50.09
58.66	1.50	5.73	313.30	54.67	2.82	0.00	54.67
59.16	1.52	5.68	348.90	61.37	3.18	0.00	61.37
59.66	1.48	5.76	357.10	61.95	2.57	0.00	61.95
60.16	1.48	5.76	369.41	64.13	2.59	0.00	64.13
60.66	1.46	5.80	378.80	65.36	2.33	0.00	65.36

					$16-0107$-CPT3.ca1		
61.16	1.24	6.21	364.07	58.67	0.00	0.00	58.67
61.66	1.21	6.26	400.93	64.02	0.00	0.00	64.02
62.16	1.17	6.34	418.63	66.00	0.00	0.00	66.00
62.66	1.01	6.64	455.14	68.52	0.00	0.00	68.52
63.16	0.99	6.66	500.00	75.03	0.00	0.00	75.03
63.66	0.84	6.95	500.00	71.98	0.00	0.00	71.98

(N1)60s has been fines corrected in 1iquefaction analysis, therefore $d(N 1) 60=0$. (N1) 60 is converted from qc1, (NI) 60 s 15 after fines correction Fines=NoLiq means the soils are not liquefiable.

Settlement of Saturated Sands:

Depth ft	CSRsf	/ MSF*	$=$ CSRm	F.S.	$\begin{aligned} & \text { Fines } \\ & \text { \% } \end{aligned}$	(N1) 60 s	$\begin{aligned} & \mathrm{Dr} \\ & \% \end{aligned}$	$\begin{aligned} & \text { ec } \\ & \% \end{aligned}$	$\begin{aligned} & \text { dsz } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { dsp } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { in. } \end{aligned}$
63.96	0.53	1.00	0.53	5.00	0.00	70.25	100.00	0.000	0.0 EO	0.000	0.000
63.66	0.53	1.00	0.53	5.00	0.00	71.98	100.00	0.000	0.0 EO	0.000	0.000
63.16	0.53	1.00	0.53	5.00	0.00	75.03	100.00	0.000	0.0EO	0.000	0.000
62.66	0.54	1.00	0.54	5.00	0.00	68.52	100.00	0.000	0.0 EO	0.000	0.000
62.16	0.54	1.00	0.54	5.00	0.00	66.00	100.00	0.000	0.0 EO	0.000	0.000
61.66	0.54	1.00	0.54	5.00	0.00	64.02	100.00	0.000	0.0EO	0.000	0.000
61.16	0.55	1.00	0.55	5.00	0.00	58.67	100.00	0.000	0.0 EO	0.000	0.000
60.66	0.55	1.00	0.55	5.00	2.33	65.36	100.00	0.000	0.0 EO	0.000	0.000
60.16	0.55	1.00	0.55	4.99	2.59	64.13	100.00	0.000	0.050	0.000	0.000
59.66	0.56	1.00	0.56	4.97	2.57	61.95	100.00	0.000	0.0 EO	0.000	0.000
59.16	0.56	1.00	0.56	4.95	3.18	61.37	100.00	0.000	0.0 EO	0.000	0.000
58.66	0.56	1.00	0.56	4.93	2.82	54.67	100.00	0.000	0.0 EO	0.000	0.000
58.16	0.56	1.00	0.56	4.91	2.38	50.09	100.00	0.000	0.0 EO	0.000	0.000
57.66	0.57	1.00	0.57	4.89	1.09	53.77	100.00	0.000	0.0 E 0	0.000	0.000
57.16	0.57	1.00	0.57	4.88	2.84	58.55	100.00	0.000	O.0EO	0.000	0.000
56.66	0.57	1.00	0.57	4.86	2.00	56.13	100.00	0.000	0.0 EO	0.000	0.000
56.16	0.58	1.00	0.58	4.84	0.00	54.67	100.00	0.000	0.0 EO	0.000	0.000
55.66	0.58	1.00	0.58	4.83	0.27	53.12	100.00	0.000	0.0 EO	0.000	0.000
55.16	0.58	1.00	0.58	4.81	1.54	56.23	100.00	0.000	0.0 EO	0.000	0.000
54.66	0.58	1.00	0.58	4.79	1.70	55.21	100.00	0.000	0.0 EO	0.000	0.000
54.16	0.59	1.00	0.59	4.78	3.37	55.32	100.00	0.000	0.0 EO	0.000	0.000
53.66	0.59	1.00	0.59	5.00	NoLiq	70.25	100.00	0.000	0.0 EO	0.000	0.000
53.16	0.59	1.00	0.59	5.00	NoLiq	65.70	100.00	0.000	0.0EO	0.000	0.000
52.66	0.59	1.00	0.59	5.00	NoLiq	9.83	50.12	0.000	0.0 E 0	0.000	0.000
52.16	0.60	1.00	0.60	5.00	NoLiq	8.66	47.20	0.000	0.0 EO	0.000	0.000
51.66	0.60	1.00	0.60	5.00	NoLiq	36.00	100.00	0.000	0.0 EO	0.000	0.000
51.16	0.60	1.00	0.60	5.00	NoLiq	41.19	100.00	0.000	0.0 EO	0.000	0.000
50.66	0.61	1.00	0.61	5.00	NoLiq	65.69	100.00	0.000	0.0EO	0.000	0.000
50.16	0.61	1.00	0.61	5.00	NoLiq	70.50	100.00	0.000	0.080	0.000	0.000
49.66	0.61	1.00	0.61	4.64	1.77	57.84	100.00	0.000	0.0E0	0.000	0.000
49.16	0.61	1.00	0.61	4.63	0.00	68.29	100.00	0.000	0.0E0	0.000	0.000
48.66	0.62	1.00	0.62	4.62	0.00	67.28	100.00	0.000	0.0 EO	0.000	0.000
48.16	0.62	1.00	0.62	4.60	0.43	71.65	100.00	0.000	0.0EO	0.000	0.000
47.66	0.62	1.00	0.62	4.59	0.71	82.72	100.00	0.000	0.0 EO	0.000	0.000
47.16	0.62	1.00	0.62	4.58	0.46	82.14	100.00	0.000	0.0 E 0	0.000	0.000
46.66	0.63	1.00	0.63	4.57	0.00	75.60	100.00	0.000	0.0 EO	0.000	0.000
46.16	0.63	1.00	0.63	4.56	1.71	84.96	100.00	0.000	0.0E0	0.000	0.000
45.66	0.63	1.00	0.63	4.52	0.00	75.65	100.00	0.000	0.0E0	0.000	0.000
45.16	0.63	1.00	0.63	4.50	0.00	74.72	100.00	0.000	0.0 EO	0.000	0.000
44.66	0.64	1.00	0.64	4.48	0.00	77.89	100.00	0.000	0.0 EO	0.000	0.000
44.16	0.64	1.00	0.64	4.46	2.30	86.20	100.00	0.000	0.0E0	0.000	0.000
43.66	0.64	1.00	0.64	4.45	0.00	74.82	100.00	0.000	0.0E0	0.000	0.000
43.16	0.64	1.00	0.64	4.43	0.00	80.27	100.00	0.000	0.0EO	0.000	0.000
42.66	0.65	1.00	0.65	4.42	0.00	74.55	100.00	0.000	0.0 EO	0.000	0.000
42.16	0.65	1.00	0.65	4.40	0.00	72.04	100.00	0.000	0.0 E 0	0.000	0.000
41.66	0.65	1.00	0.65	4.38	0.00	75.04	100.00	0.000	0.0 EO	0.000	0.000
41.16	0.65	1.00	0.65	4.37	0.00	76.87	100.00	0.000	0.0 EO	0.000	0.000
40.66	0.65	1.00	0.65	4.35	1.09	63.14	100.00	0.000	0.0 E 0	0.000	0.000
40.16	0.66	1.00	0.66	4.34	1.13	53.08	100.00	0.000	0.0 EO	0.000	0.000
39.66	0.66	1.00	0.66	0.68	17.63	30.71	91.69	0.817	$4.9 \mathrm{E}-3$	0.010	0.010
39.16	0.66	1.00	0.66	5.00	NoLiq	11.28	53.50	0.000	0.0E0	0.008	0.018
38.66	0.66	1.00	0.66	0.38	21.27	23.87	77.59	1.854	$1.1 \mathrm{E}-2$	0.057	0.076
38.16	0.67	1.00	0.67	0.43	20.67	25.55	80.78	1.712	$1.0 \mathrm{E}-2$	0.114	0.190
37.66	0.67	1.00	0.67	5.00	NoLiq	12.18	55.50	0.000	0.0 EO	0.007	0.197
37.16	0.67	1.00	0.67	5.00	NoLiq	6.39	40.99	0.000	0.0 E 0	0.000	0.197
36.66	0.67	1.00	0.67	5.00	NoLiq	5.73	39.04	0.000	0.0 EO	0.000	0.197
36.16	0.67	1.00	0.67	5.00	NoLiq	6.05	39.99	0.000	0.0EO	0.000	0.197
35.66	0.68	1.00	0.68	5.00	NoLiq	6.01	39.86	0.000	0.0E0	0.000	0.197
35.16	0.68	1.00	0.68	5.00	NoLiq	6.15	40.29	0.000	0.0 EO	0.000	0.197
34.66	0.68	1.00	0.68	5.00	NoLiq	6.23	40.52	0.000	0.0 EO	0.000	0.197
34.16	0.68	1.00	0.68	5.00	NoLiq	8.25	46.16	0.000	0.0 E 0	0.000	0.197
33.66	0.68	1.00	0.68	5.00	NoLiq	8.26	46.18	0.000	0.0 EO	0.011	0.208
33.16	0.68	1.00	0.68	5.00	NoLiq	7.01	42.78	0.000	0.0 EO	0.000	0.208
32.66	0.69	1.00	0.69	0.51	30.65	31.86	94.43	0.710	$4.3 \mathrm{E}-3$	0.015	0.223
32.16	0.69	1.00	0.69	1.48	32.82	50.65	100.00	0.000	0.0 E 0	0.002	0.226

Page 12

	16-0107-СРТ3. cal										
31.66	0.69	1.00	0.69	1.12	11.26	35.15	100.00	0.000	0.0 EO	0.002	0.228
31.16	0.69	1.00	0.69	1.52	3.85	34.77	100.00	0.000	0.0 EO	0.000	0.228
30.66	0.69	1.00	0.69	0.56	12.31	26.70	83.04	1.544	9.3E-3	0.045	0.273
30.16	0.69	1.00	0.69	0.43	20.87	26.32	82.29	1.647	$9.9 \mathrm{E}-3$	0.100	0.372
29.66	0.69	1.00	0.69	0.30	10.83	18.36	67.58	2.343	1.4E-2	0.121	0.494
29.16	0.69	1.00	0.69	5.00	NoLiq	7.75	44.82	0.000	0.0 EO	0.083	0.577
28.66	0.69	1.00	0.69	0.65	32.55	36.41	100.00	0.000	0.0 O 0	0.000	0.577
28.16	0.69	1.00	0.69	5.00	NoLiq	10.26	51.16	0.000	0.0 EO	0.069	0.646
27.66	0.69	1.00	0.69	5.00	NoLiq	6.07	40.03	0.000	0.0 EO	0.000	0.646
27.16	0.69	1.00	0.69	5.00	NoLiq	6.08	40.09	0.000	0.0 EO	0.000	0.646
26.66	0.69	1.00	0.69	0.66	24.00	33.39	98.29	0.173	1. OE-3	0.008	0.654
26.16	0.68	1.00	0.68	0.75	19.89	33.42	98.35	0.143	8. $6 \mathrm{E}-4$	0.014	0.668
25.66	0.68	1.00	0.68	0.59	18.21	29.51	88.95	1.185	7.1E-3	0.025	0.692
25.16	0.68	1.00	0.68	0.53	17.55	27.79	85.28	1.467	$8.8 \mathrm{E}-3$	0.093	0.785
24.66	0.68	1.00	0.68	0.72	5.40	26.44	82.52	1.269	$7.6 \mathrm{E}-3$	0.088	0.873
24.16	0.68	1.00	0.68	1.55	3.97	34.88	100.00	0.000	0.0 EO	0.028	0.900
23.66	0.68	1.00	0.68	0.85	8.09	29.81	89.64	0.706	4.2E-3	0.008	0.909
23.16	0.67	1.00	0.67	0.35	27.69	24.80	79.34	1.776	1.1E-2	0.040	0.948
22.66	0.67	1.00	0.67	5.00	Nolia	5.88	39.48	0.000	0.0 EO	0.021	0.970
22.16	0.67	1.00	0.67	5.00	NoLiq	3.92	33.21	0.000	0.0 E 0	0.008	0.978
21.66	0.67	1.00	0.67	0.53	26.27	30.47	91.12	1.105	$6.6 \mathrm{E}-3$	0.047	1.025
21.16	0.67	1.00	0.67	0.41	23.43	25.75	81.17	1.696	1. OE-2	0.083	1.108
20.66	0.66	1.00	0.66	5.00	NoLiq	5.52	38.39	0.000	O.OEO	0.009	1.116
20.16	0.66	1.00	0.66	5.00	NoLiq	4.97	36.68	0.000	0.0 E 0	0.000	1.116
19.66	0.66	1.00	0.66	5.00	NoLiq	4.52	35.23	0.000	0.0 OO	0.000	1.116
19.16	0.66	1.00	0.66	5.00	NoLiq	3.50	31.79	0.000	0.0 EO	0.000	1.116
18.66	0.65	1.00	0.65	5.00	NoLiq	3.64	32.25	0.000	O. OEO	0.000	1.116
18.16	0.65	1.00	0.65	5.00	NoLiq	4.00	33.51	0.000	$0.0 E 0$	0.000	1.116
17.66	0.65	1.00	0.65	5.00	NoLiq	4.24	34.28	0.000	0.0 OO	0.000	1.116
17.16	0.64	1.00	0.64	5.00	NoLiq	4.49	35.13	0.000	0.0 EO	0.000	1.116
16.66	0.64	1.00	0.64	5.00	NoLiq	4.17	34.06	0.000	0.0 EO	0.000	1.116
16.16	0.63	1.00	0.63	5.00	NoLiq	3.33	31.18	0.000	O.OEO	0.000	1.116
15.66	0.63	1.00	0.63	5.00	NoLiq	3.06	30.21	0.000	0.0 OO	0.000	1.116
15.16	0.63	1.00	0.63	5.00	NoLiq	2.22	27.17	0.000	O.OEO	0.000	1.116
14.66	0.62	1.00	0.62	5.00	NoLiq	2.18	27.00	0.000	0.0E0	0.000	1.116
14.16	0.62	1.00	0.62	5.00	NoLiq	2.62	28.63	0.000	0.0 EO	0.000	1.116
13.66	0.61	1.00	0.61	5.00	NoLiq	5.22	37.46	0.000	0.0 E 0	0.000	1.116
13.16	0.60	1.00	0.60	5.00	NoLiq	8.19	45.99	0.000	0.0 O 0	0.000	1.116
12.66	0.60	1.00	0.60	5.00	NoLiq	5.52	38.38	0.000	0. OEO	0.000	1.116
12.16	0.59	1.00	0.59	5.00	NoLiq	8.99	48.05	0.000	0.0 OO	0.000	1.116
11.66	0.58	1.00	0.58	5.00	NoLiq	18.59	67.99	0.000	0.0 OO	0.000	1.116
11.16	0.58	1.00	0.58	5.00	NoLiq	25.05	79.81	0.000	0.0 OO	0.000	1.116
10.66	0.57	1.00	0.57	5.00	NoLiq	23.46	76.81	0.000	0.0 OO	0.000	1.116
10.16	0.56	1.00	0.56	5.00	NoLiq	10.51	51.74	0.000	0.0 OO	0.000	1.116
9.66	0.55	1.00	0.55	5.00	Noliq	13.28	57.82	0.000	0.0 OO	0.000	1.116
9.16	0.54	1.00	0.54	5.00	Noliq	7.92	45.26	0.000	0.0 OO	0.000	1.116
8.66	0.53	1.00	0.53	5.00	NoLiq	8.05	45.62	0.000	0.0 EO	0.000	1.116
8.16	0.52	1.00	0.52	5.00	NoLiq	4.02	33.57	0.000	0.0EO	0.000	1.116
7.66	0.51	1.00	0.51	5.00	NoLiq	5.59	38.60	0.000	0.0 OO	0.000	1.116
7.16	0.49	1.00	0.49	5.00	NoLiq	6.61	41.63	0.000	0.0EO	0.000	1.116
6.66	0.48	1.00	0.48	5.00	NoLiq	5.60	38.61	0.000	0.0 EO	0.000	1.116
6.16	0.46	1.00	0.46	5.00	NoLiq	4.85	36.29	0.000	0.0 EO	0.000	1.116
5.66	0.44	1.00	0.44	5.00	NoLiq	5.03	36.84	0.000	0.0 EO	0.000	1.116
5.16	0.42	1.00	0.42	5.00	NoLiq	4.41	34.86	0.000	0.0EO	0.000	1.116
5.01	0.42	1.00	0.42	5.00	NoLiq	2.53	28.31	0.000	0.0E0	0.000	1.116

Settlement of Saturated Sands $=1.116$ in.
qCl and (N1) 60 is after fines correction in liquefaction analysis
(N1) 60 s is converted from qc1 and after fines correction
dsz is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, dp=0.50 ft
S is cumulated settlement at this depth
Settlement of Unsaturated Sands:

4.96	0.28	0.18	1.31	0.42	209.38	$5.6 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
4.66	0.26	0.17	0.10	0.42	86.09	$1.3 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
4.16	0.24	0.15	0.10	0.42	81.34	$1.2 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000
3.66	0.21	0.13	0.10	0.42	76.30	$1.1 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
3.16	0.18	0.12	0.10	0.42	70.90	$1.1 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
2.66	0.15	0.10	0.10	0.42	65.05	$9.7 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
2.16	0.12	0.08	0.10	0.42	58.62	$8.8 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
1.66	0.09	0.06	0.10	0.42	51.39	$7.7 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
1.16	0.07	0.04	0.10	0.42	42.95	$6.5 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.66	0.04	0.02	0.10	0.42	32.40	$4.9 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.16	0.01	0.01	0.10	0.42	15.95	$2.4 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000

Settlement of Unsaturated Sands

Settlement of Unsaturated Sands=0.000 in.
(N1)60s is converted from qcl and after fines correction
dsz is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth
Total Settlement of Saturated and Unsaturated Sands=1.116 in. Differential Settlement $=0.558$ to 0.737 in .

Units: Unit: qc, fs, Stress or Pressure $=$ atm (1.0581tsf); Unit Weight $=$ pcf; Depth $=f t ;$ Settlement $=$ in.

1 atm (at	$\mathrm{e})=1.0581 \mathrm{tsf}(1 \mathrm{tsf}=1 \mathrm{ton} / \mathrm{ft2}=2 \mathrm{kjp} / \mathrm{ft2})$
1 atm (a	(e) $=101.325 \mathrm{kPa}(1 \mathrm{kPa}=1 \mathrm{kN} / \mathrm{m} 2=0.001 \mathrm{Mpa})$
SPT	Field data from Standard Penetration Test (SPT)
BPT	Field data from Becker Penetration Test (BPT)
qc	Field data from Cone Penetration Test (CPT) [atm (tsf)]
fs	Friction from CPT testing [atm (tsf)]
Rf	Ratio of fs/qc (\%)
gamma	Total unit weight of soil
gamma'	Effective unit weight of soil
Fines	Fines content [\%]
D50	Mean grain size
Dr	Relative Density
sigma	Total vertical stress [atm]
sigma'	Effective vertical stress [atm]
sigC'	Effective confining pressure [atm]
rd	Acceleration reduction coefficient by Seed
a_max.	Peak Ground Acceleration (PGA) in ground surface
mZ	Linear acceleration reduction coefficient X depth
a_min.	Minimum acceleration under linear reduction, mZ
CRRV	CRR after overburden stress correction, CRRV=CRR7.5* Ksig
CRR7. 5	Cyclic resistance ratio ($M=7.5$)
Ksig	Overburden stress correction factor for CRR7.5
CRRm	After magnitude scaling correction CRRm=CRRv * MSF
MSF	Magnitude scaling factor from M=7.5 to user input M
CSR	Cyclic stress ratio induced by earthquake
CSRfs	CSRfs=CSR*fs1 (Default fsi=1)
fsi	First CSR curve in graphic defined in \#9 of Advanced page
fs2	2nd CSR curve in graphic defined in \#9 of Advanced page
F.S.	Calculated factor of safety against liquefaction F.S.=CRRm/CSRsf
Cebs	Energy Ratio, Borehole Dia., and Sampling Method Corrections
Cr	Rod Length Corrections
C	Overburden Pressure Correction
(N1) 60	SPT after corrections, (N1) 60=SPT * Cr * Cn * Cebs
d(N1) 60	Fines correction of SPT
(N1) 60 f	(N1) 60 after fines corrections, (N1) $60 f=(N 1) 60+d(N 1) 60$
Cq	Overburden stress correction factor
qC1	CPT after Overburden stress correction
dqc1	Fines correction of CPT
qcif	CPT after Fines and Overburden correction, qc1f=qc1 + dqc1
qcin	CPT after normalization in Robertson's method
Kc	Fine correction factor in Robertson's Method
qcif	CPT after Fines correction in Robertson's Method
Ic	Soil type index in Suzuki's and Robertson's Methods
(NI) 60 s	(N1)60 after settlement fines corrections
CSRm	After magnitude scaling correction for Settlement calculation CSRm=CSRsf / MSF*
CSRfs	Cyclic stress ratio induced by earthquake with user inputed fs
MSF*	Scaling factor from CSR, MSF*=1, based on Item 2 of Page C.
ec	Volumetric strain for saturated sands
dz	Calculation segment, $\mathrm{dz}=0.050 \mathrm{ft}$
dsz	Settlement in each segment, dz
dp	User defined print interval
dsp	Settlement in each print interval, dp
$G_{\text {max }}$	Shear Modulus at low strain
g_eff	gamma_eff, Effective shear Strain
$\mathrm{g} * \mathrm{Ce} / \mathrm{Gm}$	gamma_eff * G_eff/G_max, Strain-modulus ratio
ec7. 5	Volumetric Strain for magnitude=7.5
Cec	Magnitude correction factor for any magnitude
ec	Volumetric strain for unsaturated sands, ec=Cec * ec7.5
NoLiq	No-Liquefy Soils

References:

1. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Youd, T.L., and Idriss, I.M., eds., Technical Report NCEER 97-0022.

SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMC Special Pubilication 117, Guidelines for

Analyzing and Mitigating Liquefaction in California. University of Southern California. March 1999.
2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL-2, PROCEEDINGS: Fourth

International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March 2001.
3. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK, Earthquake Engineering Research Center,

Report No. EERC 2003-06 by R.B Seed and etc. April 2003.
Note: Print Interval you selected does not show complete results. To get complete results, you should select 'Segment' in Print Interval (Item 12, Page C).

GEOSYSTEMS

Max. Depth: $50.525(\mathrm{ft})$
Avg. Interval: 0.328 (ft)
눈눈
Engineer: R.GLADSON
Date: 5/26/2016 12:41

 Sounding: CPT-4

								－																												
								－																												
								$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathbf{O} \end{aligned}$		$\sqrt[4]{4}$																										
								－		$\sqrt[5]{3}$																		ת	\％	\llcorner				\％		
																										\pm	¢	N	N	\％		－		\％		
								－	드은													\％					พ	\％	\％	\％	F	F		\％	9	
								－														is				9	\％ 10	ก5	－	＋	F	\％		\％	7	
								N	N																			－	－	¢		－				
								－	（1）															\bigcirc			0	$\stackrel{0}{\square}$	os	¢ ${ }_{0}^{\circ}$	$\stackrel{\square}{\circ}$					
					I			－													号	\cdots					ल．	－	－	H｜	¢	－				
								－\％																			㐌	¢	8，	－		$\xrightarrow{\substack{\text { N }}}$				
				\mid				（													$\stackrel{\sim}{\sim}$	－			：	$\stackrel{N}{\text { N }}$	$\stackrel{\infty}{\square}$	0		M					N	\％
							I	둥												\sim			0			45	－ 0	$\bigcirc 0$		$0 \cdot$		ω				\bigcirc－
								－	－言			$\stackrel{\sim}{N}$	O	Nin	Ni	No	¢	m			$\stackrel{\rightharpoonup}{4}$	\bigcirc			N	¢	\cdots	$\xrightarrow{\substack{4 \\ \sim}}$		No		－				당
	11							$\bar{\circ}$	$\stackrel{\text { 或 }}{\substack{0}}$	$\underline{\underline{E}}$	O	O	O						¢	8\％	－	－		$\stackrel{\square}{\square}$	－	을	N	N								m

$\begin{aligned} & \overline{\mathrm{N}} \\ & \overline{\mathrm{j}} \end{aligned}$				∞	5			\cdots	\bigcirc						9	$\stackrel{\square}{0}$	－	$\stackrel{\sim}{0}$	$\stackrel{\sim}{n}$	0	¢－	N	$\underset{\sim}{N}$	－M	$\stackrel{\text { N }}{ }$	\bigcirc	\cdots	m	$\stackrel{9}{8}$	¢	－ 10	${ }_{\infty}$	$\stackrel{\mathrm{m}}{\mathrm{m}}$	N					$\stackrel{0}{0}$		
$\frac{\bar{N}}{\mathbf{N}}$				$\stackrel{\infty}{\underset{\sim}{\sim}} \underset{\sim}{\sim}$	$\underset{\square}{7} \underset{\sim}{\square}$			$\stackrel{\sim}{\sim}$	$\underset{\sim}{\sim}$				$\stackrel{\infty}{\sim}$		－	20	${ }_{0}^{\circ}$	∞	N	${ }_{0}^{0}$	O－1	${ }_{0}^{3}$	$\stackrel{7}{\square}$	¢	$\overline{6}$	O	8	N	8	$\stackrel{1}{0}$	7	$\stackrel{+}{+}$	－	$\frac{\square}{\square}$					$\stackrel{10}{\sim}$		
$\begin{array}{\|c} \mathrm{N} \\ \mathrm{~N} \\ \overline{\mathrm{O}} \end{array}$		$\stackrel{\boxed{4}}{\boxed{2}}$						¢	\％				$\stackrel{4}{\square}$		$\stackrel{\sim}{6}$	$\begin{aligned} & \mathbb{N} \\ & \hline \end{aligned}$	$\left\{\begin{array}{l} 10 \\ 10 \\ 0 \\ 0 \end{array}\right.$	O	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\underset{\substack{\mathrm{N}}}{\mathbf{~}}$	$\stackrel{N}{n}$	$\underset{0}{\mathcal{O}}$	$\underset{i}{\dot{\circ}}$	$\begin{array}{l\|l} 9 \\ 0 \\ 0 & J \\ \hline \end{array}$	ก	$\stackrel{5}{0}$	负	OR	8	\pm	앙	$\stackrel{\square}{\circ}$							$\stackrel{18}{\sim}$		
$\left\|\begin{array}{l} \overline{0} \\ \mathbf{N} \\ \overline{\mathrm{O}} \end{array}\right\|$			궁	$\bar{\Phi}$	$\begin{array}{lll} \infty \\ \\ \hline 0 \\ 0 \end{array}$	（	${ }_{0}^{6}$	융	$=\frac{m}{g}$	ju	\％	등	－	$\stackrel{N}{0}$	N	$\frac{m}{i n}$	$\overline{\text { \％}}$	\％	$\begin{aligned} & \mathrm{G} \\ & \mathbf{n} \end{aligned}$	∞	$\stackrel{o}{9}$	$\underset{\infty}{\infty}$	Op	$\stackrel{0}{\infty}$	尔	\％	$\stackrel{\sim}{\sim}$	${ }_{0}^{0}$	\％	잉	0	－	¢	扈	N	$\mathscr{\infty}_{\infty}^{\infty}$	\％	¢	$\underset{\substack{N \\ \underset{\sim}{N}}}{\substack{\infty}}$	\％	\％
$\left\|\begin{array}{c} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \\ \mathbf{O} \end{array}\right\|$		穿옹	앙				\＃	$\stackrel{10}{\sim}$	N	\％	\bigcirc	$\stackrel{\sim}{N}$																							足	N\％	示	－0／e		号忈	易㤩
$\left\|\begin{array}{c} \mathrm{i} \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$			¢				앙	－	m	－		\％																							∞	\％	を	g		\％	－
$\left\|\begin{array}{l} \overline{\mathrm{N}} \\ \hline \mathbf{0} \end{array}\right\|$		앙	N			0	－	¢	$\stackrel{2}{2}$	只		m																							V	岕盛	䍖	－		\bigcirc	\％
$\begin{array}{\|} \bar{N} \\ \overline{\mathrm{O}} \end{array}$	$\frac{\llcorner }{\omega} \frac{0}{5}$		\cdots	$\stackrel{\square}{\square}$	$\stackrel{\sim}{*}$	∞	¢	$\stackrel{3}{6}$	－	\bigcirc	N	$\stackrel{\text { No }}{\text {－}}$	－\％	$\stackrel{\circ}{\sim}$	O－	$\stackrel{\sim}{\sim}$	¢	$\stackrel{\square}{\text { m }}$	\bigcirc	$\stackrel{7}{7}$	$\stackrel{0}{0}$	$\stackrel{N}{\text { N }}$	$\stackrel{\square}{\text { in }}$	へi	m	\cdots	$\stackrel{0}{0}$	O	$\stackrel{3}{8}$	$\stackrel{\infty}{\circ}$	\sim_{0}	\cdots	$\stackrel{\square}{\circ}$	\％ 10	¢	－\％－	－	∞	No	O	－
$\frac{\stackrel{\rightharpoonup}{\mathrm{N}}}{\mathbf{O}}$	$\begin{aligned} & 8 \\ & \mathbf{2} \\ & 5 \\ & 0 \\ & \hline \end{aligned}$		¢	¢0	\cdots	N	$\stackrel{ \pm}{\dot{F}}$	$\stackrel{0}{\mathrm{O}}$	¢	－	$\stackrel{\text { O }}{\substack{0}}$	$\stackrel{\sim}{N}$	－	$\stackrel{\square}{0}$	\cdots	\cdots	¢	$\stackrel{\square}{\text { ¢ }}$	¢ٌ	¢	$\underset{\sim}{\underset{\sim}{c}}$	\cdots	$\stackrel{0}{\sim}$	－	－	\cdots	$\stackrel{m}{\sim}$	No	\％	$\stackrel{m}{1}$	$\stackrel{3}{\sim}$	m	${ }_{5}$	\％	m	$\stackrel{\rightharpoonup}{\circ} \dot{\sim}$	－	$\stackrel{+}{\infty}$	0		$\stackrel{N}{\text { N }}$
$\frac{\bar{\sim}}{\mathbf{0}}$																			$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & u_{1} \\ & 0 \\ & 0 \\ & - \end{aligned}$		碳	\％	－	¢		O	－		n	8		¢						
－		－				$\begin{gathered} \dot{N} \\ \mathbf{Q} \\ \mathbf{N} \\ \hline \end{gathered}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} \underset{N}{N} \\ \underset{N}{\sim} \\ \underset{\sim}{2} \\ \hline \end{gathered}$		둥	$\begin{array}{c\|c} 8 \\ \stackrel{n}{0} \\ \stackrel{n}{m} \\ \hline \end{array}$	$\stackrel{i}{n} \mathbf{~ c}$	㐌	$\dot{\sim} \dot{\sim}$		$\stackrel{?}{2} \frac{\infty}{\infty}$	－	¢	迢	$\begin{aligned} & \frac{9}{\stackrel{9}{i}} \\ & \hline \end{aligned}$	$\xrightarrow{ \pm}$	$\underset{\sim}{n}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	－	$¢_{0}^{\circ}$	m	$\stackrel{3}{\square}$	－	¢	$\stackrel{N}{N}$	\％	N－	－	¢			\％	$\begin{gathered} N \\ \mathbf{N} \\ \dot{0} \\ \hline \end{gathered}$		
$\left\lvert\, \frac{\bar{\infty}}{\frac{\infty}{0}}\right.$		N－		$$			in			$\underset{\sim}{c} \underset{\sim}{\sim}$	$\underset{\sim}{c}$		$\underset{\sim}{\mathrm{N}}$		－	\dot{f}		－	n	$\begin{array}{\|l\|l} \substack{\infty \\ 0 \\ N} \end{array}$	$\begin{aligned} & \mathbf{8} \\ & 0 \\ & \text { mi } \end{aligned}$	N	$\begin{gathered} \stackrel{\rightharpoonup}{N} \\ \text { ले } \end{gathered}$	$\frac{n}{m} \underset{\sim}{\Gamma}$	m	$\underset{\sim}{ \pm}$	ल	\％	N	${ }_{\text {\％}}^{0}$	$\begin{aligned} & \text { O} \\ & \dot{\sim} \\ & \mathbf{N} \end{aligned}$	${ }_{0}^{0}$	－	N	N	$\stackrel{\text { No }}{\substack{0 \\ \sim \\ \sim \\ \sim \\ \sim}}$	－	N	$\underset{\sim}{y}$		$\stackrel{\text { O}}{\sim}$
$\frac{i \pi}{i}$		\sim	に	－m	м	∞	\bullet	$\omega \theta$	\checkmark	－	¢	－ 10	$\operatorname{n} \nabla$	*	m	\cdots	\cdots	\cdots	m	m	\cdots	\cdots	m	m	m		\cdots	\cdots	\cdots	\cdots	m	8	\cdots	\cdots	5	\cdots	$\bigcirc \omega$	ぃ	－	Ω	$0 \cdot$
$\frac{\bar{N}}{\mathbf{0}}$				$\underset{\underset{\sim}{\infty}}{\underset{\sim}{\infty}} \underset{\underset{F}{\infty}}{\underset{\sim}{\infty}}$			$\underset{\substack{8 \\ \underset{\sim}{N} \\ \underset{\sim}{n} \\ \hline}}{ }$		$\begin{gathered} \stackrel{\rightharpoonup}{3} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{2} \\ \\ \hline \end{gathered}$		$\begin{aligned} & \infty \\ & \underset{寸}{2} \\ & \underset{\sim}{2} \end{aligned}$				－	$~$ 		－	$\stackrel{\text { m }}{\text { m }}$	$\stackrel{N}{\text { N }}$	$\begin{gathered} \stackrel{4}{4} \\ \stackrel{y}{0} \\ \infty \\ \underset{\sim}{0} \end{gathered}$	N	$\stackrel{\overline{-}}{\sim}$	9 0 0 0	－	¢	－	莡		容	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \stackrel{y}{c} \end{aligned}$	$\stackrel{\sim}{\infty}$	ผ	No	\％			N			
$\overline{\%}$		E:					$\begin{aligned} & \hline 8 \\ & \hline \\ & \hline \\ & \mathrm{~m} \end{aligned}$			$\underset{\sim}{8} \underset{\substack{8 \\ \hline \\ \hline}}{\substack{2}}$				$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline \end{aligned}$	－	88	$\frac{8}{5}$	－	O	－	$\begin{gathered} 8 \\ 0 \\ 6 \\ 6 \end{gathered}$	－	\％	8	${ }^{\circ}$	8	N	8	${ }_{0}^{\circ}$	－	8	－	N		－			－			$\begin{gathered} 0 \\ 0 \end{gathered} \frac{8}{9}$

Col 1i	Col 2 i	Col 3 i	Col 4i	Col 51	Col 6 i	Col 71	Col 8 i	Col 9i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16 i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, $\sigma^{\prime} v$	Normalized cone resistance, QtI	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
8.300	27.231	24.937	0.443	6.849		25.04	1.77	6	115	1.576	0.506	1.069	21.94	1.89	0.00
8.400	27.559	20.978	0.411	7.114		21.08	1.95	6	115	1.595	0.517	1.078	18.07	2.11	0.00
8.500	27.887	28.060	0.751	9.082		28.19	2.66	6	115	1.613	0.527	1.087	24.46	2.82	0.00
8.600	28.215	38.712	1.336	12.879		38.90	3.43	5	115	1.632	0.537	1.095	34.03	3.59	0.01
8.700	28.543	33.981	1.474	14.140		34.18	4.31	4	115	1.651	0.547	1.104	29.48	4.53	0.01
8.800	28.871	29.892	1.355	14.708		30.10	4.50	4	115	1.670	0.557	1.112	25.56	4.77	0.02
8.900	29.199	27.670	1.480	14.834		27.88	5.31	3	111	1.688	0.568	1.120	23.38	5.65	0.02
9.000	29.528	52.236	1.879	15.187		52.45	3.58	5	115	1.707	0.578	1.129	44.95	3.70	0.01
9.100	29.856	105.002	2.049	15.099		105.22	1.95	7	118	1.726	0.588	1.138	90.94	1.98	0.00
9.200	30.184	121.769	1.600	14.746		121.98	1.31	8	121	1.746	0.598	1.148	104.77	1.33	0.00
9.300	30.512	116.406	1.406	14.481		116.61	1.21	8	121	1.766	0.609	1.157	99.25	1.22	0.00
9.400	30.840	102.483	1.474	14.191		102.69	1.44	8	121	1.786	0.619	1.167	86.48	1.46	0.00
9.500	31.168	92.556	2.469	13.762		92.75	2.66	7	118	1.805	0.629	1.176	77.35	2.71	0.00
9.600	31.496	117.252	2.192	13.687		117.45	1.87	7	118	1.824	0.639	1.185	97.58	1.90	0.00
9.700	31.824	136.278	1.138	13.094		136.47	0.83	9	124	1.845	0.650	1.195	112.65	0.85	0.00
9.800	32.152	143.212	1.090	12.640		143.39	0.76	9	124	1.865	0.660	1.205	117.43	0.77	0.00
9.900	32.480	118.256	1.427	12.122		118.43	1.20	8	121	1.885	0.670	1.215	95.94	1.22	0.00
10.000	32.808	68.715	1.846	12.576		68.90	2.68	6	115	1.904	0.680	1.223	54.76	2.76	0.00
10.100	33.136	50.619	1.891	15.364		50.84	3.72	5	115	1.923	0.691	1.232	39.71	3.87	0.01
10.200	33.465	34.111	1.616	18.227		34.37	4.70	4	115	1.941	0.701	1.241	26.14	4.98	0.02
10.300	33.793	43.769	1.315	21.015		44.07	2.98	6	115	1.960	0.711	1.249	33.71	3.12	0.02
10.400	34.121	35.487	0.841	22.138		35.81	2.35	6	115	1.979	0.721	1.258	26.90	2.49	0.03
10.500	34.449	34.130	0.515	25.670		34.50	1.49	7	118	1.998	0.732	1.267	25.66	1.58	0.03
10.600	34.777	35.580	0.697	38.674		36.14	1.93	6	115	2.017	0.742	1.275	26.76	2.04	0.06
10.700	35.105	34.018	0.876	46.722		34.69	2.53	6	115	2.036	0.752	1.284	25.44	2.68	0.08
10.800	35.433	24.677	0.602	48.930		25.38	2.37	6	115	2.055	0.762	1.292	18.05	2.58	0.12
10.900	35.761	18.422	0.428	59.576		19.28	2.22	5	115	2.073	0.772	1.301	13.23	2.49	0.20
11.000	36.089	22.679	0.478	69.465		23.68	2.02	6	115	2.092	0.783	1.310	16.48	2.22	0.20
11.100	36.417	26.685	0.582	71.937		27.72	2.10	6	115	2.119	0.793	1.318	19.43	2.27	0.17
11.200	36.745	26.824	0.643	74.208		27.89	2.31	6	115	2.130	0.803	1.327	19.42	2.50	0.18
11.300	37.073	39.391	1.128	78.156		40.52	2.78	6	115	2.149	0.813	1.335	28.74	2.94	0.13
11.400	37.402	50.544	1.340	57.078		51.37	2.61	6	115	2.167	0.824	1.344	36.61	2.72	0.07
11.500	37.730	78.559	2.198	47.782		79.25	2.77	6	115	2.186	0.834	1.352	56.98	2.85	0.03
11.600	38.058	127.337	2.987	34.575		127.83	2.34	7	118	2.206	0.844	1.361	92.28	2.38	0.01
11.700	38.386	210.691	1.890	30.513		211.13	0.90	9	124	2.226	0.854	1.372	152.32	0.90	0.01
11.800	38.714	248.065	1.592	25.480		248.43	0.64	9	124	2.246	0.865	1.382	178.18	0.65	0.00
11.900	39.042	215.459	1.813	22.453		215.78	0.84	9	124	2.267	0.875	1.392	153.41	0.85	0.00
12.000	39.370	205.867	1.628	23.840		206.21	0.79	9	124	2.287	0.885	1.402	145.46	0.80	0.00
12.100	39.698	218.341	1.556	25.531		218.71	0.71	9	124	2.307	0.895	1.412	153.26	0.72	0.00
12.200	40.026	249.171	1.458	26.641		249.55	0.58	9	124	2.328	0.906	1.422	173.84	0.59	0.00
12.300	40.354	301.947	1.810	29.076		302.37	0.60	10	127	2.349	0.916	1.433	209.39	0.60	0.00
12.400	40.682	429.980	3.745	30.337		430.42	0.87	10	127	2.369	0.926	1.443	296.54	0.87	0.00
12.500	41.011	569.410	2.834	31.674		569.87	0.50	10	127	2.390	0.936	1.454	390.26	0.50	0.00
12.600	41.339	486.641	2.964	29.454		487.06	0.61	10	127	2.411	0.946	1.465	330.88	0.61	0.00
12.700	41.667	426.328	3.251	30.955		426.77	0.76	10	127	2.432	0.957	1.475	287.61	0.77	0.00
12.800	41.995	558.786	2.965	32.393		559.25	0.53	10	127	2.453	0.967	1.486	374.68	0.53	0.00
12.900	42.323	624.248	3.064	35.231		624.76	0.49	10	127	2.474	0.977	1.497	415.77	0.49	0.00
13.000	42.651	654.289	4.067	39.368		654.86	0.62	10	127	2.495	0.987	1.507	432.79	0.62	0.00
13.100	42.979	665.340	3.654	34.020		665.83	0.55	10	127	2.516	0.998	1.518	436.97	0.55	0.00
13.200	43.307	632.558	2.932	29.176		632.98	0.46	10.	127	2.537	1.008	1.529	412.42	0.47	0.00

Col 1 i	Col 2 i	Col 17 i	Col 18i	Col 19i	Col 201	Col 21i	Col 22i	Col 23i	Col 24i	Col $25 i$	Col 26 i	Col 271	Col 28 i	Col 29i
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, It	Normalized Cone resistance, Qtn	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ \text { (N1) } 60 \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	Young's modulus, Es	Small strain shear modulus, Go	Undrained shear strength, su	Undrained strength ratio, su/o'v	Over consolidation ratio, OCR
(m)	(t)				(ft/sec)	(blows/ft)	(blows/ft)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
8.300	27.231	4	2.60	21.99	$3.00 \mathrm{E}-8$	6.4	6.4				1252	1.56	1.46	6.6
8.400	27.559	4	2.70	18.14	$3.00 \mathrm{E}-8$	5.6	5.6				1054	1.30	1.20	5.4
8.500	27.887	4	2.67	24.58	$3.00 \mathrm{E}-8$	7.4	7.3				1410	1.77	1.63	7.3
8.600	28.215	4	2.63	34.27	3.00E-8	10.0	9.9				1945	2.48	2.27	10.2
8.700	28.543	4	2.74	29.69	3.00E-8	9.4	9.2				1709	2.17	1.97	8.8
8.800	28.871	3	2.80	25.76	$1.00 \mathrm{E}-9$	8.5	8.3				1505	1.90	1.70	7.7
8.900	29.199	3	2.88	23.55	1.00E-9	8.2	8.0				1394	1.75	1.56	7.0
9.000	29.528	4	2.55	45.62	3.00E-8	13.0	12.6				2623	3.38	3.00	13.5
9.100	29.856	5	2.14	93.29	$3.00 \mathrm{E}-6$	21.8	21.1	52	40	421	904			
9.200	30.184	6	1.98	108.22	$3.00 \mathrm{E}-4$	23.7	22.8	56	41	488	952			
9.300	30.512	6	1.97	102.88	$3.00 \mathrm{E}-4$	22.6	21.6	54	41	466	941			
9.400	30.840	5	2.07	89.68	$3.00 \mathrm{E}-6$	20.7	19.7	51	40	411	904			
9.500	31.168	5	2.29	79.88	$3.00 \mathrm{E}-6$	20.5	19.4	48	39	371	876			
9.600	31.496	5	2.11	101.64	$3.00 \mathrm{E}-6$	24.0	22.7	54	40	470	951			
9.700	31.824	6	1.82	118.91	3.00E-4	25.1	23.6	58	41	546	1002			
9.800	32.152	6	1.78	124.62	3.00E-4	26.0	24.4	60	41	574	1022			
9.900	32.480	6	1.98	101.35	$3.00 \mathrm{E}-4$	23.1	21.6	54	40	474	961			
10.000	32.808	5	2.40	56.97	3.00E-6	16.0	14.8	40	37	276	804			
10.100	33.136	4	2.60	41.01	3.00E-8	13.0	12.0				2542	3.26	2.65	11.9
10.200	33.465	3	2.81	26.77	$1.00 \mathrm{E}-9$	9.7	9.0				1719	2.16	1.74	7.8
10.300	33.793	4	2.59	34.94	$3.00 \mathrm{E}-8$	11.1	10.3				2204	2.81	2.25	10.1
10.400	34.121	4	2.60	27.90	$3.00 \mathrm{E}-8$	9.1	8.3				1790	2.26	1.79	8.1
10.500	34.449	5	2.50	26.80	$3.00 \mathrm{E}-6$	8.3	7.6	28	33	138	646			
10.600	34.777	4	2.55	27.91	$3.00 \mathrm{E}-8$	8.9	8.1				1807	2.27	1.78	8.0
10.700	35.105	4	2.64	26.44	$3.00 \mathrm{E}-8$	8.9	8.1				1735	2.18	1.70	7.6
10.800	35.433	4	2.75	18.66	3.00E-8	6.8	6.2				1269	1.56	1.20	5.4
10.900	35.761	4	2.85	13.61	$3.00 \mathrm{E}-8$	5.4	4.9				964	1.15	0.88	4.0
11.000	36.089	4	2.74	17.09	$3.00 \mathrm{E}-8$	6.2	5.6				1184	1.44	1.10	4.9
11.100	36.417	4	2.69	20.23	$3.00 \mathrm{E}-8$	7.2	6.4				1386	1.71	1.30	5.8
11.200	36.745	4	2.72	20.21	$3.00 \mathrm{E}-8$	7.3	6.5				1395	1.72	1.29	5.8
11.300	37.073	4	2.63	30.13	$3.00 \mathrm{E}-8$	10.2	9.1				2026	2.56	1.92	8.6
11.400	37.402	4	2.52	38.72	$3.00 \mathrm{E}-8$	12.5	11.1				2568	3.28	2.44	11.0
11.500	37.730	5	2.40	60.93	3.00E-6	18.2	16.1	42	37	317	871			
11.600	38.058	5	2.19	100.38	$3.00 \mathrm{E}-6$	27.1	23.9	54	40	511	1024			
11.700	38.386	6	1.74	172.02	3.00E-4	37.7	33.1	70	43	845	1213			
11.800	38.714	6	1.60	203.61	3.00E-4	42.2	37.0	76	44	994	1284			
11.900	39.042	6	1.72	174.75	3.00E-4	38.3	33.4	71	43	863	1228			
12.000	39.370	6	1.72	166.27	$3.00 \mathrm{E}-4$	36.6	31.8	69	43	825	1213			
12.100	39.698	6	1.68	176.49	$3.00 \mathrm{E}-4$	38.2	33.1	71	43	875	1240			
12.200	40.026	6	1.58	201.54	$3.00 \mathrm{E}-4$	42.2	36.4	76	43	998	1299			
12.300	40.354	6	1.52	243.66	3.00E-4	50.2	43.1	83	44	1209	1388			
12.400	40.682	6	1.53	346.36	3.00E-4	71.7	61.4	99	46	1722	1565			
12.500	41.011	7	1.27	457.49	3.00E-2	87.5	74.6	114	47	2279	1723			
12.600	41.339	6	1.38	389.30	$3.00 \mathrm{E}-4$	77.4	65.8	105	46	1948	1639			
12.700	41.667	6	1.50	339.62	3.00E-4	70.3	59.5	99	46	1707	1572			
12.800	41.995	7	1.30	444.04	3.00E-2	86.7	73.2	113	47	2237	1724			
12.900	42.323	7	1.25	494.49	3.00E-2	95.2	80.1	119	47	2499	1794			
13.000	42.651	7	1.31	516.56	3.00E-2	101.8	85.3	121	48	2619	1826			
13.100	42.979	7	1.27	523.38	$3.00 \mathrm{E}-2$	102.2	85.3	122	48	2663	1841			
13.200	43.307	7	1.23	495.71	3.00E-2	96.1	79.9	119	47	2532	1814			

$\left\|\frac{\overline{0}}{\overline{0}}\right\|$				08080	8080				80			0	808	8080	80.8		O
$\left\|\frac{\bar{\pi}}{\overline{0}}\right\|$			$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		NM Mo	$\mathfrak{N O}$	0	$\begin{array}{lll} 0 \\ 0 \\ 0 \\ 0 \end{array}$	Bill		$\underbrace{\infty}_{0}$	Rem	g	${ }_{N}^{N}$	${ }_{8}^{\circ}$	O	今
$\left\|\begin{array}{l} \frac{7}{9} \\ \frac{0}{8} \end{array}\right\|$				$\begin{cases}\infty \\ \infty\end{cases}$			So	$\underset{\sim}{\sim}$				O	N	Nom	$\stackrel{m}{c}$		\％
$\frac{2}{8}$		乘品	－	－	－	－	－		－		¢	\％		유N	No	¢	$\stackrel{\text { N }}{\sim}$
－					OOO				$\stackrel{N}{i}$			1		¢	－	${ }^{2}$	$\stackrel{\sim}{\sim}$
$\overline{\bar{\circ}}$					GO						Now	－					
$\overline{\overline{0}}$				NN	$\underset{N}{\mathrm{~N}}$		N	N	N			N	N	N			
$\left\|\frac{\overline{3}}{\overline{0}}\right\|$	占			으으아	응안			우앙	으안			으앙	으앙				
$\left\|\frac{\bar{\infty}}{\overline{0}}\right\|$	$\ddot{\sim}$	a		Mrr	$\stackrel{N}{1}$		\underbrace{n}_{0}	0	O		$\dot{\infty}$	\mathfrak{m}	$\begin{gathered} \text { g } \\ 0 \end{gathered}$				
$\left\|\begin{array}{l} i \overline{0} \\ \overline{0} \end{array}\right\|$	－	気										$\stackrel{8}{8}$					
$\left\|\frac{\overline{0}}{\overline{0}}\right\|$	$\stackrel{\text { © }}{\mathbf{0}}$																
$\left\|\frac{i \pi}{i}\right\|$		気萑		\mathfrak{B}					$\begin{array}{c:c} \underset{N}{m} \\ \stackrel{m}{m} \\ \hline \end{array}$			\mathfrak{c}					
$\frac{7}{8}$		率宽		\mathfrak{c}	BiN Ni io							$\stackrel{m}{~}$		¢	∞		
$\left\|\frac{\overline{2}}{\overline{0}}\right\|$	\bigcirc	気苞					$\begin{aligned} & 0 \\ & 0 \end{aligned}$			Bick			৫				
$\left\|\begin{array}{c} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{array}\right\|$		보웅															
$\overline{\overline{0}}$		园苟		$\mathfrak{C l}$							\dot{d}						

Col 1 i	Col 2i	Col 17 i	Col 18i	Col 191	Col 20i	Col 211	Col 22i	Col 23i	Col 24i	Col $25 i$	Col 26 i	Col 27i	Col 28i	Col 29 i
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, Ic	Normalized Cone resistance, Otn	Estimated permeability. kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ \text { (N1) } 60 \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	$\begin{array}{\|c} \text { Young's } \\ \text { modulus. Es } \end{array}$	Small strain shear modulus, Go	Undrained shear strength, su	Undrained strength ratio, su/o'v	Over consolidation ratio, OCR
(m)	(ft)				(ft/sec)	(blows/ft)	(blows/ti)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
13.300	43.635	7	1.20	521.41	$3.00 \mathrm{E}-2$	100.3	83.2	122	48	2672	1851			
13.400	43.963	7	1.22	541.09	$3.00 \mathrm{E}-2$	105.2	86.9	124	48	2782	1881			
13.500	44.291	7	1.30	457.64	3.00E-2	91.5	75.3	114	47	2363	1785			
13.600	44.619	6	1.42	421.08	$3.00 \mathrm{E}-4$	87.6	71.9	110	47	2182	1742			
13.700	44.948	7	1.25	545.95	$3.00 \mathrm{E}-2$	108.0	88.3	125	48	2836	1906			
13.800	45.276	7	1.07	565.75	3.00E-2	106.8	87.0	127	48	2948	1935			
13.900	45.604	7	1.05	527.83	3.00E-2	99.5	80.8	123	47	2761	1897			
14.000	45.932	7	1.22	486.06	$3.00 \mathrm{E}-2$	96.4	78.1	118	47	2551	1852			
14.100	46.260	7	1.33	437.40	$3.00 \mathrm{E}-2$	90.2	72.8	112	47	2305	1794			
14.200	46.588	6	1.37	400.57	3.00E-4	83.7	67.3	107	46	2119	1748			
14.300	46.916	7	1.27	500.70	$3.00 \mathrm{E}-2$	101.7	81.5	120	47	2654	1889			
14.400	47.244	7	1.29	490.00	$3.00 \mathrm{E}-2$	100.5	80.3	118	47	2606	1881			
14.500	47.572	6	1.59	316.35	$3.00 \mathrm{E}-4$	71.9	57.3	95	45	1692	1633			
14.600	47.900	6	1.56	318.64	$3.00 \mathrm{E}-4$	71.7	57.0	95	45	1709	1642			
14.700	48.228	7	1.16	477.87	$3.00 \mathrm{E}-2$	95.4	75.5	117	47	2566	1884			
14.800	48.556	7	1.21	478.78	$3.00 \mathrm{E}-2$	97.3	76.8	117	47	2579	1891			
14.900	48.885	6	1.40	482.42	3.00E-4	104.1	81.9	117	47	2607	1902			
15.000	49.213	6	1.44	510.49	3.00E-4	112.0	87.8	121	47	2767	1944			
15.100	49.541	6	1.57	466.96	3.00E-4	106.9	83.6	116	47	2539	1893			
15.200	49.869	6	1.56	425.36	3.00E-4	97.7	76.2	110	46	2321	1841			
15.300	50.197	7	1.29	437.32	3.00E-2	92.5	71.9	112	46	2393	1863			

\qquad

Font: Courier New, Regular, Size 8 is recommended for this report.
Licensed to 6/2/2016 4:01:26 PM
Input File Name: G: $\mathrm{GS} 16 \backslash G S 16-0107 _$Panama\Design \& Analysis A (IQUEFACTION $16-0107-\mathrm{CPT} 4.1 \mathrm{iq}$
Title: 12870 Panama Street
Subtitle: CPT 4
Input Data:
Surface Elev $=0$
Hole No. =CPT4
Depth of $\mathrm{Hole}=50.50 \mathrm{ft}$
Water Table during Earthquake= 5.00 ft
Water Table during In-Situ Testing= 10.00 ft
Max. Acceleration $=0.65 \mathrm{~g}$
Earthquake Magnitude=6.63
No-Liquefiable Soils: CL, OL are Non-Liq. Soil

1. CPT Calulation Method: Modify Robertson*
2. Settlement Analysis Method: Ishihara / Yoshimine
3. Fines Correction for Liquefaction: Stark/01son et a1.*
4. Fine Correction for Settlement: During Liquefaction*
5. Settlement Calculation in: All zones*
6. User request factor of safety (apply to CSR) Plot two CSR (fsl=1, fs2=User)
7. Average two input data between two Depths: Yes*

* Recommended Options

In-Situ Depth ft	Test qC atm	ta: fs atm	$\begin{aligned} & \mathrm{Rf} \\ & \% \end{aligned}$	Gamma pcf	Fines \%	$\begin{aligned} & \text { DSO } \\ & \mathrm{mm} \end{aligned}$
0.16	0.00	0.00	100.00	120.00	0.00	0.50
0.66	0.00	0.00	100.00	120.00	0.00	0.50
1.15	0.00	0.00	100.00	120.00	0.00	0.50
1.64	0.00	0.00	100.00	120.00	0.00	0.50
2.13	0.00	0.00	100.00	120.00	0.00	0.50
2.62	0.00	0.00	100.00	120.00	0.00	0.50
3.12	0.00	0.00	100.00	120.00	0.00	0.50
3.61	0.00	0.00	100.00	120.00	0.00	0.50
4.10	0.00	0.00	100.00	120.00	0.00	0.50
4.59	0.00	0.00	100.00	120.00	0.00	0.50
5.09	36.41	0.44	1.22	120.00	0.00	0.50
5.58	49.21	0.77	1.56	120.00	0.00	0.50
6.07	51.30	0.64	1.24	120.00	0.00	0.50
6.56	30.61	0.95	3.12	120.00	0.00	0.50
7.05	44.44	0.70	1.57	120.00	0.00	0.50
7.55	68.37	0.44	0.65	120.00	0.00	0.50
8.04	53.17	0.63	1.18	120.00	0.00	0.50
8.53	46.28	0.70	1.52	120.00	0.00	0.50
9.02	52,33	0.92	1.75	120.00	0.00	0.50
9.51	62.37	0.99	1.59	120.00	0.00	0.50
10.00	49.68	0.92	1.86	120.00	0.00	0.50
10.49	52.47	0.78	1.49	120.00	0.00	0.50
10.99	36.69	0.64	1.74	120.00	0.00	0.50
11.48	12.35	0.32	2.58	120.00	0.00	0.50
11.97	14.89	0.38	2.55	120.00	0.00	0.50
12.46	28.05	0.34	1.20	120.00	0.00	0.50
12.95	58.64	0.15	0.25	120.00	0.00	0.50
13.45	12.29	0.23	1.87	120.00	0.00	0.50
13.94	33.09	0.37	1.10	120.00	0.00	0.50
14.43	21.74	0.60	2.74	120.00	0.00	0.50
14.92	34.10	0.66	1.94	120.00	0.00	0.50
15.41	19.04	0.54	2.84	120.00	0.00	0.50
15.91	11.43	0.33	2.86	120.00	0.00	0.50
16.40	11.54	0.31	2.67	120.00	Noliq	0.50
16.89	10.28	0.35	3.42	120.00	Noliq	0.50
17.38	10.59	0.45	4.23	120.00	NoLiq	0.50
17.88	11.07	0.39	3.53	120.00	NoLiq	0.50
18.37	7.95	0.36	4.48	120.00	NoLiq	0.50
18.86	7.31	0.21	2.89	120.00	NoLiq	0.50
19.35	7.64	0.22	2.81	120.00	NoLiq	0.50
19.84	8.70	0.32	3.63	120.00	NoLiq	0.50
20.34	9.48	0.41	4.35	120.00	NoLiq	0.50
20.83	12.49	0.54	4.33	120.00	NoLiq	0.50
21.32	13.55	0.69	5.09	120.00	NoLiq	0.50
21.81	16.84	0.67	3.98	120.00	NoLiq	0.50
22.30	29.25	1.01	3.47	120.00	NoLiq	0.50
22.80	20.66	0.82	3.99	120.00	NoLiq	0.50

Page 1

					16-0107-CPT4.cal	
23.29	15.30	0.52	3.39	120.00	NoLiq	0.50
23.78	23.36	0.82	3.52	120.00	NoLiq	0.50
24.27	111.30	0.77	0.69	120.00	NoLiq	0.50
24.77	115.10	1.25	1.08	120.00	NoLiq	0.50
25.26	79.60	2.40	3.02	120.00	NoLiq	0.50
25.75	57.77	2.08	3.60	120.00	NoLiq	0.50
26.24	139.50	0.96	0.69	120.00	0.00	0.50
26.73	98.59	0.45	0.46	120.00	0.00	0.50
27.23	20.35	0.41	2.02	120.00	0.00	0.50
27.72	22.47	0.45	1.99	120.00	0.00	0.50
28.21	43.41	1.36	3.13	120.00	0.00	0.50
28.70	32.06	1.37	4.26	120.00	0.00	0.50
29.19	26.68	1.43	5.36	120.00	0.00	0.50
29.69	83.59	2.13	2.55	120.00	0.00	0.50
30.18	122.90	1.51	1.23	120.00	0.00	0.50
30.67	112.50	1.39	1.24	120.00	0.00	0.50
31.16	88.69	2.71	3.06	120.00	0.00	0.50
31.66	132.50	1.24	0.93	120.00	0.00	0.50
32.15	144.10	1.13	0.78	120.00	0.00	0.50
32.64	83.48	1.82	2.18	120.00	0.00	0.50
33.13	52.00	1.86	3.58	120.00	0.00	0.50
33.62	33.71	1.41	4.19	120.00	0.00	0.50
34.12	32.62	0.75	2.31	120.00	0.00	0.50
34.61	34.99	0.50	1.43	120.00	0.00	0.50
35.10	34.60	0.95	2.75	120.00	0.00	0.50
35.59	19.18	0.50	2.60	120.00	0.00	0.50
36.08	23.56	0.45	1.89	120.00	0.00	0.50
36.58	27.32	0.56	2.05	120.00	0.00	0.50
37.07	29.27	1.37	4.67	120.00	0.00	0.50
37.56	40.32	1.73	4.30	120.00	0.00	0.50
38.05	119.00	3.52	2.96	120.00	0.00	0.50
38.54	260.20	1.30	0.50	120.00	0.00	0.50
39.04	213.10	1.92	0.90	120.00	0.00	0.50
39.53	206.30	1.64	0.80	120.00	0.00	0.50
40.02	247.20	1.49	0.60	120.00	0.00	0.50
40.51	345.10	2.40	0.69	120.00	0.00	0.50
41.01	602.30	2.17	0.36	120.00	0.00	0.50
41.50	409.30	3.36	0.82	120.00	0.00	0.50
41.99	567.70	2.85	0.50	120.00	0.00	0.50
42.48	615.40	2.91	0.47	120.00	0.00	0.50
42.97	640.80	2.90	0.45	120.00	0.00	0.50
43.47	639.10	2.35	0.37	120.00	0.00	0.50
43.96	686.20	3.81	0.56	120.00	0.00	0.50
44.45	491.40	3.75	0.76	120.00	0.00	0.50
44.94	734.10	3.82	0.52	120.00	0.00	0.50
45.43	756.30	1.68	0.22	120.00	0.00	0.50
45.93	655.30	2.61	0.40	120.00	0.00	0.50
46.42	545.40	2.90	0.53	120.00	0.00	0.50
46.91	713.50	2.90	0.41	120.00	0.00	0.50
47.40	536.10	2.93	0.55	120.00	0.00	0.50
47.90	385.70	3.99	1.03	120.00	0.00	0.50
48.39	674.60	2.10	0.31	120.00	0.00	0.50
48.88	684.40	5.61	0.82	120.00	0.00	0.50
49.37	766.10	6.19	0.81	120.00	0.00	0.50
49.86	564.00	6.13	1.09	120.00	0.00	0.50
50.36	583.70	0.02	0.00	120.00	0.00	0.50

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:
Calculation segment, $d z=0.050 \mathrm{ft}$
User defined Print Interval, $d p=0.50 \mathrm{ft}$
Peak Ground Acceleration (PGA), a_max $=0.65 \mathrm{~g}$

CSR Calculation: Depth ft	gamma pcf	sigma atm	gamma' pcf	sigma' atm	rd	$m Z$ g	a(z) g	CSR	x fs1	$=$ CSRfs
0.16	120.00	0.009	120.00	0.009	1.00	0.000	0.650	0.42	1.00	0.42
0.66	120.00	0.037	120.00	0.037	1.00	0.000	0.650	0.42	1.00	0.42
1.16	120.00	0.066	120.00	0.066	1.00	0.000	0.650	0.42	1.00	0.42
1.66	120.00	0.094	120.00	0.094	1.00	0.000	0.650	0.42	1.00	0.42
2.16	120.00	0.122	120.00	0.122	0.99	0.000	0.650	0.42	1.00	0.42
2.66	120.00	0.151	120.00	0.151	0.99	0.000	0.650	0.42	1.00	0.42
3.16	120.00	0.179	120.00	0.179	0.99	0.000	0.650	0.42	1.00	0.42
3.66	120.00	0.208	120.00	0.208	0.99	0.000	0.650	0.42	1.00	0.42
4.16	120.00	0.236	120.00	0.236	0.99	0.000	0.650	0.42	1.00	0.42
4.66	120.00	0.264	120.00	0.264	0.99	0.000	0.650	0.42	1.00	0.42
5.16	120.00	0.293	57.60	0.288	0.99	0.000	0.650	0.42	1.00	0.42
5.66	120.00	0.321	57.60	0.302	0.99	0.000	0.650	0.44	1.00	0.44

Page 2

	16-0107-CPT4.cal									
6.16	120.00	0.349	57.60	0.315	0.99	0.000	0.650	0.46	1.00	0.46
6.66	120.00	0.378	57.60	0.329	0.98	0.000	0.650	0.48	1.00	0.48
7.16	120.00	0.406	57.60	0.343	0.98	0.000	0.650	0.49	1.00	0.49
7.66	120.00	0.434	57.60	0.356	0.98	0.000	0.650	0.51	1.00	0.51
8.16	120.00	0.463	57.60	0.370	0.98	0.000	0.650	0.52	1.00	0.52
8.66	120.00	0.491	57.60	0.383	0.98	0.000	0.650	0.53	1.00	0.53
9.16	120.00	0.519	57.60	0.397	0.98	0.000	0.650	0.54	1.00	0.54
9.66	120.00	0.548	57.60	0.411	0.98	0.000	0.650	0.55	1.00	0.55
10.16	120.00	0.576	57.60	0.424	0.98	0.000	0.650	0.56	1.00	0.56
10.66	120.00	0.604	57.60	0.438	0.98	0.000	0.650	0.57	1.00	0.57
11.16	120.00	0.633	57.60	0.451	0.97	0.000	0.650	0.58	1.00	0.58
11.66	120.00	0.661	57.60	0.465	0.97	0.000	0.650	0.58	1.00	0.58
12.16	120.00	0.690	57.60	0.479	0.97	0.000	0.650	0.59	1.00	0.59
12.66	120.00	0.718	57.60	0.492	0.97	0.000	0.650	0.60	1.00	0.60
13.16	120.00	0.746	57.60	0.506	0.97	0.000	0.650	0.60	1.00	0.60
13.66	120.00	0.775	57.60	0.520	0.97	0.000	0.650	0.61	1.00	0.61
14.16	120.00	0.803	57.60	0.533	0.97	0.000	0.650	0.62	1.00	0.62
14.66	120.00	0.831	57.60	0.547	0.97	0.000	0.650	0.62	1.00	0.62
15.16	120.00	0.860	57.60	0.560	0.96	0.000	0.650	0.63	1.00	0.63
15.66	120.00	0.888	57.60	0.574	0.96	0.000	0.650	0.63	1.00	0.63
16.16	120.00	0.916	57.60	0.588	0.96	0.000	0.650	0.63	1.00	0.63
16.66	120.00	0.945	57.60	0.601	0.96	0.000	0.650	0.64	1.00	0.64
17.16	120.00	0.973	57.60	0.615	0.96	0.000	0.650	0.64	1.00	0.64
17.66	120.00	1.001	57.60	0.628	0.96	0.000	0.650	0.65	1.00	0.65
18.16	120.00	1.030	57.60	0.642	0.96	0.000	0.650	0.65	1.00	0.65
18.66	120.00	1.058	57.60	0.656	0.96	0.000	0.650	0.65	1.00	0.65
19.16	120.00	1.086	57.60	0.669	0.96	0.000	0.650	0.66	1.00	0.65
19.66	120.00	1.115	57.60	0.683	0.95	0.000	0.650	0.66	1.00	0.65
20.16	120.00	1.143	57.60	0.696	0.95	0.000	0.650	0.66	1.00	0.65
20.66	120.00	1.172	57.60	0.710	0.95	0.000	0.650	0.66	1.00	0.66
21.16	120.00	1.200	57.60	0.724	0.95	0.000	0.650	0.67	1.00	0.67
21.66	120.00	1.228	57.60	0.737	0.95	0.000	0.650	0.67	1.00	0.67
22.16	120.00	1.257	57.60	0.751	0.95	0.000	0.650	0.67	1.00	0.67
22.66	120.00	1.285	57.60	0.765	0.95	0.000	0.650	0.67	1.00	0.67
23.16	120.00	1.313	57.60	0.778	0.95	0.000	0.650	0.67	1.00	0.67
23.66	120.00	1.342	57.60	0.792	0.94	0.000	0.650	0.68	1.00	0.68
24.16	120.00	1.370	57.60	0.805	0.94	0.000	0.650	0.68	1.00	0.68
24.66	120.00	1.398	57.60	0.819	0.94	0.000	0.650	0.68	1.00	0.68
25.16	120.00	1.427	57.60	0.833	0.94	0.000	0.650	0.68	1.00	0.68
25.66	120.00	1.455	57.60	0.846	0.94	0.000	0.650	0.68	1.00	0.68
26.16	120.00	1.483	57.60	0.860	0.94	0.000	0.650	0.68	1.00	0.68
26.66	120.00	1.512	57.60	0.873	0.94	0.000	0.650	0.69	1.00	0.69
27.16	120.00	1.540	57.60	0.887	0.94	0.000	0.650	0.69	1.00	0.69
27.66	120.00	1.568	57.60	0.901	0.94	0.000	0.650	0.69	1.00	0.69
28.16	120.00	1.597	57.60	0.914	0.93	0.000	0.650	0.69	1.00	0.69
28.66	120.00	1.625	57.60	0.928	0.93	0.000	0.650	0.69	1.00	0.69
29.16	120.00	1.654	57.60	0.941	0.93	0.000	0.650	0.69	1.00	0.69
29.66	120.00	1.682	57.60	0.955	0.93	0.000	0.650	0.69	1.00	0.69
30.16	120.00	1.710	57.60	0.969	0.93	0.000	0.650	0.69	1.00	0.69
30.66	120.00	1.739	57.60	0.982	0.92	0.000	0.650	0.69	1.00	0.69
31.16	120.00	1.767	57.60	0.996	0.92	0.000	0.650	0.69	1.00	0.69
31.66	120.00	1.795	57.60	1.009	0.92	0.000	0.650	0.69	1.00	0.69
32.16	120.00	1.824	57.60	1.023	0.91	0.000	0.650	0.69	1.00	0.69
32.66	120.00	1.852	57.60	1.037	0.91	0.000	0.650	0.69	1.00	0.69
33.16	120.00	1.880	57.60	1.050	0.90	0.000	0.650	0.68	1.00	0.68
33.66	120.00	1.909	57.60	1.064	0.90	0.000	0.650	0.68	1.00	0.68
34.16	120.00	1.937	57.60	1.078	0.90	0.000	0.650	0.68	1.00	0.68
34.66	120.00	1.965	57.60	1.091	0.89	0.000	0.650	0.68	1.00	0.68
35.16	120.00	1.994	57.60	1.105	0.89	0.000	0.650	0.68	1.00	0.68
35.66	120.00	2.022	57.60	1.118	0.88	0.000	0.650	0.68	1.00	0.68
36.16	120.00	2.050	57.60	1.132	0.88	0.000	0.650	0.67	1.00	0.67
36.66	120.00	2.079	57.60	1.146	0.88	0.000	0.650	0.67	1.00	0.67
37.16	120.00	2.107	57.60	1.159	0.87	0.000	0.650	0.67	1.00	0.67
37.66	120.00	2.136	57.60	1.173	0.87	0.000	0.650	0.67	1.00	0.67
38.16	120.00	2.164	57.60	1.186	0.86	0.000	0.650	0.67	1.00	0.67
38.66	120.00	2.192	57.60	1.200	0.86	0.000	0.650	0.66	1.00	0.66
39.16	120.00	2.221	57.60	1.214	0.86	0.000	0.650	0.66	1.00	0.66
39.66	120.00	2.249	57.60	1.227	0.85	0.000	0.650	0.66	1.00	0.66
40.16	120.00	2.277	57.60	1.241	0.85	0.000	0.650	0.66	1.00	0.66
40.66	120.00	2.306	57.60	1.254	0.84	0.000	0.650	0.65	1.00	0.65
41.16	120.00	2.334	57.60	1.268	0.84	0.000	0.650	0.65	1.00	0.65
41.66	120.00	2.362	57.60	1.282	0.83	0.000	0.650	0.65	1.00	0.65
42.16	120.00	2.391	57.60	1.295	0.83	0.000	0.650	0.65	1.00	0.65
42.66	120.00	2.419	57.60	1.309	0.83	0.000	0.650	0.65	1.00	0.65
43.16	120.00	2.447	57.60	1.322	0.82	0.000	0.650	0.64	1.00	0.64
43.66	120.00	2.476	57.60	1.336	0.82	0.000	0.650	0.64	1.00	0.64
44.16	120.00	2.504	57.60	1.350	0.81	0.000	0.650	0.64	1.00	0.64
44.66	120.00	2.532	57.60	1.363	0.81	0.000	0.650	0.64	1.00	0.64
45.16	120.00	2.561	57.60	1.377	0.81	0.000	0.650	0.63	1.00	0.63
45.66	120.00	2.589	57.60	1.391	0.80	0.000	0.650	0.63	1.00	0.63
46.16	120.00	2.618	57.60	1.404	0.80	0.000	0.650	0.63	1.00	0.63
46.66	120.00	2.646	57.60	1.418	0.79	0.000	0.650	0.63	1.00	0.63

Page 3

				$16-0107$-CPT4.cal								
47.16	120.00	2.674	57.60	1.431	0.79	0.000	0.650	0.62	1.00	0.62		
47.66	120.00	2.703	57.60	1.445	0.79	0.000	0.650	0.62	1.00	0.62		
48.16	120.00	2.731	57.60	1.459	0.78	0.000	0.650	0.62	1.00	0.62		
48.66	120.00	2.759	57.60	1.472	0.78	0.000	0.650	0.62	1.00	0.62		
49.16	120.00	2.788	57.60	1.486	0.77	0.000	0.650	0.61	1.00	0.61		
49.66	120.00	2.816	57.60	1.499	0.77	0.000	0.650	0.61	1.00	0.61		
50.16	120.00	2.844	57.60	1.513	0.77	0.000	0.650	0.61	1.00	0.61		

$\overline{C S R}$ is based on water table at 5.00 during earthquake
CRR Calculation from CPT data, using Modify Robertson's Method:

Depth ft	qc atm	cont fric. atm	is de	$\begin{aligned} & \text { rmined } \\ & \mathrm{Q} \end{aligned}$	$R f$	Ic	Cq	Fines \%	Kc	$\begin{aligned} & \text { qc1n } \\ & \text { atm } \end{aligned}$	qc1f atm	CRR7.5
0.16			1.00	1.00E-4	0.00	7.97						
0.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
0.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
0.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.66			1.00	1.00E-4	0.00	7.97						
1.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.16	0.00	0.00	1.00	1.00E-4	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.16			1.00	1.00E-4	0.00	7.97						
4.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
5.16			1.00	1.26E2	1.46	1.95						
5.16			0.50	6.88 El	1.46	2.14						
5.16	37.21	0.54	0.50	$6.88 \mathrm{E1}$	1.46	2.14	1.85	17.03	0.32	68.80	101.34	0.18
5.66			1.00	1.58 E 2	1.41	1.87						
5.66			0.50	9.01E1	1.41	2.04						
5.66	51.06	0.72	0.50	9.01E1	1.41	2.04	1.77	14.15	0.24	90.12	119.24	0.24
6.16			1.00	1.34E2	1.55	1.95						
6.16			0.50	8.00 E 1	1.55	2.11						
6.16	47.31	0.73	0.50	$8.00 \mathrm{E1}$	1.55	2.11	1.69	16.03	0.29	80.05	113.46	0.22
6.66			1.00	$8.72 \mathrm{E1}$	2.72	2.25						
6.66			0.50	5.42 EI	2.72	2.40						
6.66	33.32	0.89	0.50	5.42 E 1	2.72	2.40	1.63	26.32	0.57	54.22	125.84	0.27
7.16			1.00	1.22E2	1.18	1.89						
7.16			0.50	7.85E1	1.18	2.04						
7.16	50.01	0.59	0.50	$7.85 \mathrm{E1}$	1.18	2.04	1.57	14.00	0.24	78.48	103.29	0.18
7.66			1.00	1.56 E 2	0.72	1.67						
7.66			0.50	1.04 E 2	0.72	1.81						
7.66	68.37	0.49	0.50	1.04 E 2	0.72	1.81	1.52	8.36	0.09	103.74	113.96	0.22
8.16			1.00	1.10E2	1.13	1.91						
8.16			0.50	$7.56 \mathrm{E1}$	1.13	2.04						
8.16	51.43	0.57	0.50	$7.56 \mathrm{E1}$	1.13	2.04	1.47	13.98	0.24	75.61	99.45	0.17
8.66			1.00	9.77E1	1.57	2.05						
8.66			0.50	$6.91 \mathrm{E1}$	1.57	2.16						
8.66	48.45	0.75	0.50	$6.91 \mathrm{E1}$	1.57	2.16	1.43	17.68	0.34	69.14	104.53	0.19
9.16			1.00	1.06 E 2	1.74	2.05						
9.16			0.50	7.73 EI	1.74	2.15						
9.16	55.71	0.96	0.50	7.73 EI	1.74	2.15	1.39	17.47	0.33	77.30	115.91	0.22
9.66			1.00	9.20 El	2.11	2.16						
9.66			0.50	6.88 El	2.11	2.25						
9.66	50.93	1.06	0.50	6.88 El	2.11	2.25	1.35	20.59	0.42	68.81	117.86	0.23
10.16			1.00	1.10E2	1.37	1.97						
10.16			0.50	$8.39 E 1$	1.37	2.06						
10.16	63.44	0.86	0.50	8.39 E 1	1.37	2.06	1.32	14.55	0.25	83.91	112.61	0.21
10.66			1.00	8.06 E 1	1.62	2.12						
10.66			0.50	$6.24 \mathrm{E1}$	1.62	2.20						
10.66	47.76	0.76	0.50	$6.24 \mathrm{E1}$	1.62	2.20	1.31	19.06	0.38	62.43	99.93	0.17
11.16			1.00	4.42E1	1.74	2.34						
11.16			0.50	3.50 E 1	1.74	2.42						
11.16	27.10	0.46	0.50	3.50 El	1.74	2.42	1.29	27.14	0.59	35.01	85.62	0.14
11.66			1.00	1.49 El	4.10	2.94						
11.66	9.78	0.37	1.00	1.49E1	4.10	2.94	1.00	Noliq	1.00	9.78	9.78	2.08
12.16			1.00	$1.57 \mathrm{E1}$	3.71	2.89						
12.16	10.52	0.37	1.00	1.57E1	3.71	2.89	1.00	NoLiq	1.00	10.52	10.52	2.08
12.66			1.00	1.04 E 2	0.37	1.65						
12.66			0.50	8.41 E1	0.37	1.73						
12.66	67.23	0.24	0.50	$8.41 \mathrm{E1}$	0.37	1.73	1.25	6.76	0.05	84.06	88.21	0.14
13.16			1.00	$4.92 \mathrm{E1}$	0.75	2.09						

Page 4

	16-0107-CPT4.cal											
13.16			0.50	$4.07 \mathrm{E1}$	0.75	2.16						
13.16	32.88	0.24	0.50	$4.07 \mathrm{E1}$	0.75	2.16	1.24	17.65	0.34	40.68	61.44	0.10
13.66			1.00	1.69 E 1	2.12	2.72						
13.66	12.07	0.24	1.00	1.69 E 1	2.12	2.72	1.00	NoLiq	1.00	12.07	12.07	2.08
14.16			1.00	5.12 E 1	1.37	2.22						
14.16			0.50	$4.32 \mathrm{E1}$	1.37	2.28						
14.16	35.66	0.48	0.50	4.32 El	1.37	2.28	1.21	21.81	0.45	43.23	78.42	0.12
14.66			1.00	$4.07 \mathrm{E1}$	2.26	2.44						
14.66			0.50	$3.49 \mathrm{E1}$	2.26	2.49						
14.66	29.10	0.64	0.50	3.49 E 1	2.26	2.49	1.20	30.14	0.67	34.93	106.24	0.19
15.16			1.00	4.63 E 1	1.86	2.34						
15.16			0.50	4.00 E 1	1.86	2.39						
15.16	33.65	0.61	0.50	4.00 E 1	1.86	2.39	1.19	25.94	0.56	40.00	90.74	0.15
15.66			1.00	1.90 E 1	3.27	2.79						
15.66	14.62	0.45	1.00	1.90 EL	3.27	2.79	1.00	NoLiq	1.00	14.62	14.62	2.08
16.16			1.00	1.33E1	3.18	2.91						
16.16	10.68	0.31	1.00	$1.33 \mathrm{E1}$	3.18	2.91	1.00	NoLiq	1.00	10.68	10.68	2.08
16.66			1.00	1.02 E 1	3.82	3.05						
16.66	8.54	0.29	1.00	1.02 E 1	3.82	3.05	1.00	NoLiq	1.00	8.54	8.54	2.08
17.16			1.00	$1.27 \mathrm{E1}$	4.30	3.01						
17.16	10.63	0.42	1.00	1.27 El	4.30	3.01	1.00	NoLiq	1.00	10.63	10.63	2.08
17.66			1.00	1.40 E 1	4.03	2.95						
17.66	11.87	0.44	1.00	$1.40 \mathrm{E1}$	4.03	2.95	1.00	NoLiq	1.00	11.87	11.87	2.08
18.16			1.00	9.06 EO	5.44	3.18						
18.16	8.18	0.39	1.00	9.06 EO	5.44	3.18	1.00	NoLiq	1.00	8.18	8.18	2.08
18.66			1.00	7.43 EO	4.66	3.21						
18.66	7.02	0.28	1.00	7.43 EO	4.66	3.21	1.00	NoLiq	1.00	7.02	7.02	2.08
19.16			1.00	6.74 E 0	3.20	3.15						
19.16	6.59	0.18	1.00	6.74 EO	3.20	3.15	1.00	NoLiq	1.00	6.59	6.59	2.08
19.66			1.00	9.87 EO	3.53	3.04						
19.66	9.31	0.29	1.00	9.87E0	3.53	3.04	1.00	NoLiq	1.00	9.31	9.31	2.08
20.16			1.00	9.15 EO	4.71	3.14						
20.16	8.86	0.36	1.00	9.15 E0	4.71	3.14	1.00	NoLiq	1.00	8.86	8.86	2.08
20.66			1.00	1.11 E 1	4.94	3.09						
20.66	10.73	0.47	1.00	1.11 El	4.94	3.09	1.00	NoLiq	1.00	10.73	10.73	2.08
21.16			1.00	1.52 E 1	4.58	2.96						
21.16	14.47	0.61	1.00	1.52 E 1	4.58	2.96	1.00	NoLiq	1.00	14.47	14.47	2.08
21.66			1.00	$1.90 \mathrm{E1}$	4.18	2.86						
21.66	18.04	0.70	1.00	1.90E1	4.18	2.86	1.00	Noliq	1.00	18.04	18.04	2.08
22.16			1.00	2.16 E 1	4.58	2.85						
22.16	20.68	0.89	1.00	2.16 E 1	4.58	2.85	1.00	NoLiq	1.00	20.68	20.68	2.08
22.66			1.00	2.77E1	3.52	2.69						
22.66	26.58	0.89	1.00	2.77E1	3.52	2.69	1.00	NoLiq	1.00	26.58	26.58	2.08
23.16			1.00	$1.57 \mathrm{E1}$	3.52	2.88						
23.16	15.86	0.51	1.00	1.57 El	3.52	2.88	1.00	NoLiq	1.00	15.86	15.86	2.08
23.66			1.00	1.66 E 1	4.40	2.92						
23.66	16.94	0.69	1.00	$1.66 \mathrm{E1}$	4.40	2.92	1.00	NoLiq	1.00	16.94	16.94	2.08
24.16			1.00	1.05 E 2	0.88	1.86						
24.16	101.54	0.88	1.00	1.05 E 2	0.88	1.86	1.00	NoLiq	1.00	101.54	101.54	2.08
24.66			1.00	1.12 E 2	0.99	1.87						
24.66	109.53	1.07	1.00	1.12 E 2	0.99	1.87	1.00	NoLiq	1.00	109.53	109.53	2.08
25.16			1.00	$8.72 \mathrm{E1}$	2.40	2.21						
25.16	86.84	2.05	1.00	$8.72 \mathrm{E1}$	2.40	2.21	1.00	NoLiq	1.00	86.84	86.84	2.08
25.66			1.00	$6.16 E 1$	3.87	2.47						
25.66	62.67	2.37	1.00	$6.16 \mathrm{E1}$	3.87	2.47	1.00	NoLiq	1.00	62.67	62.67	2.08
26.16			1.00	1.26 E 2	0.97	1.82						
26.16			0.50	1.28 E 2	0.97	1.82						
26.16	128.89	1.23	0.50	1.28 E 2	0.97	1.82	1.00	8.52	0.09	128.42	141.73	0.34
26.66			1.00	1.10 E 2	0.40	1.65						
26.66			0.50	1.13 E 2	0.40	1.64						
26.66	113.71	0.45	0.50	1.13 E 2	0.40	1.64	0.99	5.05	0.00	112.55	112.70	0.21
27.16			1.00	2.41 El	1.77	2.55						
27.16			0.50	2.60 El	1.77	2.53						
27.16	26.42	0.44	0.50	$2.60 \mathrm{E1}$	1.77	2.53	0.98	31.82	0.72	25.98	91.48	0.15
27.66			1.00	1.95 E 1	2.01	2.66						
27.66	21.98	0.41	1.00	$1.95 \mathrm{E1}$	2.01	2.66	1.00	NoLiq	1.00	21.98	21.98	2.08
28.16			1.00	$3.72 \mathrm{E1}$	3.21	2.57						
28.16			0.50	3.99 E 1	3.21	2.54						
28.16	41.09	1.27	0.50	3.99 E 1	3.21	2.54	0.97	32.70	0.74	39.88	153.23	0.41
28.66			1.00	2.86 E 1	4.53	2.75						
28.66	32.34	1.39	1.00	2.86 E 1	4.53	2.75	1.00	NoLiq	1.00	32.34	32.34	2.08
29.16			1.00	$2.32 \mathrm{E1}$	5.60	2.88						
29.16	26.91	1.42	1.00	2.32 El	5.60	2.88	1.00	NoLiq	1.00	26.91	26.91	2.08
29.66			1.00	$6.80 E 1$	2.78	2.33						
29.66			0.50	$7.30 \mathrm{E1}$	2.78	2.31						
29.66	76.69	2.08	0.50	$7.30 E 1$	2.78	2.31	0.95	22.99	0.48	73.04	140.51	0.34
30.16			1.00	1.09 E 2	1.28	1.95						
30.16			0.50	1.16 E 2	1.28	1.93						
30.16	122.81	1.55	0.50	1.16 E 2	1.28	1.93	0.95	11.18	0.16	116.24	139.21	0.33
30.66			1.00	9.83 El	1.25	1.98						
30.66			0.50	1.06 E 2	1.25	1.96						
30.66	112.75	1.39	0.50	1.06 E 2	1.25	1.96	0.94	11.76	0.18	106.08	129.46	0.28
							Page					

		16-0107-CPT4.ca1										
45.66	656.38	1.80	0.50	$5.29 E 2$	0.28	1.00	0.81	0.00	0.00	500.00	500.00	2.08
46.16			1.00	3.80 E 2	0.57	1.32						
46.16			0.50	4.75 E 2	0.57	1.26						
46.16	592.20	3.34	0.50	4.75 E 2	0.57	1.26	0.80	0.00	0.00	475.43	475.43	2.08
46.66			1.00	3.30E2	0.58	1.37						
46.66			0.50	4.15E2	0.58	1.30						
46.66	518.96	3.01	0.50	4.15 E 2	0.58	1.30	0.80	0.43	0.00	414.81	414.81	2.08
47.16			1.00	4.47E2	0.52	1.24						
47.16			0.50	5.64 E 2	0.52	1.18						
47.16	708.48	3.66	0.50	5.64 E 2	0.52	1.18	0.80	0.00	0.00	500.00	500.00	2.08
47.66			1.00	2.26E2	1.19	1.71						
47.66			0.50	2.87 E 2	1.19	1.65						
47.66	362.33	4.29	0.50	2.87E2	1.19	1.65	0.79	5.12	0.00	287.13	288.08	2.08
48.16			1.00	3.97E2	0.33	1.14						
48.16			0.50	5.06E2	0.33	1.06						
48.16	640.69	2.09	0.50	5.06E2	0.33	1.06	0.79	0.00	0.00	500.00	500.00	2.08
48.66			1.00	3.84 E 2	0.45	1.24						
48.66			0.50	$4.91 E 2$	0.45	1.17						
48.66	624.64	2.80	0.50	4.91 EZ	0.45	1.17	0.79	0.00	0.00	490.82	490.82	2.08
49.16			1.00	3.98E2	0.90	1.46						
49.16			0.50	5.11E2	0.90	1.40						
49.16	652.67	5.87	0.50	5.11E2	0.90	1.40	0.78	1.54	0.00	500.00	500.00	2.08
49.66			1.00	3.40 E 2	1.40	1.66						
49.66			0.50	4.38E2	1.40	1.60						
49.66	562.64	7.81	0.50	4.38E2	1.40	1.60	0.78	4.30	0.00	438.44	438.44	2.08
50.16			1.00	3.57E2	0.70	1.40						
50.16			0.50	4.63E2	0.70	1.33						
50.16	596.35	4.13	0.50	4.63E2	0.70	1.33	0.78	0.75	0.00	462.80	462.80	2.08

Fines have been calculated, and correction is made by Modify Robertson Method, Fines=NoLiq means the soils are not liquefiable.

CRR is based on water table at 10.00 during In-Situ Testing

CPT convert to SPT for Settlement Analysis:

Page 8

Page 9

					$16-0107-$ CPT4.cal		
48.66	1.17	6.34	490.82	77.45	0.00	0.00	77.45
49.16	1.40	5.91	500.00	84.59	1.54	0.00	84.59
49.66	1.60	5.55	438.44	79.00	4.30	0.00	79.00
50.16	1.33	6.04	462.80	76.66	0.75	0.00	76.66

(N1) 60 s has been fines corrected in liquefaction analysis, therefore $d(N 1) 60=0$. (N1) 60 is converted from qc1, (N1) 60 s is after fines correction
Fines=NoLiq means the soils are not liquefiable.

Settlement of Saturated Sands:

$\begin{aligned} & \text { Depth } \\ & \mathrm{ft} \end{aligned}$	CSRsf	/ MSF*	=CSRm	F.S.	Yoshim Fines \%	(N1)60s	$\begin{aligned} & \mathrm{Dr} \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{ec} \\ & \% \end{aligned}$	$\begin{aligned} & \text { dsz } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { dsp } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { in. } \end{aligned}$
50.46	0.61	1.00	0.61	4.67	2.65	78.54	100.00	0.000	0.0 EO	0.000	0.000
50.16	0.61	1.00	0.61	4.66	0.75	76.66	100.00	0.000	0.0 EO	0.000	0.000
49.66	0.61	1.00	0.61	4.64	4.30	79.00	100.00	0.000	0.050	0.000	0.000
49.16	0.61	1.00	0.61	4.63	1.54	84.59	100.00	0.000	0.050	0.000	0.000
48.66	0.62	1.00	0.62	4.62	0.00	77.45	100.00	0.000	0.0 EO	0.000	0.000
48.16	0.62	1.00	0.62	4.60	0.00	76.49	100.00	0.000	0.0 O 0	0.000	0.000
47.66	0.62	1.00	0.62	4.59	5.12	52.76	100.00	0.000	0.0 EO	0.000	0.000
47.16	0.62	1.00	0.62	4.58	0.00	79.10	100.00	0.000	0.0 EO	0.000	0.000
46.66	0.63	1.00	0.63	4.57	0.43	68.08	100.00	0.000	0.0 E 0	0.000	0.000
46.16	0.63	1.00	0.63	4.56	0.00	76.92	100.00	0.000	0.0 E	0.000	0.000
45.66	0.63	1.00	0.63	4.52	0.00	75.08	100.00	0.000	0.0EO	0.000	0.000
45.16	0.63	1.00	0.63	4.50	0.00	76.74	100.00	0.000	0.0 EO	0.000	0.000
44.66	0.64	1.00	0.64	4.48	1.04	73.53	100.00	0.000	0.0 EO	0.000	0.000
44.16	0.64	1.00	0.64	4.46	0.00	78.26	100.00	0.000	0.0 EO	0.000	0.000
43.66	0.64	1.00	0.64	4.45	0.00	78.89	100.00	0.000	0.0 EO	0.000	0.000
43.16	0.64	1.00	0.64	4.43	0.00	79.21	100.00	0.000	0.0E0	0.000	0.000
42.66	0.65	1.00	0.65	4.42	0.36	81.88	100.00	0.000	0.0 EO	0.000	0.000
42.16	0.65	1.00	0.65	4.40	0.00	78.62	100.00	0.000	0.0 E 0	0.000	0.000
41.66	0.65	1.00	0.65	4.38	2.49	58.39	100.00	0.000	0.0 EO	0.000	0.000
41.16	0.65	1.00	0.65	4.37	0.00	77.95	100.00	0.000	0.0 EO	0.000	0.000
40.66	0.65	1.00	0.65	4.35	3.75	63.46	100.00	0.000	0.0EO	0.000	0.000
40.16	0.66	1.00	0.66	2.32	2.50	38.66	100.00	0.000	0.0 EO	0.000	0.000
39.66	0.66	1.00	0.66	1.33	4.88	33.15	97.67	0.047	$2.8 \mathrm{E}-4$	0.000	0.000
39.16	0.66	1.00	0.66	1.33	5.59	33.65	98.96	0.021	1. 3E-4	0.005	0.005
38.66	0.66	1.00	0.66	2.30	2.85	38.97	100.00	0.000	0.0 O 0	0.000	0.005
38.16	0.67	1.00	0.67	0.98	15.65	34.96	100.00	0.000	0.050	0.001	0.006
37.66	0.67	1.00	0.67	0.67	27.98	34.68	100.00	0.000	0.050	0.010	0.016
37.16	0.67	1.00	0.67	0.59	30.50	33.64	98.93	0.121	7.3E-4	0.052	0.068
36.66	0.67	1.00	0.67	5.00	NoLiq	7.67	44.59	0.000	0.0 EO	0.000	0.068
36.16	0.67	1.00	0.67	5.00	NoLiq	7.14	43.14	0.000	0.0 EO	0.000	0.068
35.66	0.68	1.00	0.68	5.00	NoLiq	5.84	39.37	0.000	0.0 EO	0.000	0.068
35.16	0.68	1.00	0.68	5.00	Noliq	9.29	48.79	0.000	0.0 EO	0.000	0.068
34.66	0.68	1.00	0.68	0.27	28.14	20.70	71.79	2.115	1.3E-2	0.053	0.121
34.16	0.68	1.00	0.68	5.00	NoLia	8.94	47.94	0.000	0.0 EO	0.114	0.235
33.66	0.68	1.00	0.68	5.00	NoLiq	11.05	52.99	0.000	0.0 EO	0.023	0.258
33.16	0.68	1.00	0.68	5.00	NoLiq	13.42	58.12	0.000	0.0 EO	0.000	0.258
32.66	0.69	1.00	0.69	0.55	20.81	29.55	89.05	1.249	7.5E-3	0.015	0.273
32.16	0.69	1.00	0.69	0.68	7.04	26.75	83.14	1.323	7.9E-3	0.084	0.357
31.66	0.69	1.00	0.69	0.63	8.69	26.66	82.97	1.434	$8.6 \mathrm{E}-3$	0.087	0.444
31.16	0.69	1.00	0.69	0.91	22.96	37.68	100.00	0.000	0.0 EO	0.013	0.457
30.66	0.69	1.00	0.69	0.56	11.76	26.49	82.62	1.565	$9.4 \mathrm{E}-3$	0.079	0.536
30.16	0.69	1.00	0.69	0.65	11.18	28.24	86.21	1.219	$7.3 \mathrm{E}-3$	0.085	0.621
29.66	0.69	1.00	0.69	0.67	22.99	33.24	97.89	0.211	$1.3 \mathrm{E}-3$	0.040	0.661
29.16	0.69	1.00	0.69	5.00	NoLiq	8.48	46.74	0.000	0.0 EO	0.000	0.661
28.66	0.69	1.00	0.69	5.00	NoLiq	9.47	49.26	0.000	0.0 EO	0.000	0.661
28.16	0.69	1.00	0.69	0.82	32.70	40.34	100.00	0.000	0.0 EO	0.000	0.661
27.66	0.69	1.00	0.69	5.00	NoLiq	6.13	40.23	0.000	0.0 EO	0.000	0.661
27.16	0.69	1.00	0.69	0.30	31.82	23.86	77.57	1.856	$1.1 \mathrm{E}-2$	0.011	0.672
26.66	0.69	1.00	0.69	0.43	5.05	20.61	71.64	2.122	1.3E-2	0.137	0.809
26.16	0.68	1.00	0.68	0.69	8.52	27.57	84.82	1.218	7.3E-3	0.087	0.897
25.66	0.68	1.00	0.68	5.00	NoLiq	15.91	63.03	0.000	0.0 EO	0.022	0.918
25.16	0.68	1.00	0.68	5.00	Noliq	19.70	70.00	0.000	0.0EO	0.000	0.918
24.66	0.68	1.00	0.68	5.00	Noliq	21.72	73.63	0.000	0.0 EO	0.000	0.918
24.16	0.68	1.00	0.68	5.00	Noliq	20.04	70.62	0.000	0.0 EO	0.000	0.918
23.66	0.68	1.00	0.68	5.00	Noliq	5.46	38.20	0.000	0.0 EO	0.000	0.918
23.16	0.67	1.00	0.67	5.00	Noliq	4.99	36.72	0.000	0.0 EO	0.000	0.918
22.66	0.67	1.00	0.67	5.00	NoLiq	7.53	44.21	0.000	0.0 E 0	0.000	0.918
22.16	0.67	1.00	0.67	5.00	NoLiq	6.38	40.95	0.000	0.0 EO	0.000	0.918
21.66	0.67	1.00	0.67	5.00	NoLiq	5.62	38.68	0.000	0.0 E 0	0.000	0.918
21.16	0.67	1.00	0.67	5.00	NoLiq	4.78	36.05	0.000	0.0 EO	0.000	0.918
20.66	0.66	1.00	0.66	5.00	NoLiq	3.84	32.94	0.000	0.0E0	0.000	0.918
20.16	0.66	1.00	0.66	5.00	NoLiq	3.29	31.05	0.000	0.0EO	0.000	0.918
19.66	0.66	1.00	0.66	5.00	NoLiq	3.23	30.85	0.000	0.0E0	0.000	0.918
19.16	0.66	1.00	0.66	5.00	NoLiq	2.47	28.08	0.000	O.0E0	0.000	0.918
18.66	0.65	1.00	0.65	5.00	NoLiq	2.74	29.07	0.000	0.0E0	0.000	0.918
18.16	0.65	1.00	0.65	5.00	NoLiq	3.13	30.47	0.000	0.0 E 0	0.000	0.918
17.	0.65	1.00	0.65	5.00	,	3.90	33.17	0.000	0.OEO	0.000	0.918

	16-0107-CPT4.cal										
17.16	0.64	1.00	0.64	5.00	NoLiq	3.61	32.16	0.000	0.0 EO	0.000	0.918
16.66	0.64	1.00	0.64	5.00	NoLiq	2.99	29.97	0.000	0.0EO	0.000	0.918
16.16	0.63	1.00	0.63	5.00	NoLiq	3.42	31.51	0.000	O.OEO	0.000	0.918
15.66	0.63	1.00	0.63	5.00	NoLiq	4.38	34.76	0.000	0.0 E 0	0.000	0.918
15.16	0.63	1.00	0.63	0.33	25.94	22.20	74.52	1.993	1. $2 \mathrm{E}-2$	0.025	0.943
14.66	0.62	1.00	0.62	0.42	30.14	27.22	84.10	1.570	9.4E-3	0.104	1.047
14.16	0.62	1.00	0.62	0.28	21.81	18.30	67.46	2.350	1.4E-2	0.078	1.125
13.66	0.61	1.00	0.61	5.00	NoLiq	3.48	31.71	0.000	0.0 E 0	0.100	1.225
13.16	0.60	1.00	0.60	0.23	17.65	13.62	58.53	2.909	1.7E-2	0.073	1.298
12.66	0.60	1.00	0.60	0.33	6.76	16.65	64.43	2.535	1. $5 \mathrm{E}-2$	0.162	1.460
12.16	0.59	1.00	0.59	5.00	NoLiq	3.34	31.21	0.000	0.0 EO	0.076	1.536
11.66	0.58	1.00	0.58	5.00	NoLiq	3.19	30.68	0.000	0.0 E 0	0.000	1.536
11.16	0.58	1.00	0.58	0.33	27.14	21.23	72.76	2.072	1.2E-2	0.033	1.569
10.66	0.57	1.00	0.57	0.42	19.06	22.55	75.15	1.964	1.2E-2	0.119	1.688
10.16	0.56	1.00	0.56	0.52	14.55	23.97	77.77	1.834	1.1E-2	0.116	1.804
9.66	0.55	1.00	0.55	0.58	20.59	27.10	83.86	1.479	8.9E-3	0.099	1.903
9.16	0.54	1.00	0.54	0.57	17.47	25.64	80.95	1.641	9.8E-3	0.097	2.000
8.66	0.53	1.00	0.53	0.48	17.68	23.18	76.31	1.912	1.1E-2	0.107	2.107
8.16	0.52	1.00	0.52	0.45	13.98	21.00	72.34	2.091	1. 3E-2	0.123	2.230
7.66	0.51	1.00	0.51	0.59	8.36	22.11	74.35	1.969	1.2E-2	0.120	2.350
7.16	0.49	1.00	0.49	0.51	14.00	21.82	73.82	2.022	1.2E-2	0.124	2.474
6.66	0.48	1.00	0.48	0.76	26.32	30.92	92.18	0.656	3.9E-3	0.090	2.564
6.16	0.46	1.00	0.46	0.64	16.03	24.63	79.02	1.627	9.8E-3	0.057	2.621
5.66	0.44	1.00	0.44	0.73	14.15	25.24	80.18	1.329	8.0E-3	0.097	2.717
5.16	0.42	1.00	0.42	0.57	17.03	22.29	74.67	1.959	1. $2 \mathrm{E}-2$	0.102	2.819
5.01	0.42	1.00	0.42	0.37	22.89	16.78	64.66	2.521	1. $5 \mathrm{E}-2$	0.041	2.860

Settlement of Saturated Sands=2.860 in.
qc1 and (N1)60 is after fines correction in liquefaction analysis
(N1) 60 s is converted from qc1 and after fines correction
$d s z$ is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth

Settle Depth ft	sigma' atm	$\begin{aligned} & \operatorname{sigC}^{\prime} \\ & \text { atm } \end{aligned}$	d Sands (N1)60s	CSRsf	Gmax atm	g* $\mathrm{Ge} / \mathrm{Gm}$	g_eff	$\begin{aligned} & \mathrm{ec} 7.5 \\ & \% \end{aligned}$	Cec	$\begin{aligned} & \mathrm{ec} \\ & \% \end{aligned}$	$\begin{aligned} & \text { dsz } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { dsp } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{in} . \end{aligned}$
4.96	0.28	0.18	18.91	0.42	508.95	2. 3E-4	0.0535	0.0566	0.82	0.0462	5.55E-4	0.001	0.001
4.66	0.26	0.17	0.10	0.42	86.09	1. $3 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.001
4.16	0.24	0.15	0.10	0.42	81.34	1.2E-3	1.0000	4.6774	0.82	3.8158	0.00 E0	0.000	0.001
3.66	0.21	0.13	0.10	0.42	76.30	1.1E-3	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.001
3.16	0.18	0.12	0.10	0.42	70.90	1.1E-3	1.0000	4.6774	0.82	3.8158	0.00 E	0.000	0.001
2.66	0.15	0.10	0.10	0.42	65.05	9.7E-4	1.0000	4.6774	0.82	3.8158	0.00 E	0.000	0.001
2.16	0.12	0.08	0.10	0.42	58.62	$8.8 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.001
1.66	0.09	0.06	0.10	0.42	51.39	7.7E-4	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.001
1.16	0.07	0.04	0.10	0.42	42.95	6. 5E-4	1.0000	4.6774	0.82	3.8158	0.00 E O	0.000	0.001
0.66	0.04	0.02	0.10	0.42	32.40	4.9E-4	1.0000	4.6774	0.82	3.8158	0.00EO	0.000	0.001
0.16	0.01	0.01	0.10	0.42	15.95	2.4E-4	1.0000	4.6774	0.82	3.8158	$0.00 E 0$	0.000	0.001

Settlement of Unsaturated Sands=0.001 in.
(N1) 60 s is converted from qc1 and after fines correction
dsz is per each segment, $\mathrm{dz}=0.05 \mathrm{ft}$
dsp is per each print interval, dp=0.50 ft
S is cumulated settlement at this depth
Total Settlement of Saturated and Unsaturated Sands=2.861 in. Differential Settlement=1.430 to 1.888 in.

Units: Unit: qc, fs, Stress or Pressure $=$ atm (1.0581tsf); Unit Weight $=$ pcf; Depth $=$ ft; Settlement $=$ in.

1 atm (atmosphere) $=1.0581$ tsf(1 tsf $=1$ ton/ft2 $=2 \mathrm{kip} / \mathrm{ft} 2)$	
1 atm	(atmosphere) $=101.325 \mathrm{kPa}(1 \mathrm{kPa}=1 \mathrm{kN} / \mathrm{m} 2=0.001 \mathrm{Mpa})$
SPT	Field data from Standard Penetration Test (SPT)
BPT	Field data from Becker Penetration Test (BPT)
qc	Field data from Cone Penetration Test (CPT) [atm (tsf)]
fs	Friction from CPT testing [atm (tsf)]
Rf	Ratio of fs/qc (\%)
gamma	Total unit weight of soit
gamma'	Effective unit weight of soi
Fines	Fines content [\%]
D50	Mean grain size
Dr	Relative Density
sigma	Total vertical stress [atm]
sigma'	Effective vertical stress [atm]
sigC'	Effective confining pressure [atm]
rd	Acceleration reduction coefficient by Seed
a_max.	Peak Ground Acceleration (PGA) in ground surface
$m Z$	Linear acceleration reduction coefficient X depth
a_min.	Minimum acceleration under linear reduction, mZ

Page 11
16-0107-CPT4.cal

CRRv	CRR after overburden stress correction, CRRv=CRR7.5 * Ksig
CRR7. 5	Cyclic resistance ratio ($\mathrm{M}=7.5$)
Ksig	Overburden stress correction factor for CRR7.5
CRRm	After magnitude scaling correction CRRm=CRRv * MSF
MSF	Magnitude scaling factor from M=7.5 to user input M
CSR	Cyclic stress ratio induced by earthquake
CSRfs	CSRfs=CSR*fs1 (Default fsi=1)
fs1	First CSR curve in graphic defined in \#9 of Advanced page
fs2	2nd CSR curve in graphic defined in \#9 of Advanced page
F.S.	Calculated factor of safety against liquefaction F.S.=CRRm/CSRsf
Cebs	Energy Ratio, Borehole Dia., and Sampling Method Corrections
Cr	Rod Length Corrections
Cn	Overburden Pressure Correction
(N1) 60	SPT after corrections, (N1)60=SPT * Cr * Cn * Cebs
d(N1) 60	Fines correction of SPT
(N1)60f	(N1) 60 after fines corrections, (N1)60f=(N1) $60+\mathrm{d}(\mathrm{N} 1) 60$
Cq	Overburden stress correction factor
qc1	CPT after Overburden stress correction
dqc1	Fines correction of CPT
qcif	CPT after Fines and Overburden correction, qc1f=qc1 + dqcl
qcin	CPT after normalization in Robertson's method
Kc	Fine correction factor in Robertson's Method
qc1f	CPT after Fines correction in Robertson's Method
Ic	Soil type index in Suzuki's and Robertson's Methods
(N1) 60 s	(N1)60 after settlement fines corrections
CSRm	After magnitude scaling correction for Settlement calculation CSRm=CSRsf / MSF*
CSRfs	Cyclic stress ratio induced by earthquake with user inputed fs
MSF*	Scaling factor from CSR, MSF*=1, based on Item 2 of Page C.
ec	Volumetric strain for saturated sands
dz	Calculation segment, $\mathrm{dz}=0.050 \mathrm{ft}$
dsz	Settlement in each segment, dz
dp	User defined print interval
dsp	Settlement in each print interval, dp
G max	Shear Modulus at low strain
g_eff	gamma_eff, Effective shear Strain
9*Ge/Gm	gamma_eff * G_eff/G_max, Strain-modulus ratio
ec7.5	Volumetric Strain for magnitude=7.5
Cec	Magnitude correction factor for any magnitude
ec	Volumetric strain for unsaturated sands, ec=Cec * ec7.5
NoLiq	No-Liquefy Soils

References:

1. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Youd, T.L., and Idriss, I.M., eds., Technical Report NCEER 97-0022.

SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMC Special Publication 117, Guidelines for

Analyzing and Mitigating Liquefaction in California. University of Southern California. March 1999.
2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL-2, PROCEEDINGS: Fourth

International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March 2001.
3. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK, Earthquake Engineering Research Center,

Report No. EERC 2003-06 by R.B Seed and etc. April 2003.
Note: Print Interval you selected does not show complete results. To get complete results, you should select 'Segment' in Print Interval (Item 12, Page C).
GEOSYSTEMS

$\left\lvert\, \begin{aligned} & \overline{0} \\ & \overline{0} \end{aligned}\right.$			38	8.8	BOB.	5o	0	80.80	0	8808080	8	8050	0	0	$\underset{i c}{5}$	0		8	${ }_{0}^{\circ}$	\cdots									0	O		88	$88 .$		5	88.8	
$\left\lvert\, \frac{\bar{n}}{\bar{\circ}}\right.$			P_{i}^{∞}				$\underset{\sim}{\otimes}$		$\begin{array}{c\|c} N \\ \\ & \infty_{0} \\ 0 \end{array}$		$\begin{gathered} 0 \\ 0.0 \\ 0 \\ 0 \\ \hline 0 \\ \hline 1 \end{gathered}$		$\mathfrak{B} \dot{\leftrightarrow}$	çic\|:	$\underset{\sim}{\mathrm{n}} \mathrm{\sim}$		$\left\lvert\, \begin{array}{c\|c} \substack{9 \\ \sim} \\ \underset{\sim}{c} \\ \hline \end{array}\right.$	$\underset{\sim}{q}$	N	Nio						$\stackrel{\square}{\circ}$			g				898		f	于g jo	
$\left\|\begin{array}{l} \overline{\mathrm{g}} \\ \overline{0} \end{array}\right\|$		$\bar{\circ}$		® $\stackrel{\leftrightarrow}{2}$			or						品品品						0	R	®®	\％		N	Bond	－		AN	둥		${ }_{0}^{\text {m }}$		$5 \times$				
$\left\lvert\, \begin{aligned} & \bar{m} \\ & \overline{0} \\ & 0 \end{aligned}\right.$		莲茴:	$\stackrel{8}{8}$	$\underset{\sim}{\underset{\sim}{\mathrm{C}}} \underset{\sim}{\underset{\sim}{\mathrm{~N}}}$:	웅	\％	－	$\underset{\sim}{\text { ¢ָ }}$	¢ָ			$\stackrel{\leftrightarrow}{9}$	Ṇ\|c̣	er	¢	을	Non	\mathfrak{m}		గ్ల్ల			－	\％	\％			年			\％	令		－	凩
$\left\lvert\, \begin{gathered} \frac{2}{3} \\ \hline 0 \end{gathered}\right.$					N						0			$\begin{array}{ll} \hline \\ \hline 0 \\ 0 \\ 0 & 0 \\ 0 \end{array}$			No N		N	®	0	－										\％			N	Boy	
$\stackrel{\rightharpoonup}{0}$						No	08	Nig	on io		$\underset{\substack{\underset{\sim}{c} \\ \hline \\ \hline}}{2}$		$\stackrel{n}{\infty}$				둥	Ros	：										Nion			N			8		
专		훙	NiN	$\stackrel{N}{\mathrm{~N}} \underset{\sim}{4}$		\mathfrak{f}	24	$\underset{\sim}{4} \underset{\sim}{4}$	NiN		$\underset{\sim}{\text { Na }}$	$\underset{y}{\mathrm{~N}}$	\mathfrak{c}	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square} \div \frac{\infty}{7}$	$\stackrel{8}{9} \stackrel{10}{7} \stackrel{n}{7}$	$\underset{\sim}{6}$	$\stackrel{n}{5}$							$\stackrel{\square}{\square}$				İ						N	N	
$\left\lvert\, \begin{aligned} & \bar{\sigma} \\ & \overline{0} \end{aligned}\right.$	贞			の	－ 0	is	๑の	ののロ	$\infty 0$	000	∞－	∞－	\cdots	$\sim \bullet$	－	000	$\bigcirc 0$	$0 \cdot$	，	0												앙				으으으	
$\left\|\begin{array}{r\|} \dot{\omega} \\ \overline{0} \end{array}\right\|$		요		$\underset{\sim}{0} \text { No }$			نָ		$\underset{\sim}{\infty}$		$\stackrel{9}{9}$	$\stackrel{O}{\circ}$	UN N్N్	$\underset{\sim}{\sim}$			悪	Na	8	O		$\bar{\sim}$		\％					\％			\because	8		年	$\mathfrak{y c}$	
$\overline{\bar{O}}$									\mathfrak{n}			O	Ro				$\underset{\sim}{\mathbb{N}}$	$\stackrel{R}{\sim}$	$\dot{S} \dot{S}$					\mathfrak{c}	No	$\stackrel{\infty}{\infty} \dot{\sim}$						$: \begin{aligned} & \infty \\ & 0 \\ & \hline \end{aligned}$					
$\overline{\overline{0}}$	－																																				
$\left\lvert\, \begin{array}{r} i n \\ 0 \\ 0 \end{array}\right.$									$\stackrel{y}{\infty}$			$\stackrel{\circ}{\circ}$ $\stackrel{\varphi}{\circ} \stackrel{\circ}{\circ}$			$\underset{\sim}{\infty} \underset{\sim}{\sim}$		\mathfrak{N}																		\mathfrak{L}	$\underset{\sim}{\infty}$	
$\left\lvert\, \begin{aligned} & \overline{\mathrm{y}} \\ & \overline{0} \end{aligned}\right.$			$\underset{\sim}{\infty}$						Oix		－	容荌		$\stackrel{\sim}{\sim}$	\cdots			：	\％	O20	0	8	5	\％					8			\mathfrak{b}	$\frac{\infty}{\infty}$	K	$\stackrel{\square}{0}$		
$\left\lvert\, \begin{aligned} & \bar{n} \\ & 0 \\ & 0 \end{aligned}\right.$		Cry				Bix		$\stackrel{\rightharpoonup}{n} \underset{\sim}{m}$		$\stackrel{n}{n} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$	$\underset{\sim}{\sim}$							$\stackrel{8}{\substack{\underset{\sim}{n} \\ \stackrel{N}{N} \\ \stackrel{\rightharpoonup}{N} \\ \hline}}$			$\frac{n}{N}$		\dot{b}								$\stackrel{c}{c}_{\infty}^{\infty} .$				\dot{O}		
$\stackrel{\bar{\rightharpoonup}}{\mathbf{0}}$		En	Nic				$\stackrel{N}{0}$		$\mathfrak{c c}$		Niv				$\stackrel{\sim}{c}$							థ్ల స్ల			$\stackrel{\infty}{\circ}$							\dot{b}	$\dot{F} \dot{\sigma}$	\bar{F}		$\mathfrak{r l i c}$	
$\frac{7}{0}$		$\underbrace{\infty}_{i}$					Sis	ion on io	$\begin{aligned} 8 \\ \hline \end{aligned}$										\mathbf{B}_{0}^{80}		$\stackrel{9}{=}$			$: \begin{aligned} & 8 \\ & \hline 6 \\ & \hdashline \end{aligned}$						$\underset{\sim}{~}$	$\begin{aligned} & 8 \\ & \begin{array}{c} 0 \\ \text { N } \end{array} \end{aligned}$			$\underset{\sim}{\infty}$		Bio io io ip	

$\begin{gathered} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{gathered}$																																											
$\left\|\begin{array}{c} i \\ \stackrel{0}{0} \\ \overline{0} \end{array}\right\|$																																											
$\left\|\begin{array}{\|c} i \mathrm{~N} \\ \mathrm{O} \end{array}\right\|$																																											
$\left\|\begin{array}{c} \bar{N} \\ \overline{0} \\ \hline \mathbf{O} \end{array}\right\|$							$\underset{\sim}{\dot{\infty}}$					$\frac{m}{2}$	䄳	$\begin{aligned} & \infty \\ & 0 \\ & \end{aligned}$	잇		웅	人	\sim	$\underset{\infty}{m}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{o}}$	in	qu	8	O	\％		임	$\left\|\begin{array}{c} \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \end{array}\right\|$	$\underset{\sim}{N}$	$\stackrel{\substack{\infty \\ \hline}}{ }$	$\begin{gathered} \hat{\sim} \\ \sim \end{gathered}$	$\begin{array}{\|l\|} \hline+0 \\ \hline 0 \\ \hline \end{array}$	$\bar{\infty}$		$\underset{\sim}{9}$	$\stackrel{\leftrightarrow}{9}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\%$			
$\left\lvert\, \begin{gathered} i \bar{N} \\ \overline{0} \\ \bar{O} \end{gathered}\right.$		$\frac{\pi}{\underline{n}} \frac{N}{N}$	尔先		$\underset{\sim}{N}$			$\stackrel{\sim}{\infty} \underset{\sim}{N}$				N	先	$\frac{\bar{n}}{m}$	$\frac{\stackrel{\rightharpoonup}{\mathrm{N}}}{\mathrm{~m}}$	승		\mathfrak{N}	$\stackrel{0}{\sim}$	$\stackrel{\text { N }}{N}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	N	${ }_{N}^{N}$	\％	\bigcirc	$\stackrel{\sim}{\sim}$	咨	$\begin{aligned} & \infty \\ & \substack{\infty \\ \\ \hline} \end{aligned}$	$\begin{aligned} & \text { oig } \\ & \text { N } \end{aligned}$	$\underset{\infty}{\mathbb{\infty}}$	$\frac{0}{2}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{0} \end{gathered}$	\bigcirc	N		yi in	0_{∞}^{9}	$\begin{aligned} & \infty \\ & \\ & \end{aligned}$	$\stackrel{O}{N}$		$\stackrel{N}{N}$	
$\frac{\bar{y}}{\mathrm{~N}} \overline{\mathrm{O}}$		$\begin{gathered} 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	\hat{F}	$\hat{F} \hat{F}$	\mathcal{F}	Ff	F			$\underset{\sim}{\sim}$	$\underset{\sim}{\infty} \times$	年	$\underset{\sim}{\infty}$	∞			\％	$\mathscr{+}$		9		\％	\％	\％	9	\％	\％	\％	9	8	8	9	大	\％	）		Foom	ヲ	\＃	F	48	¢ ¢ ¢	¢
$\left\lvert\, \begin{aligned} & \bar{N} \\ & \overline{\mathrm{O}} \end{aligned}\right.$		0° ㅇ	$\stackrel{48}{7} \frac{58}{7}$	$\stackrel{\sim}{\leftarrow} \underset{\sim}{\sim} \underset{\sim}{\sim}$			윢욱			$\stackrel{N}{\mathrm{~N}}$	숙	∞	\sim	우N	$\stackrel{\sim}{\sim}$	꾹	끆	은	응		운	$\underset{\sim}{\sim}$	0	\％			F	$\frac{m}{r}$	앙	\％	8	앙	－		8		－	O	∞	$\bar{\sigma}$	¢	\bigcirc	8
$\left\lvert\, \begin{gathered} \tilde{N} \\ \bar{O} \end{gathered}\right.$	$\frac{\llcorner }{\infty} \frac{9}{\Sigma}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			\％			－	¢ํา	Ond	¢	\bigcirc	\pm	\％	－	\cdots		$\stackrel{\sim}{N}$	¢	$\stackrel{m}{\substack{0 \\ \vdots}}$	No	－	－	8	N	O	－	N	0	$\frac{10}{6}$	\％	－	－		）		No	－	\％	딘	$=$ 0 0 0	¢	－
$\left\lvert\, \frac{\bar{N}}{\overline{0}}\right.$	F	$\begin{array}{\|c\|c} \hline \text { 整 } \\ 0 \\ 0 & 0 \\ 0 \\ 0 \end{array}$						¢	\％	¢	$\stackrel{\infty}{\infty}$	－		$\stackrel{\bigcirc}{\circ}$	$\stackrel{\square}{¢}$	－	$\stackrel{\circ}{\circ} \stackrel{0}{\circ}$	¢	－	$\underset{\infty}{\infty}$	－	¢	¢	\％	∞	－	－	－	\％ู	毋	∞	$\stackrel{3}{0}$	$\stackrel{-}{\square}$	O	∞		$8 \stackrel{10}{20}$	号	m	$\stackrel{\text { ̇ }}{\text { N }}$	Nod	8	¢
$\begin{gathered} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{gathered}$										（10n	c｜r								㑕	管	$\begin{gathered} 7 \\ 山 \\ 0 \\ 0 \\ \dot{m} \end{gathered}$		¢	N	¢		¢				\％	㟯	N	晏	7	\％			H	晏			
$\frac{\bar{\square}}{\overline{0}}$														\mathfrak{c}	$\begin{aligned} & \pm \\ & N \\ & 0 \\ & i n \end{aligned}$			$=\frac{\sigma}{\dot{\sim}}$	O	－		$\begin{gathered} \tilde{N} \\ \tilde{N} \\ \underset{\sim}{w} \end{gathered}$	－8	¢	m	m	¢		$\begin{aligned} & \left.1 \begin{array}{c} n \\ N \\ \vdots \\ \vdots \\ \vdots \end{array}\right) \end{aligned}$	$\begin{aligned} & \stackrel{1}{0} \\ & \dot{0} \\ & \mathbf{d} \end{aligned}$	$\stackrel{\text { N }}{\text { N }}$	－	8	\％	へ！	8				\mathfrak{l}		${ }_{c}^{\infty}$	
$\left\|\frac{\overline{0}}{\frac{1}{0}}\right\|$					M M M			\cdots	$\xrightarrow[\sim]{\sim}$		$\stackrel{-}{\Gamma}$	$\stackrel{\text { g }}{\text { g }}$	～	$\stackrel{\square}{\square}$				¢	－	¢	－	$\stackrel{0}{\square}$	10	$\stackrel{\text { ¢ }}{\sim}$	\％	¢	析	$\stackrel{\text { N }}{\text { N }}$	N	ल？	\％	\＃	N	ले	$\stackrel{\square}{\square}$	守		\％	\％	？	$\underset{\sim}{\text { No }}$	$\underset{\sim}{N}$	$\xrightarrow{\circ}$
$\left\lvert\, \frac{1}{2}\right.$		－	$\sim \infty$		0	$\cdots \sim$	N	N	N	\cdots	$N 0$			\cdots	N	N	\cdots	${ }_{\infty}$	0	－	－	\cdots	ω	－	\bigcirc	0	φ	－	N	0		\bigcirc	\cdots	\bigcirc	ω	∞		o		\bullet	00	\bigcirc	\bigcirc
$\stackrel{\rightharpoonup}{\mathrm{N}}$															$\underset{\substack{m \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \hline}}{ }$	$\begin{aligned} & \text { F } \\ & \text { Go } \\ & \text { g } \end{aligned}$		2 0 0 0 0 0	\％	－	品			M	No	年	\％		N	O	18	\％	N	8	\％	\％		$\frac{m_{1}^{2}}{4}$					
$\bar{\circ}$								$\begin{array}{ll} 8 \\ 0 \\ \vdots \\ \dot{j} \\ \text { N } \end{array}$							$\begin{aligned} & 8 \\ & 8 \\ & 18 \end{aligned}$				$\stackrel{\sim}{\sim}$			\％	－8	\％	\％	－	8	8 8 0 0	－	－	－	8	－	－		$\stackrel{8}{\text { ¢ }}$			－	－			

Col 1 i	Col 2 i	Col 3 i	Col 4 i	Col 51	Col $6 i$	Col7i	Col8i	Col 91	Col 10 i	Col 11 i	Col 12i	Col $13 i$	Col 141	Col 15i	Col 16 i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, V	$\begin{aligned} & \text { Total } \\ & \text { Overburden } \\ & \text { Stress, ov } \end{aligned}$	Insitu pore pressure, vo	Effective overburden stress, σ 'v	Normalized cone resistance, QtI	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ti)	(tsf)	(tst)	(psi)		(tis)	(\%)		(pef)	(tst)	(tst)	(tst)			
18.300	60.039	276.823	0.907	30.904		277.27	0.33	10	127	3.631	1.530	2.102	130.21	0.33	0.00
18.400	60.367	261.133	0.925	27.587		261.53	0.35	10	127	3.652	1.540	2.112	122.09	0.36	0.00
18.500	60.696	280.717	2.251	25.568		281.09	0.80	9	124	3.673	1.550	2.122	130.71	0.81	0.00
18.600	61.024	414.301	2.183	25.682		414.67	0.53	10	127	3.694	1.561	2.133	192.68	0.53	0.00
18.700	61.352	604.842	2.219	27.183		605.23	0.37	10	127	3.714	1.571	2.144	280.61	0.37	0.00
18.800	61.680	642.150	4.576	27.965		642.55	0.71	10	127	${ }^{3.735}$	${ }^{1.581}$	2.154	296.54	0.72	0.00
18.900	62.008	686.913	1.391	28.356		687.32	0.20	10	127	3.756	1.591	2.165	315.75	0.20	0.00

Col 1i	Col 2i	Col 17i	Col 18i	Col 19i	Col 20i	Col 21 i	Col 22i	Col 23i	Col $24 i$	Col 25i	Col 26 i	Col 27i	Col 28 i	Col 29i
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, Ic	Normalized Cone resistance. Otn	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ \text { (N1) } \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	Young's modulus, Es	Small strain shear modulus, Go	Undrained shear strength su	Undrained strength ratio, su/a'v	Over consolidation ratio, OCR
(m)	(ft)				(ft/sec)	(blows/ft)	(blows/ft)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
18.300	60.039	6	1.54	183.50	3.00E-4	46.3	32.9	72	42	1109	1532			
18.400	60.367	6	1.59	172.50	$3.00 \mathrm{E}-4$	44.3	31.4	70	42	1046	1505			
18.500	60.696	6	1.76	180.44	$3.00 \mathrm{E}-4$	50.6	35.7	72	42	1124	1544			
18.600	61.024	6	1.52	273.57	$3.00 \mathrm{E}-4$	68.7	48.4	88	44	1659	1761			
18.700	61.352	7	1.29	399.41	$3.00 \mathrm{E}-2$	93.5	65.7	107	46	2421	2000			
18.800	61.680	6	1.47	423.12	3.00E-4	104.8	73.5	110	46	2570	2044			
18.900	62.008	7	1.11	451.65	$3.00 \mathrm{E}-2$	100.5	70.3	114	46	2749	2094			

Font: Courier New, Regular, Size 8 is recommended for this report.
Licensed to , 6/2/2016 4:03:20 PM
 Title: 12870 Panama Street Subtitle: CPT 5

Input Data:
Surface Elev. $=0$
Hole No. =CPT5
Depth of Hole=62.00 ft
Water Table during Earthquake= 5.00 ft
Water Table during In-Situ Testing= 10.00 ft
Max. Acceleration $=0.65 \mathrm{~g}$
Earthquake Magnitude $=6.63$
No-Liquefiable Soils: CL, OL are Non-Liq. Soil

1. CPT Calulation Method: Modify Robertson*
2. Settlement Analysis Method: Ishihara / Yoshimine
3. Fines Correction for Liquefaction: Stark/O1son et a1.*
4. Fine Correction for Settlement: During Liquefaction*
5. Settlement Calculation in: All zones*
6. User request factor of safety (apply to CSR), User=1.1 Plot two CSR (fsl=1, fs2=User)
7. Average two input data between two Depths: Yes* * Recommended Options

In-Situ Depth ft	Test D qC atm	a: fs atm	$\begin{aligned} & \mathrm{Rf} \\ & \% \end{aligned}$	Gamma pcf	Fines \%	$\begin{aligned} & \text { D50 } \\ & \mathrm{mm} \end{aligned}$
0.16	0.00	0.00	100.00	120.00	0.00	0.50
0.66	0.00	0.00	100.00	120.00	0.00	0.50
1.15	0.00	0.00	100.00	120.00	0.00	0.50
1.64	0.00	0.00	100.00	120.00	0.00	0.50
2.13	0.00	0.00	100.00	120.00	0.00	0.50
2.62	0.00	0.00	100.00	120.00	0.00	0.50
3.12	0.00	0.00	100.00	120.00	0.00	0.50
3.61	0.00	0.00	100.00	120.00	0.00	0.50
4.10	0.00	0.00	100.00	120.00	0.00	0.50
4.59	0.00	0.00	100.00	120.00	0.00	0.50
5.09	40.85	1.13	2.77	120.00	0.00	0.50
5.58	45.86	1.47	3.19	120.00	0.00	0.50
6.07	67.36	1.36	2.02	120.00	0.00	0.50
6.56	101.10	1.52	1.51	120.00	0.00	0.50
7.05	116.30	1.23	1.06	120.00	0.00	0.50
7.55	108.10	1.36	1.25	120.00	0.00	0.50
8.04	158.90	1.58	0.99	120.00	0.00	0.50
8.53	219.00	1.50	0.69	120.00	0.00	0.50
9.02	195.00	1.46	0.75	120.00	0.00	0.50
9.51	161.00	1.16	0.72	120.00	0.00	0.50
10.00	126.70	1.00	0.79	120.00	0.00	0.50
10.49	132.60	1.07	0.81	120.00	0.00	0.50
10.99	137.50	0.86	0.62	120.00	0.00	0.50
11.48	131.70	0.68	0.51	120.00	0.00	0.50
11.97	107.80	0.63	0.58	120.00	0.00	0.50
12.46	44.92	0.80	1.79	120.00	0.00	0.50
12.95	40.09	0.77	1.93	120.00	0.00	0.50
13.45	39.40	0.99	2.51	120.00	0.00	0.50
13.94	64.71	0.59	0.91	120.00	0.00	0.50
14.43	25.87	0.68	2.62	120.00	NoLia	0.50
14.92	13.49	0.28	2.10	120.00	NoLia	0.50
15.41	14.22	0.33	2.30	120.00	NoLiq	0.50
15.91	10.81	0.26	2.37	120.00	NoLiq	0.50
16.40	12.63	0.53	4.19	120.00	NoLiq	0.50
16.89	11.60	0.40	3.48	120.00	NoLiq	0.50
17.38	10.15	0.23	2.31	120.00	NoLiq	0.50
17.88	11.12	0.37	3.34	120.00	NoLiq	0.50
18.37	10.45	0.31	2.99	120.00	NoLia	0.50
18.86	9.73	0.26	2.70	120.00	NoLiq	0.50
19.35	10.23	0.28	2.75	120.00	NoLiq	0.50
19.84	9.84	0.30	3.06	120.00	NoLiq	0.50
20.34	11.29	0.38	3.34	120.00	NoLiq	0.50
20.83	18.23	0.57	3.14	120.00	Noliq	0.50
21.32	16.34	0.51	3.10	120.00	NoLiq	0.50
21.81	24.06	0.96	4.01	120.00	NoLia	0.50
22.30	33.23	1.25	3.76	120.00	NoLiq	0.50
22.80	38.03	1.20	3.15	120.00	NoLiq	0.50

Page 1

					16-0107-CPT5.cal	
23.29	17.51	0.61	3.47	120.00	NoLiq	0.50
23.78	20.16	0.66	3.28	120.00	NoLiq	0.50
24.27	97.98	0.83	0.85	120.00	0.00	0.50
24.77	124.70	1.15	0.92	120.00	0.00	0.50
25.26	111.80	1.02	0.92	120.00	0.00	0.50
25.75	158.60	1.25	0.79	120.00	0.00	0.50
26.24	194.20	0.84	0.43	120.00	0.00	0.50
26.73	161.20	0.83	0.51	120.00	0.00	0.50
27.23	245.90	2.44	0.99	120.00	0.00	0.50
27.72	281.20	1.29	0.46	120.00	0.00	0.50
28.21	160.10	1.01	0.63	120.00	0.00	0.50
28.70	37.75	1.15	3.04	120.00	0.00	0.50
29.19	28.52	0.44	1.53	120.00	0.00	0.50
29.69	33.76	0.78	2.32	120.00	0.00	0.50
30.18	312.70	2.99	0.96	120.00	0.00	0.50
30.67	282.00	3.23	1.15	120.00	0.00	0.50
31.16	214.40	1.56	0.73	120.00	0.00	0.50
31.66	229.20	0.78	0.34	120.00	0.00	0.50
32.15	121.00	2.36	1.95	120.00	0.00	0.50
32.64	44.89	1.26	2.81	120.00	0.00	0.50
33.13	30.86	1.05	3.41	120.00	0.00	0.50
33.62	77.71	2.18	2.80	120.00	0.00	0.50
34.12	55.21	1.44	2.61	120.00	0.00	0.50
34.61	24.37	0.48	1.96	120.00	0.00	0.50
35.10	19.77	0.54	2.71	120.00	0.00	0.50
35.59	18.34	0.44	2.39	120.00	0.00	0.50
36.08	19.79	0.32	1.63	120.00	0.00	0.50
36.58	21.33	0.34	1.61	120.00	0.00	0.50
37.07	25.96	0.51	1.97	120.00	0.00	0.50
37.56	41.15	1.08	2.63	120.00	0.00	0.50
38.05	55.74	1.85	3.32	120.00	0.00	0.50
38.54	86.74	2.70	3.12	120.00	0.00	0.50
39.04	197.80	1.19	0.60	120.00	0.00	0.50
39.53	202.10	0.80	0.40	120.00	0.00	0.50
40.02	234.40	1.57	0.67	120.00	0.00	0.50
40.51	391.00	2.35	0.60	120.00	0.00	0.50
41.01	489.30	3.43	0.70	120.00	0.00	0.50
41.50	582.40	3.32	0.57	120.00	0.00	0.50
41.99	514.50	1.73	0.34	120.00	0.00	0.50
42.48	480.70	2.22	0.46	120.00	0.00	0.50
42.97	365.80	1.50	0.41	120.00	0.00	0.50
43.47	459.00	2.94	0.64	120.00	0.00	0.50
43.96	646.90	2.52	0.39	120.00	0.00	0.50
44.45	630.00	4.26	0.68	120.00	0.00	0.50
44.94	584.20	3.56	0.61	120.00	0.00	0.50
45.43	550.80	3.41	0.62	120.00	0.00	0.50
45.93	729.90	1.25	0.17	120.00	0.00	0.50
46.42	656.10	2.94	0.45	120.00	0.00	0.50
46.91	553.50	3.41	0.62	120.00	0.00	0.50
47.40	746.10	1.28	0.17	120.00	0.00	0.50
47.90	605.00	2.96	0.49	120.00	0.00	0.50
48.39	753.20	2.96	0.39	120.00	0.00	0.50
48.88	798.70	2.98	0.37	120.00	0.00	0.50
49.37	788.10	3.35	0.43	120.00	0.00	0.50
49.86	775.70	3.10	0.40	120.00	0.00	0.50
50.36	629.20	3.48	0.55	120.00	0.00	0.50
50.85	527.70	4.09	0.77	120.00	0.00	0.50
51.34	570.70	3.19	0.56	120.00	0.00	0.50
51.83	625.70	3.14	0.50	120.00	0.00	0.50
52.32	547.40	2.74	0.50	120.00	0.00	0.50
52.82	567.30	2.58	0.45	120.00	0.00	0.50
53.31	629.50	5.65	0.90	120.00	0.00	0.50
53.80	639.60	4.92	0.77	120.00	0.00	0.50
54.29	602.40	3.11	0.52	120.00	0.00	0.50
54.79	509.40	2.59	0.51	120.00	0.00	0.50
55.28	509.00	3.72	0.73	120.00	0.00	0.50
55.77	774.00	3.87	0.50	120.00	0.00	0.50
56.26	604.60	2.77	0.46	120.00	0.00	0.50
56.75	400.80	0.99	0.25	120.00	0.00	0.50
57.25	174.40	0.89	0.51	120.00	0.00	0.50
57.74	228.90	2.38	1.04	120.00	0.00	0.50
58.23	434.00	2.41	0.56	120.00	0.00	0.50
58.72	448.90	3.76	0.84	120.00	0.00	0.50
59.21	567.90	2.56	0.45	120.00	0.00	0.50
59.71	286.80	1.47	0.51	120.00	0.00	0.50
60.20	268.10	0.75	0.28	120.00	0.00	0.50
60.69	284.30	1.42	0.50	120.00	0.00	0.50
61.18	521.00	1.33	0.26	120.00	0.00	0.50
61.67	668.00	6.50	0.97	120.00	0.00	0.50

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.
Page 2

Output Results:
Calculation segment, $d z=0.050 \mathrm{ft}$
User defined Print Interval, dp=0.50 ft
Peak Ground Acceleration (PGA), a_max $=0.65 \mathrm{~g}$

Depth $f t$	gamma pcf	sigma atm	$\begin{aligned} & \text { gamma' } \\ & \text { pcf } \end{aligned}$	$\begin{aligned} & \text { sigma' } \\ & \text { atm } \end{aligned}$	rd	$\begin{aligned} & \mathrm{mZ} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & a(z) \\ & g \end{aligned}$	CSR	x fsl	$=$ CSRfs
0.16	120.00	0.009	120.00	0.009	1.00	0.000	0.650	0.42	1.00	0.42
0.66	120.00	0.037	120.00	0.037	1.00	0.000	0.650	0.42	1.00	0.42
1.16	120.00	0.066	120.00	0.066	1.00	0.000	0.650	0.42	1.00	0.42
1.66	120.00	0.094	120.00	0.094	1.00	0.000	0.650	0.42	1.00	0.42
2.16	120.00	0.122	120.00	0.122	0.99	0.000	0.650	0.42	1.00	0.42
2.66	120.00	0.151	120.00	0.151	0.99	0.000	0.650	0.42	1.00	0.42
3.16	120.00	0.179	120.00	0.179	0.99	0.000	0.650	0.42	1.00	0.42
3.66	120.00	0.208	120.00	0.208	0.99	0.000	0.650	0.42	1.00	0.42
4.16	120.00	0.236	120.00	0.236	0.99	0.000	0.650	0.42	1.00	0.42
4.66	120.00	0.264	120.00	0.264	0.99	0.000	0.650	0.42	1.00	0.42
5.16	120.00	0.293	57.60	0.288	0.99	0.000	0.650	0.42	1.00	0.42
5.66	120.00	0.321	57.60	0.302	0.99	0.000	0.650	0.44	1.00	0.44
6.16	120.00	0.349	57.60	0.315	0.99	0.000	0.650	0.46	1.00	0.46
6.66	120.00	0.378	57.60	0.329	0.98	0.000	0.650	0.48	1.00	0.48
7.16	120.00	0.406	57.60	0.343	0.98	0.000	0.650	0.49	1.00	0.49
7.66	120.00	0.434	57.60	0.356	0.98	0.000	0.650	0.51	1.00	0.51
8.16	120.00	0.463	57.60	0.370	0.98	0.000	0.650	0.52	1.00	0.52
8.66	120.00	0.491	57.60	0.383	0.98	0.000	0.650	0.53	1.00	0.53
9.16	120.00	0.519	57.60	0.397	0.98	0.000	0.650	0.54	1.00	0.54
9.66	120.00	0.548	57.60	0.411	0.98	0.000	0.650	0.55	1.00	0.55
10.16	120.00	0.576	57.60	0.424	0.98	0.000	0.650	0.56	1.00	0.56
10.66	120.00	0.604	57.60	0.438	0.98	0.000	0.650	0.57	1.00	0.57
11.16	120.00	0.633	57.60	0.451	0.97	0.000	0.650	0.58	1.00	0.58
11.66	120.00	0.661	57.60	0.465	0.97	0.000	0.650	0.58	1.00	0.58
12.16	120.00	0.690	57.60	0.479	0.97	0.000	0.650	0.59	1.00	0.59
12.66	120.00	0.718	57.60	0.492	0.97	0.000	0.650	0.60	1.00	0.60
13.16	120.00	0.746	57.60	0.506	0.97	0.000	0.650	0.60	1.00	0.60
13.66	120.00	0.775	57.60	0.520	0.97	0.000	0.650	0.61	1.00	0.61
14.16	120.00	0.803	57.60	0.533	0.97	0.000	0.650	0.62	1.00	0.62
14.66	120.00	0.831	57.60	0.547	0.97	0.000	0.650	0.62	1.00	0.62
15.16	120.00	0.860	57.60	0.560	0.96	0.000	0.650	0.63	1.00	0.63
15.66	120.00	0.888	57.60	0.574	0.96	0.000	0.650	0.63	1.00	0.63
16.16	120.00	0.916	57.60	0.588	0.96	0.000	0.650	0.63	1.00	0.63
16.66	120.00	0.945	57.60	0.601	0.96	0.000	0.650	0.64	1.00	0.64
17.16	120.00	0.973	57.60	0.615	0.96	0.000	0.650	0.64	1.00	0.64
17.66	120.00	1.001	57.60	0.628	0.96	0.000	0.650	0.65	1.00	0.65
18.16	120.00	1.030	57.60	0.642	0.96	0.000	0.650	0.65	1.00	0.65
18.66	120.00	1.058	57.60	0.656	0.96	0.000	0.650	0.65	1.00	0.65
19.16	120.00	1.086	57.60	0.669	0.96	0.000	0.650	0.66	1.00	0.66
19.66	120.00	1.115	57.60	0.683	0.95	0.000	0.650	0.66	1.00	0.66
20.16	120.00	1.143	57.60	0.696	0.95	0.000	0.650	0.66	1.00	0.66
20.66	120.00	1.172	57.60	0.710	0.95	0.000	0.650	0.66	1.00	0.66
21.16	120.00	1.200	57.60	0.724	0.95	0.000	0.650	0.67	1.00	0.67
21.66	120.00	1.228	57.60	0.737	0.95	0.000	0.650	0.67	1.00	0.67
22.16	120.00	1.257	57.60	0.751	0.95	0.000	0.650	0.67	1.00	0.67
22.66	120.00	1. 285	57.60	0.765	0.95	0.000	0.650	0.67	1.00	0.67
23.16	120.00	1.313	57.60	0.778	0.95	0.000	0.650	0.67	1.00	0.67
23.66	120.00	1.342	57.60	0.792	0.94	0.000	0.650	0.68	1.00	0.68
24.16	120.00	1.370	57.60	0.805	0.94	0.000	0.650	0.68	1.00	0.68
24.66	120.00	1.398	57.60	0.819	0.94	0.000	0.650	0.68	1.00	0.68
25.16	120.00	1.427	57.60	0.833	0.94	0.000	0.650	0.68	1.00	0.68
25.66	120.00	1.455	57.60	0.846	0.94	0.000	0.650	0.68	1.00	0.68
26.16	120.00	1.483	57.60	0.860	0.94	0.000	0.650	0.68	1.00	0.68
26.66	120.00	1.512	57.60	0.873	0.94	0.000	0.650	0.69	1.00	0.69
27.16	120.00	1.540	57.60	0.887	0.94	0.000	0.650	0.69	1.00	0.69
27.66	120.00	1.568	57.60	0.901	0.94	0.000	0.650	0.69	1.00	0.69
28.16	120.00	1.597	57.60	0.914	0.93	0.000	0.650	0.69	1.00	0.69
28.66	120.00	1.625	57.60	0.928	0.93	0.000	0.650	0.69	1.00	0.69
29.16	120.00	1.654	57.60	0.941	0.93	0.000	0.650	0.69	1.00	0.69
29.66	120.00	1.682	57.60	0.955	0.93	0.000	0.650	0.69	1.00	0.69
30.16	120.00	1.710	57.60	0.969	0.93	0.000	0.650	0.69	1.00	0.69
30.66	120.00	1.739	57.60	0.982	0.92	0.000	0.650	0.69	1.00	0.69
31.16	120.00	1.767	57.60	0.996	0.92	0.000	0.650	0.69	1.00	0.69
31.66	120.00	1.795	57.60	1.009	0.92	0.000	0.650	0.69	1.00	0.69
32.16	120.00	1.824	57.60	1.023	0.91	0.000	0.650	0.69	1.00	0.69
32.66	120.00	1.852	57.60	1.037	0.91	0.000	0.650	0.69	1.00	0.69
33.16	120.00	1.880	57.60	1.050	0.90	0.000	0.650	0.68	1.00	0.68
33.66	120.00	1.909	57.60	1.064	0.90	0.000	0.650	0.68	1.00	0.68
34.16	120.00	1.937	57.60	1.078	0.90	0.000	0.650	0.68	1.00	0.68
34.66	120.00	1.965	57.60	1.091	0.89	0.000	0.650	0.68	1.00	0.68
35.16	120.00	1.994	57.60	1.105	0.89	0.000	0.650	0.68	1.00	0.68

Page 3

		16-0107-CPT5.ca1								
35.66	120.00	2.022	57.60	1.118	0.88	0.000	0.650	0.68	1.00	0.68
36.16	120.00	2.050	57.60	1.132	0.88	0.000	0.650	0.67	1.00	0.67
36.66	120.00	2.079	57.60	1.146	0.88	0.000	0.650	0.67	1.00	0.67
37.16	120.00	2.107	57.60	1.159	0.87	0.000	0.650	0.67	1.00	0.67
37.66	120.00	2.136	57.60	1.173	0.87	0.000	0.650	0.67	1.00	0.67
38.16	120.00	2.164	57.60	1.186	0.86	0.000	0.650	0.67	1.00	0.67
38.66	120.00	2.192	57.60	1.200	0.86	0.000	0.650	0.66	1.00	0.66
39.16	120.00	2.221	57.60	1.214	0.86	0.000	0.650	0.66	1.00	0.66
39.66	120.00	2.249	57.60	1.227	0.85	0.000	0.650	0.66	1.00	0.66
40.16	120.00	2.277	57.60	1.241	0.85	0.000	0.650	0.66	1.00	0.66
40.66	120.00	2.306	57.60	1.254	0.84	0.000	0.650	0.65	1.00	0.65
41.16	120.00	2.334	57.60	1.268	0.84	0.000	0.650	0.65	1.00	0.65
41.66	120.00	2.362	57.60	1.282	0.83	0.000	0.650	0.65	1.00	0.65
42.16	120.00	2.391	57.60	1.295	0.83	0.000	0.650	0.65	1.00	0.65
42.66	120.00	2.419	57.60	1.309	0.83	0.000	0.650	0.65	1.00	0.65
43.16	120.00	2.447	57.60	1.322	0.82	0.000	0.650	0.64	1.00	0.64
43.66	120.00	2.476	57.60	1.336	0.82	0.000	0.650	0.64	1.00	0.64
44.16	120.00	2.504	57.60	1.350	0.81	0.000	0.650	0.64	1.00	0.64
44.66	120.00	2.532	57.60	1.363	0.81	0.000	0.650	0.64	1.00	0.64
45.16	120.00	2.561	57.60	1.377	0.81	0.000	0.650	0.63	1.00	0.63
45.66	120.00	2.589	57.60	1.391	0.80	0.000	0.650	0.63	1.00	0.63
46.16	120.00	2.618	57.60	1.404	0.80	0.000	0.650	0.63	1.00	0.63
46.66	120.00	2.646	57.60	1.418	0.79	0.000	0.650	0.63	1.00	0.63
47.16	120.00	2.674	57.60	1.431	0.79	0.000	0.650	0.62	1.00	0.62
47.66	120.00	2.703	57.60	1.445	0.79	0.000	0.650	0.62	1.00	0.62
48.16	120.00	2.731	57.60	1.459	0.78	0.000	0.650	0.62	1.00	0.62
48.66	120.00	2.759	57.60	1.472	0.78	0.000	0.650	0.62	1.00	0.62
49.16	120.00	2.788	57.60	1.486	0.77	0.000	0.650	0.61	1.00	0.61
49.66	120.00	2.816	57.60	1.499	0.77	0.000	0.650	0.61	1.00	0.61
50.16	120.00	2.844	57.60	1.513	0.77	0.000	0.650	0.61	1.00	0.61
50.66	120.00	2.873	57.60	1.527	0.76	0.000	0.650	0.61	1.00	0.61
51.16	120.00	2.901	57.60	1.540	0.76	0.000	0.650	0.60	1.00	0.60
51.66	120.00	2.929	57.60	1. 554	0.75	0.000	0.650	0.60	1.00	0.60
52.16	120.00	2.958	57.60	1.567	0.75	0.000	0.650	0.60	1.00	0.60
52.66	120.00	2.986	57.60	1.581	0.75	0.000	0.650	0.59	1.00	0.59
53.16	120.00	3.014	57.60	1.595	0.74	0.000	0.650	0.59	1.00	0.59
53.66	120.00	3.043	57.60	1.608	0.74	0.000	0.650	0.59	1.00	0.59
54.16	120.00	3.071	57.60	1.622	0.73	0.000	0.650	0.59	1.00	0.59
54.66	120.00	3.100	57.60	1.635	0.73	0.000	0.650	0.58	1.00	0.58
55.16	120.00	3.128	57.60	1.649	0.73	0.000	0.650	0.58	1.00	0.58
55.66	120.00	3.156	57.60	1.663	0.72	0.000	0.650	0.58	1.00	0.58
56.16	120.00	3.185	57.60	1.676	0.72	0.000	0.650	0.58	1.00	0.58
56.66	120.00	3.213	57.60	1.690	0.71	0.000	0.650	0.57	1.00	0.57
57.16	120.00	3.241	57.60	1.704	0.71	0.000	0.650	0.57	1.00	0.57
57.66	120.00	3.270	57.60	1.717	0.70	0.000	0.650	0.57	1.00	0.57
58.16	120.00	3.298	57.60	1.731	0.70	0.000	0.650	0.56	1.00	0.56
58.66	120.00	3.326	57.60	1.744	0.70	0.000	0.650	0.56	1.00	0.56
59.16	120.00	3.355	57.60	1.758	0.69	0.000	0.650	0.56	1.00	0.56
59.66	120.00	3.383	57.60	1.772	0.69	0.000	0.650	0.56	1.00	0.56
60.16	120.00	3.411	57.60	1.785	0.68	0.000	0.650	0.55	1.00	0.55
60.66	120.00	3.440	57.60	1.799	0.68	0.000	0.650	0.55	1.00	0.55
61.16	120.00	3.468	57.60	1.812	0.68	0.000	0.650	0.55	1.00	0.55
61.66	120.00	3.496	57.60	1.826	0.67	0.000	0.650	0.54	1.00	0.54

$\overline{C S R}$ is based on water table at 5.00 during earthquake
CRR Calculation from CPT data, using Modify Robertson's Method:

	16-0107-CPT5.cal											
5.16			0.50	7.66 El	2.87	2.31						
5.16	41.44	1.18	0.50	$7.66 \mathrm{E1}$	2.87	2.31	1.85	22.85	0.48	76.60	145.37	0.37
5.66			1.00	1.45 E 2	3.30	2.18						
5.66			0.50	8.28 EL	3.30	2.33						
5.66	46.89	1.54	0.50	8.28 E 1	3.30	2.33	1.77	23.69	0.50	82.77	165.19	0.50
6.16			1.00	2.14 E 2	1.79	1.86						
6.16			0.50	1.27E2	1.79	2.01						
6.16	74.93	1.33	0.50	1.27 E 2	1.79	2.01	1.69	13.20	0.22	126.78	162.34	0.48
6.66			1.00	2.74 E 2	1.40	1.71						
6.66			0.50	1.69 E 2	1.40	1.85						
6.66	103.82	1.45	0.50	1.69 E 2	1.40	1.85	1.63	9.16	0.11	168.93	190.02	0.72
7.16			1.00	2.84 E 2	1.02	1.60						
7.16			0.50	1.82 E 2	1.02	1.73						
7.16	115.71	1.18	0.50	1.82 E 2	1.02	1.73	1.57	6.60	0.04	181.60	189.71	0.71
7.66			1.00	2.47E2	1.40	1.74						
7.66			0.50	1.64 E 2	1.40	1.86						
7.66	107.89	1.50	0.50	1.64 E 2	1.40	1.86	1.52	9.34	0.12	163.70	185.18	0.67
8.16			1.00	3.87 E 2	0.92	1.48						
8.16			0.50	2.64 E 2	0.92	1.58						
8.16	179.66	1.66	0.50	2.64 E 2	0.92	1.58	1.47	4.08	0.00	264.11	264.11	1.79
8.66			1.00	4.45E2	0.71	1.35						
8.66			0.50	3.13 E2	0.71	1.45						
8.66	219.16	1.56	0.50	3.13 E 2	0.71	1.45	1.43	2.16	0.00	312.74	312.74	2.08
9.16			1.00	3.53 E 2	0.79	1.45						
9.16			0.50	2.55 Ez	0.79	1.54						
9.16	183.64	1.45	0.50	2.55E2	0.79	1.54	1.39	3.47	0.00	254.80	254.80	1.62
9.66			1.00	2.75 Ez	0.71	1.48						
9.66			0.50	2.05 E 2	0.71	1.58						
9.66	151.38	1.06	0.50	2.05 E 2	0.71	1.58	1.35	3.98	0.00	204.54	204.54	0.88
10.16			1.00	2.22E2	0.80	1.59						
10.16			0.50	1.69 E 2	0.80	1.67						
10.16	127.55	1.02	0.50	1.69 E 2	0.80	1.67	1.32	5.66	0.02	168.69	171.69	0.55
10.66			1.00	2.42 E 2	0.72	1.53						
10.66			0.50	1.86 E 2	0.72	1.61						
10.66	142.40	1.02	0.50	1.86 E 2	0.72	1.61	1.31	4.57	0.00	186.13	186.13	0.68
11.16			1.00	2.27E2	0.71	1.55						
11.16			0.50	1.76 E 2	0.71	1.63						
11.16	136.41	0.97	0.50	1.76 E 2	0.71	1.63	1.29	4.82	0.00	176.26	176.26	0.59
11.66			1.00	2.08 E 2	0.40	1.41						
11.66			0.50	1.63 E 2	0.40	1.50						
11.66	127.85	0.51	0.50	1.63 E 2	0.40	1.50	1.28	2.85	0.00	163.35	163.35	0.49
12.16			1.00	1.51 E 2	0.63	1.65						
12.16			0.50	1.20 E 2	0.63	1.72						
12.16	95.17	0.60	0.50	1.20 E 2	0.63	1.72	1.26	6.59	0.04	120.27	125.59	0.26
12.66			1.00	4.20 El	3.47	2.55						
12.66			0.50	3.45E1	3.47	2.61						
12.66			0.70	3.77 E 1	3.47	2.59						
12.66	27.61	0.93	0.70	3.77 El	3.47	2.59	1.37	34.64	0.79	37.74	181.00	0.63
13.16			1.00	7.93E1	1.33	2.07						
13.16			0.50	6.50 E 1	1.33	2.13						
13.16	52.54	0.69	0.50	6.50 El	1.33	2.13	1.24	16.82	0.32	65.00	94.99	0.16
13.66			1.00	$9.63 \mathrm{E1}$	1.23	1.98						
13.66			0.50	7.96 E 1	1.23	2.04						
13.66	65.03	0.79	0.50	7.96 E 1	1.23	2.04	1.22	14.16	0.24	79.62	105.38	0.19
14.16			1.00	6.14 El	1.66	2.21						
14.16	42.62	0.70	1.00	6.14 EI	1.66	2.21	1.00	NoLiq	1.00	42.62	42.62	2.08
14.66			1.00	2.04 El	3.62	2.80						
14.66	14.99	0.51	1.00	2.04 El	3.62	2.80	1.00	NoLiq	1.00	14.99	14.99	2.08
15.16			1.00	1.73 E 1	2.53	2.76						
15.16	13.10	0.31	1.00	1.73 El	2.53	2.76	1.00	NoLiq	1.00	13.10	13.10	2.08
15.66			1.00	1.51 EI	2.64	2.82						
15.66	11.79	0.29	1.00	1.51 EI	2.64	2.82	1.00	NoLiq	1.00	11.79	11.79	2.08
16.16			1.00	1.48 EI	3.75	2.92						
16.16	11.82	0.41	1.00	1.48 EL	3.75	2.92	1.00	NoLiq	1.00	11.82	11.82	2.08
16.66			1.00	1.43 EI	4.43	2.97						
16.66	11.67	0.48	1.00	1.43 EI	4.43	2.97	1.00	NoLiq	1.00	11.67	11.67	2.08
17.16			1.00	1.29 El	3.05	2.91						
17.16	10.82	0.30	1.00	1.29 EL	3.05	2.91	1.00	NoLiq	1.00	10.82	10.82	2.08
17.66			1.00	1.15 El	3.29	2.97						
17.66	9.96	0.29	1.00	1.15 E 1	3.29	2.97	1.00	NoLiq	1.00	9.96	9.96	2.08
18.16			1.00	1.23 E 1	3.52	2.96						
18.16	10.76	0.34	1.00	1.23 El	3.52	2.96	1.00	NoLiq	1.00	10.76	10.76	2.08
18.66			1.00	1.20 E 1	3.28	2.96						
18.66	10.68	0.32	1.00	1.20 E 1	3.28	2.96	1.00	NoLiq	1.00	10.68	10.68	2.08
19.16			1.00	1.04 El	2.54	2.94						
19.16	9.59	0.22	1.00	1.04 El	2.54	2.94	1.00	NoLiq	1.00	9.59	9.59	2.08
19.66			1.00	1.15 E 1	3.22	2.96						
19.66	10.70	0.31	1.00	1.15 E 1	3.22	2.96	1.00	NoLiq	1.00	10.70	10.70	2.08
20.16			1.00	1.14 E 1	3.32	2.98						
20.16	10.76	0.32	1.00	1.14 El	3.32	2.98	1.00	NoLiq	1.00	10.76	10.76	2.08
20.66			1.00	1.49 E 1	3.48	2.89						
20.66	13.97	0.44	1.00	1.49 El	3.48	2.89	1.00	NoLiq	1.00	13.97	13.97	2.08
							Page					

	16-0107-CPT5.cal											
21.16			1.00	1.95 El	3.14	2.77						
21.16	18.20	0.53	1.00	$1.95 \mathrm{E1}$	3.14	2.77	1.00	NoLiq	1.00	18.20	18.20	2.08
21.66			1.00	2.03 E 1	4.16	2.84						
21.66	19.22	0.75	1.00	$2.03 \mathrm{E1}$	4.16	2.84	1.00	NoLiq	1.00	19.22	19.22	2.08
22.16			1.00	$3.43 \mathrm{E1}$	3.85	2.65						
22.16	32.07	1.19	1.00	$3.43 \mathrm{E1}$	3.85	2.65	1.00	NoLiq	1.00	32.07	32.07	2.08
22.66			1.00	3.73 El	4.23	2.65						
22.66	35.34	1.44	1.00	3.73E1	4.23	2.65	1.00	NoLiq	1.00	35.34	35.34	2.08
23.16			1.00	1.86E1	4.39	2.88						
23.16	18.55	0.76	1.00	1.86 El	4.39	2.88	1.00	NoLiq	1.00	18.55	18.55	2.08
23.66			1.00	1.72 E 1	3.47	2.84						
23.66	17.54	0.56	1.00	1.72 El	3.47	2.84	1.00	NoLiq	1.00	17.54	17.54	2.08
24.16			1.00	$9.01 \mathrm{E1}$	1.03	1.95						
24.16			0.50	$8.93 \mathrm{E1}$	1.03	1.96						
24.16	87.20	0.88	0.50	$8.93 \mathrm{E1}$	1.03	1.96	1.02	11.77	0.18	89.33	109.05	0.20
24.66			1.00	1.30 E 2	0.99	1.82						
24.66			0.50	1.29 E 2	0.99	1.82						
24.66	127.16	1.24	0.50	1.29 E 2	0.99	1.82	1.02	8.59	0.10	129.35	143.06	0.35
25.16			1.00	1.16 E 2	0.74	1.78						
25.16			0.50	1.17 E 2	0.74	1.78						
25.16	115.57	0.84	0.50	1.17 E 2	0.74	1.78	1.01	7.61	0.07	116.74	125.50	0.26
25.66			1.00	1.44 E 2	1.03	1.80						
25.66			0.50	1.45 E 2	1.03	1.80						
25.66	144.24	1.47	0.50	1.45 E 2	1.03	1.80	1.00	8.08	0.08	144.70	157.67	0.44
26.16			1.00	1.85 E 2	0.45	1.48						
26.16			0.50	1.88 E 2	0.45	1.48						
26.16	188.19	0.83	0.50	1.88 E 2	0.45	1.48	1.00	2.55	0.00	187.52	187.52	0.69
26.66			1.00	1.62 E 2	0.47	1.55						
26.66			0.50	1.66 E 2	0.47	1.54						
26.66	167.29	0.79	0.50	1.66E2	0.47	1.54	0.99	3.40	0.00	165.58	165.58	0.50
27.16			1.00	2.13 E 2	1.02	1.68						
27.16			0.50	2.18 E 2	1.02	1.67						
27.16	221.52	2.24	0.50	2.18 E 2	1.02	1.67	0.98	5.57	0.02	217.80	221.18	1.09
27.66			1.00	2.71 E 2	0.50	1.39						
27.66			0.50	2.79 E 2	0.50	1.38						
27.66	285.69	1.42	0.50	2.79E2	0.50	1.38	0.98	1.24	0.00	279.07	279.07	2.08
28.16			1.00	1.61 E 2	0.55	1.59						
28.16			0.50	1.68 E 2	0.55	1.57						
28.16	172.73	0.94	0.50	1.68 E 2	0.55	1.57	0.97	3.91	0.00	167.64	167.64	0.52
28.66			1.00	3.77E1	2.90	2.53						
28.66			0.50	4.07E1	2.90	2.51						
28.66	42.21	1.18	0.50	4.07E1	2.90	2.51	0.96	31.05	0.70	40.71	133.67	0.30
29.16			1.00	$2.51 \mathrm{E1}$	1.71	2.53						
29.16			0.50	2.78 E 1	1.71	2.49						
29.16	29.03	0.47	0.50	2.78E1	1.71	2.49	0.96	30.34	0.68	27.82	86.05	0.14
29.66			1.00	2.84E1	2.48	2.58						
29.66			0.50	$3.14 \mathrm{E1}$	2.48	2.55						
29.66	32.98	0.78	0.50	$3.14 \mathrm{E1}$	2.48	2.55	0.95	32.94	0.75	31.41	123.64	0.26
30.16			1.00	2.51 E 2	1.04	1.64						
30.16			0.50	2.67E2	1.04	1.62						
30.16	282.33	2.93	0.50	2.67E2	1.04	1.62	0.95	4.68	0.00	267.24	267.24	1.86
30.66			1.00	2.49 E 2	1.16	1.67						
30.66			0.50	2.67E2	1.16	1.66						
30.66	283.37	3.27	0.50	2.67E2	1.16	1.66	0.94	5.31	0.01	266.61	268.82	1.89
31.16			1.00	1.86 E 2	0.74	1.62						
31.16			0.50	$2.01 \mathrm{E2}$	0.74	1.60						
31.16	214.43	1.56	0.50	2.01 E 2	0.74	1.60	0.94	4.28	0.00	200.54	200.54	0.83
31.66			1.00	1.97 E 2	0.34	1.40						
31.66			0.50	2.13 E 2	0.34	1.37						
31.66	229.18	0.78	0.50	2.13 E 2	0.34	1.37	0.93	1.15	0.00	213.07	213.07	0.98
32.16			1.00	$9.94 \mathrm{E1}$	2.02	2.12						
32.16			0.50	1.09 E 2	2.02	2.09						
32.16	118.21	2.36	0.50	1.09 E 2	2.02	2.09	0.92	15.58	0.28	109.26	152.30	0.41
32.66			1.00	3.55 El	2.89	2.55						
32.66			0.50	4.04 El	2.89	2.51						
32.66	43.91	1.21	0.50	4.04 El	2.89	2.51	0.92	31.12	0.70	40.35	133.40	0.30
33.16			1.00	2.58E1	3.75	2.73						
33.16	32.79	1.16	1.00	2.58E1	3.75	2.73	1.00	NoLiq	1.00	32.79	32.79	2.08
33.66			1.00	$6.78 \mathrm{E1}$	2.60	2.32						
33.66			0.50	$7.63 \mathrm{E1}$	2.60	2.28						
33.66	84.02	2.14	0.50	$7.63 \mathrm{E1}$	2.60	2.28	0.91	21.75	0.45	76.34	138.14	0.33
34.16			1.00	$3.93 \mathrm{E1}$	2.90	2.52						
34.16			0.50	4.52E1	2.90	2.47						
34.16	50.07	1.39	0.50	4.52E1	2.90	2.47	0.90	29.54	0.66	45.24	131.19	0.29
34.66			1.00	1.76 E 1	2.26	2.72						
34.66	23.78	0.49	1.00	1.76 El	2.26	2.72	1.00	NoLiq	1.00	23.78	23.78	2.08
35.16			1.00	1.59 E 1	2.59	2.80						
35.16	21.91	0.52	1.00	1.59 E 1	2.59	2.80	1.00	NoLiq	1.00	21.91	21.91	2.08
35.66			1.00	1.26 El	2.51	2.87						
35.66	18.01	0.40	1.00	1.26 El	2.51	2.87	1.00	NoLiq	1.00	18.01	18.01	2.08
36.16			1.00	1.46 E 1	1.68	2.72						
36.16	20.68	0.31	1.00	1.46 EI	1.68	2.72	1.00	NoLiq	1.00	20.68	20.68	2.08
							Page					

	16-0107-CPT5.cal											
36.66			1.00	1.53 El	1.82	2.72						
36.66	21.88	0.36	1.00	1.53 El	1.82	2.72	1.00	NoLiq	1.00	21.88	21.88	2.08
37.16			1.00	1.86 E 1	2.71	2.75						
37.16	26.43	0.66	1.00	1.86 El	2.71	2.75	1.00	NoLiq	1.00	26.43	26.43	2.08
37.66			1.00	2.97 EI	2.98	2.62						
37.66	41.36	1.17	1.00	$2.97 \mathrm{E1}$	2.98	2.62	1.00	NoLiq	1.00	41.36	41.36	2.08
38.16			1.00	$3.82 \mathrm{E1}$	4.18	2.64						
38.16	53.17	2.13	1.00	3.82 El	4.18	2.64	1.00	NoLiq	1.00	53.17	53.17	2.08
38.66			1.00	$9.91 \mathrm{E1}$	1.96	2.11						
38.66			0.50	1.17 E 2	1.96	2.06						
38.66	135.79	2.61	0.50	1.17 E 2	1.96	2.06	0.86	14.66	0.26	116.98	157.66	0.44
39.16			1.00	1.44 E 2	0.57	1.64						
39.16			0.50	1.70 E 2	0.57	1.58						
39.16	198.40	1.13	0.50	1.70 E 2	0.57	1.58	0.86	4.03	0.00	170.06	170.06	0.54
39.66			1.00	1.50 E 2	0.47	1.57						
39.66			0.50	1.78 E 2	0.47	1.51						
39.66	208.26	0.96	0.50	1.78 E 2	0.47	1.51	0.85	2.98	0.00	177.63	177.63	0.60
40.16			1.00	1.82 E 2	0.99	1.72						
40.16			0.50	2.17E2	. 0.99	1.66						
40.16	255.27	2.51	0.50	2.17 E 2	0.99	1.66	0.85	5.45	0.01	216.65	219.29	1.06
40.66			1.00	2.95E2	0.55	1.39						
40.66			0.50	3.51 E 2	0.55	1.33						
40.66	416.09	2.29	0.50	3.51 E 2	0.55	1.33	0.84	0.77	0.00	351.43	351.43	2.08
41.16			1.00	4.08 E 2	0.60	1.32						
41.16			0.50	4.87E2	0.60	1.27						
41.16	579.57	3.49	0.50	4.87E2	0.60	1.27	0.84	0.11	0.00	487.14	487.14	2.08
41.66			1.00	3.77E2	0.37	1.19						
41.66			0.50	4.52 E 2	0.37	1.13						
41.66	540.79	1.99	0.50	4.52 E 2	0.37	1.13	0.84	0.00	0.00	452.38	452.38	2.08
42.16			1.00	3.36 E 2	0.43	1.27						
42.16			0.50	4.05 E 2	0.43	1.21						
42.16	486.89	2.07	0.50	4.05 E 2	0.43	1.21	0.83	0.00	0.00	405.36	405.36	2.08
42.66			1.00	$2.99 E 2$	0.43	1.31						
42.66			0.50	3.63 E 2	0.43	1.25						
42.66	437.62	1.86	0.50	3.63 E 2	0.43	1.25	0.83	0.00	0.00	362.63	362.63	2.08
43.16			1.00	2.70E2	0.52	1.40						
43.16			0.50	$3.29 E 2$	0.52	1.34						
43.16	399.17	2.07	0.50	3.29E2	0.52	1.34	0.82	0.79	0.00	329.24	329.24	2.08
43.66			1.00	3.70E2	0.54	1.31						
43.66			0.50	4.53 E 2	0.54	1.26						
43.66	551.70	2.99	0.50	4.53 E 2	0.54	1.26	0.82	0.00	0.00	452.95	452.95	2.08
44.16			1.00	3.86 E 2	0.68	1.37						
44.16			0.50	4.75 E 2	0.68	1.32						
44.16	581.08	3.94	0.50	4.75 E 2	0.68	1.32	0.82	0.60	0.00	474.90	474.90	2.08
44.66			1.00	$4.12 \mathrm{E2}$	0.72	1.38						
44.66			0.50	5.08 E 2	0.72	1.32						
44.66	624.87	4.49	0.50	5.08E2	0.72	1.32	0.81	0.63	0.00	500.00	500.00	2.08
45.16			1.00	3.70 E 2	0.51	1.29						
45.16			0.50	4.59 E 2	0.51	1.23						
45.16	566.69	2.86	0.50	4.59 E 2	0.51	1.23	0.81	0.00	0.00	458.99	458.99	2.08
45.66			1.00	3.93 E 2	0.31	1.13						
45.66			0.50	4.89E2	0.31	1.06						
45.66	606.33	1.89	0.50	$4.89 E 2$	0.31	1.06	0.81	0.00	0.00	488.92	488.92	2.08
46.16			1.00	3.92 Ez	0.30	1.12						
46.16			0.50	4.91 E 2	0.30	1.05						
46.16	611.33	1.84	0.50	4.91 E 2	0.30	1.05	0.80	0.00	0.00	490.79	490.79	2.08
46.66			1.00	3.95 E 2	0.43	1.22						
46.66			0.50	4.96 E 2	0.43	1.15						
46.66	620.98	2.64	0.50	4.96 E 2	0.43	1.15	0.80	0.00	0.00	496.36	496.36	2.08
47.16			1.00	4.04 E 2	0.34	1.15						
47.16			0.50	5.10 E 2	0.34	1.07						
47.16	640.22	2.18	0.50	5.10 E 2	0.34	1.07	0.80	0.00	0.00	500.00	500.00	2.08
47.66			1.00	4.84 E 2	0.87	1.40						
47.66			0.50	6.13 E 2	0.87	1.35						
47.66	773.58	6.73	0.50	6.13 E 2	0.87	1.35	0.79	0.91	0.00	500.00	500.00	2.08
48.16			1.00	3.80 E 2	1.09	1.54						
48.16			0.50	4.84 E 2	1.09	1.48						
48.16	613.07	6.66	0.50	4.84 E 2	1.09	1.48	0.79	2.60	0.00	483.77	483.77	2.08
48.66			1.00	4.91 E 2	0.33	1.07						
48.66			0.50	6.27 E 2	0.33	1.00						
48.66	797.47	2.60	0.50	6.27 E 2	0.33	1.00	0.79	0.00	0.00	500.00	500.00	2.08
49.16			1.00	4.77 E 2	0.41	1.15						
49.16			0.50	6.12 E 2	0.41	1.08						
49.16	782.49	3.19	0.50	6.12 E 2	0.41	1.08	0.78	0.00	0.00	500.00	500.00	2.08
49.66			1.00	4.81 E 2	0.39	1.13						
49.66			0.50	6.20 E 2	0.39	1.06						
49.66	795.11	3.12	0.50	6.20 E 2	0.39	1.06	0.78	0.00	0.00	500.00	500.00	2.08
50.16			1.00	4.68 E 2	0.56	1.26						
50.16			0.50	6.05 E 2	0.56	1.19						
50.16	780.22	4.37	0.50	6.05 E 2	0.56	1.19	0.78	0.00	0.00	500.00	500.00	2.08
50.66			1.00	3.27 E 2	0.88	1.51						
50.66			0.50	4.26 E 2	0.88	1.44						
							Page					

	16-0107-CPT5.cal											
50.66	550.94	4.81	0.50	4.26 E 2	0.88	1.44	0.77	1.96	0.00	425.81	425.81	2.08
51.16			1.00	3.33 E 2	0.47	1.30						
51.16			0.50	4.34 E 2	0.47	1.22						
51.16	564.37	2.66	0.50	4.34 E 2	0.47	1.22	0.77	0.00	0.00	434.44	434.44	2.08
51.66			1.00	3.66 E 2	0.64	1.37						
51.66			0.50	4.79 E 2	0.64	1.30						
51.66	625.17	4.01	0.50	4.79 E 2	0.64	1.30	0.77	0.38	0.00	479.31	479.31	2.08
52.16			1.00	3.11 E 2	0.60	1.40						
52.16			0.50	4.10 E 2	0.60	1.32						
52.16	536.94	3.20	0.50	4.10 E 2	0.60	1.32	0.76	0.57	0.00	410.02	410.02	2.08
52.66			1.00	3.11 E 2	0.46	1.31						
52.66			0.50	4.12 E 2	0.46	1.23						
52.66	541.33	2.45	0.50	4.12 E 2	0.46	1.23	0.76	0.00	0.00	411.75	411.75	2.08
53.16			1.00	3.54 E 2	1.01	1.53						
53.16			0.50	4.70 E 2	1.01	1.46						
53.16	620.56	6.22	0.50	4.70 E 2	1.01	1.46	0.76	2.29	0.00	470.16	470.16	2.08
53.66			1.00	3.16 E 2	0.87	1.51						
53.66			0.50	4.20 E 2	0.87	1.43						
53.66	557.13	4.80	0.50	4.20 E 2	0.87	1.43	0.75	1.95	0.00	420.45	420.46	2.08
54.16			1.00	3.60 E 2	0.49	1.29						
54.16			0.50	4.82 E 2	0.49	1.20						
54.16	640.83	3.12	0.50	4.82 E 2	0.49	1.20	0.75	0.00	0.00	481.77	481.77	2.08
54.66			1.00	3.15 E 2	0.46	1.31						
54.66			0.50	4.23 E 2	0.46	1.22						
54.66	564.92	2.59	0.50	4.23 E 2	0.46	1.22	0.75	0.00	0.00	423.08	423.08	2.08
55.16			1.00	2.76E2	0.73	1.49						
55.16			0.50	3.72 E 2	0.73	1.41						
55.16	498.65	3.61	0.50	3.72 E 2	0.73	1.41	0.75	1.61	0.00	372.03	372.03	2.08
55.66			1.00	3.99 E 2	0.48	1.25						
55.66			0.50	5.39 E 2	0.48	1.16						
55.66	724.87	3.45	0.50	5.39 E 2	0.48	1.16	0.74	0.00	0.00	500.00	500.00	2.08
56.16			1.00	3.34 E 2	0.51	1.32						
56.16			0.50	4.53 E 2	0.51	1.23						
56.16	611.51	3.09	0.50	4.53 E 2	0.51	1.23	0.74	0.00	0.00	452.82	452.82	2.08
56.66			1.00	2.20 E 2	0.48	1.44						
56.66			0.50	3.01 E 2	0.48	1.34						
56.66	408.22	1.95	0.50	3.01 E 2	0.48	1.34	0.74	0.83	0.00	301.16	301.16	2.08
57.16			1.00	1.07 E 2	0.53	1.72						
57.16			0.50	1.49 E 2	0.53	1.61						
57.16	202.21	1.06	0.50	1.49 E 2	0.53	1.61	0.74	4.45	0.00	148.63	148.63	0.39
57.66			1.00	$9.31 \mathrm{E1}$	1.47	2.04						
57.66			0.50	1.30 E 2	1.47	1.94						
57.66	176.85	2.55	0.50	1.30E2	1.47	1.94	0.73	11.40	0.17	129.51	156.21	0.43
58.16			1.00	2.23 E 2	0.56	1.48						
58.16			0.50	3.08 E 2	0.56	1.38						
58.16	422.40	2.36	0.50	3.08 E 2	0.56	1.38	0.73	1.29	0.00	308.21	308.21	2.08
58.66			1.00	2.30 E 2	0.86	1.60						
58.66			0.50	3.19 E 2	0.86	1.50						
58.66	438.90	3.73	0.50	3.19 E 2	0.86	1.50	0.73	2.89	0.00	319.10	319.10	2.08
59.16			1.00	2.97 E 2	0.59	1.40						
59.16			0.50	4.13 E 2	0.59	1.31						
59.16	569.80	3.32	0.50	4.13 E 2	0.59	1.31	0.72	0.47	0.00	412.79	412.79	2.08
59.66			1.00	1.64 E 2	0.49	1.55						
59.66			0.50	2.29E2	0.49	1.44						
59.66	317.53	1.55	0.50	2.29 E 2	0.49	1.44	0.72	1.99	0.00	229.22	229.22	1.20
60.16			1.00	1.38 E 2	0.29	1.50						
60.16			0.50	1.94 E 2	0.29	1.37						
60.16	270.04	0.79	0.50	1.94 E 2	0.29	1.37	0.72	1.15	0.00	194.24	194.24	0.76
60.66			1.00	1.42 E 2	0.52	1.62						
60.66			0.50	2.00 E 2	0.52	1.50						
60.66	279.46	1.44	0.50	2.00 E 2	0.52	1.50	0.72	2.80	0.00	200.32	200.32	0.83
61.16			1.00	2.58 E 2	0.27	1.24						
61.16			0.50	3.63 E 2	0.27	1.11						
61.16	508.35	1.34	0.50	3.63 E 2	0.27	1.11	0.71	0.00	0.00	363.13	363.13	2.08
61.66			1.00	3.36 E 2	0.95	1.52						
61.66			0.50	4.74 E 2	0.95	1.44						
61.66	665.93	6.28	0.50	4.74 E 2	0.95	1.44	0.71	1.97	0.00	474.04	474.04	2.08

Fines have been calculated, and correction is made by Modify Robertson Method.
Fines=NoLiq means the soils are not liquefiable.
CRR is based on water table at 10.00 during In-Situ Testing

Page 8

				16-0107-CPT5.ca1				
44.16	0.97	2.08	1.00	2.08	1.37	2.85	0.64	4.46
44.66	0.98	2.08	1.00	2.08	1.37	2.85	0.64	4.48
45.16	0.99	2.08	1.00	2.08	1.37	2.85	0.63	4.50
45.66	1.00	2.08	1.00	2.08	1.37	2.85	0.63	4.52
46.16	1.01	2.08	1.00	2.09	1.37	2.86	0.63	4.56
46.66	1.02	2.08	1.00	2.09	1.37	2.86	0.63	4.57
47.16	1.03	2.08	1.00	2.08	1.37	2.86	0.62	4.58
47.66	1.04	2.08	1.00	2.08	1.37	2.85	0.62	4.59
48.16	1.04	2.08	1.00	2.08	1.37	2.85	0.62	4.60
48.66	1.05	2.08	1.00	2.08	1.37	2.84	0.62	4.62
49.16	1.06	2.08	1.00	2.07	1.37	2.84	0.61	4.63
49.66	1.07	2.08	1.00	2.07	1. 37	2.84	0.61	4.64
50.16	1.08	2.08	0.99	2.07	1.37	2.83	0.61	4.66
50.66	1.09	2.08	0.99	2.06	1.37	2.83	0.61	4.67
51.16	1.10	2.08	0.99	2.06	1.37	2.83	0.60	4.69
51.66	1.11	2.08	0.99	2.06	1.37	2.82	0.60	4.70
52.16	1.11	2.08	0.99	2.06	1.37	2.82	0.60	4.71
52.66	1.12	2.08	0.99	2.05	1.37	2.81	0.59	4.73
53.16	1.13	2.08	0.99	2.05	1.37	2.81	0.59	4.74
53.66	1.14	2.08	0.98	2.05	1.37	2.81	0.59	4.76
54.16	1.15	2.08	0.98	2.04	1.37	2.80	0.59	4.78
54.66	1.16	2.08	0.98	2.04	1.37	2.80	0.58	4.79
55.16	1.17	2.08	0.98	2.04	1.37	2.79	0.58	4.81
55.66	1.18	2.08	0.98	2.04	1.37	2.79	0.58	4.83
56.16	1.19	2.08	0.98	2.03	1.37	2.79	0.58	4.84
56.66	1.19	2.08	0.98	2.03	1.37	2.78	0.57	4.86
57.16	1.20	0.39	0.97	0.38	1.37	0.51	0.57	0.90%
57.66	1.21	0.43	0.97	0.42	1.37	0.58	0.57	1.02
58.16	1.22	2.08	0.97	2.02	1. 37	2.77	0.56	4.91
58.66	1.23	2.08	0.97	2.02	1. 37	2.77	0.56	4.93
59.16	1.24	2.08	0.97	2.02	1.37	2.76	0.56	4.95
59.66	1.25	1.20	0.97	1.16	1.37	1.59	0.56	2.87
60.16	1.26	0.76	0.97	0.74	1.37	1.01	0.55	1.83
60.66	1.27	0.83	0.97	0.80	1.37	1.10	0.55	1.99
61.16	1.27	2.08	0.96	2.01	1.37	2.75	0.55	5.00
61.66	1.28	2.08	0.96	2.00	1.37	2.75	0.54	5.00

* F.S.<1: Liquefaction Potential Zone. (If above water table: F.S.=5)

A No-liquefiable Soils or above Water Table.
(F.S. is limited to $5, \quad$ CRR is limited to $2, \quad$ CSR is limited to 2)

CPT convert to SPT for Settlement Analysis:

$\begin{aligned} & \text { Depth } \\ & \mathrm{ft} \end{aligned}$	Ic	qc/N60	$\begin{aligned} & \mathrm{qcI} \\ & \mathrm{~atm} \end{aligned}$	(N1) 60	Fines \%	$d(N 1) 60$	(N1) 60 s
0.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
0.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
1.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
1.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
2.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
2.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
3.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
3.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
4.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
4.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
5.16	2.31	4.23	146.37	34.57	22.85	0.00	34.57
5.66	2.33	4.19	165.19	39.40	23.69	0.00	39.40
6.16	2.01	4.79	162.34	33.91	13.20	0.00	33.91
6.66	1.85	5.09	190.02	37.35	9.16	0.00	37.35
7.16	1.73	5.31	189.71	35.71	6.60	0.00	35.71
7.66	1.86	5.07	185.18	36.51	9.34	0.00	36.51
8.16	1.58	5.58	264.11	47.37	4.08	0.00	47.37
8.66	1.45	5.82	312.74	53.73	2.16	0.00	53.73
9.16	1.54	5.65	254.80	45.11	3.47	0.00	45.11
9.66	1.58	5.59	204.54	36.61	3.98	0.00	36.61
10.16	1.67	5.40	171.69	31.77	5.66	0.00	31.77
10.66	1.61	5.52	186.13	33.72	4.57	0.00	33.72
11.16	1.63	5.49	176.26	32.09	4.82	0.00	32.09
11.66	1.50	5.73	163.35	28.53	2.85	0.00	28.53
12.16	1.72	5.31	125.59	23.64	6.59	0.00	23.64
12.66	2.59	3.72	181.00	48.62	34.64	0.00	48.62
13.16	2.13	4.56	94.99	20.84	16.82	0.00	20.84
13.66	2.04	4.72	105.38	22.31	14.16	0.00	22.31
14.16	2.21	4.41	42.62	9.67	NoLiq	0.00	9.67
14.66	2.80	3.33	14.99	4.50	NoLiq	0.00	4.50
15.16	2.76	3.40	13.10	3.85	NoLiq	0.00	3.85
15.66	2.82	3.29	11.79	3.58	NoLiq	0.00	3.58
16.16	2.92	3.11	11.82	3.80	NoLiq	0.00	3.80
16.66	2.97	3.01	11.67	3.88	NoLiq	0.00	3.88
17.16	2.91	3.12	10.82	3.47	NoLiq	0.00	3.47

					16-0107-CPT5.cal		
17.66	2.97	3.01	9.96	3.30	NoLiq	0.00	3.30
18.16	2.96	3.02	10.76	3.56	NoLiq	0.00	3.56
18.66	2.96	3.04	10.68	3.51	NoLiq	0.00	3.51
19.16	2.94	3.06	9.59	3.13	NoLiq	0.00	3.13
19.66	2.96	3.02	10.70	3.54	NoLiq	0.00	3.54
20.16	2.98	3.00	10.76	3.59	NoLiq	0.00	3.59
20.66	2.89	3.15	13.97	4.43	NoLiq	0.00	4.43
21.16	2.77	3.37	18.20	5.39	NoLiq	0.00	5.39
21.66	2.84	3.25	19.22	5.91	NoLiq	0.00	5.91
22.16	2.65	3.61	32.07	8.88	NoLiq	0.00	8.88
22.66	2.65	3.61	35.34	9.80	NoLiq	0.00	9.80
23.16	2.88	3.17	18.55	5.84	NoLiq	0.00	5.84
23.66	2.84	3.25	17.54	5.40	NoLiq	0.00	5.40
24.16	1.96	4.89	109.05	22.31	11.77	0.00	22.31
24.66	1.82	5.13	143.06	27.86	8.59	0.00	27.86
25.16	1.78	5.22	125.50	24.05	7.61	0.00	24.05
25.66	1.80	5.18	157.67	30.45	8.08	0.00	30.45
26.16	1.48	5.77	187.52	32.52	2.55	0.00	32.52
26.66	1.54	5.66	165.58	29.27	3.40	0.00	29.27
27.16	1.67	5.41	221.18	40.86	5.57	0.00	40.86
27.66	1.38	5.96	279.07	46.85	1.24	0.00	46.85
28.16	1.57	5.60	167.64	29.96	3.91	0.00	29.96
28.66	2.51	3.87	133.67	34.58	31.05	0.00	34.58
29.16	2.49	3.89	86.05	22.10	30.34	0.00	22.10
29.66	2.55	3.79	123.64	32.63	32.94	0.00	32.63
30.16	1.62	5.51	267.24	48.52	4.68	0.00	48.52
30.66	1.66	5.44	268.82	49.41	5.31	0.00	49.41
31.16	1.60	5.55	200.54	36.12	4.28	0.00	36.12
31.66	1.37	5.97	213.07	35.68	1.15	0.00	35.68
32.16	2.09	4.63	152.30	32.87	15.58	0.00	32.87
32.66	2.51	3.86	133.40	34.54	31.12	0.00	34.54
33.16	2.73	3.45	32.79	9.49	NoLiq	0.00	9.49
33.66	2.28	4.29	138.14	32.21	21.75	0.00	32.21
34.16	2.47	3.93	131.19	33.40	29.54	0.00	33.40
34.66	2.72	3.46	23.78	6.86	NoLiq	0.00	6.86
35.16	2.80	3.33	21.91	6.57	NoLiq	0.00	6.57
35.66	2.87	3.20	18.01	5.63	NoLiq	0.00	5.63
36.16	2.72	3.47	20.68	5.96	NoLiq	0.00	5.96
36.66	2.72	3.47	21.88	6.31	NoLiq	0.00	6.31
37.16	2.75	3.41	26.43	7.74	NoLiq	0.00	7.74
37.66	2.62	3.66	41.36	11.30	NoLiq	0.00	11.30
38.16	2.64	3.63	53.17	14.66	NoLiq	0.00	14.66
38.66	2.06	4.69	157.66	33.61	14.66	0.00	33.61
39.16	1.58	5.58	170.06	30.47	4.03	0.00	30.47
39.66	1.51	5.71	177.63	31.11	2.98	0.00	31.11
40.16	1.66	5.43	219.29	40.42	5.45	0.00	40.42
40.66	1.33	6.03	351.43	58.24	0.77	0.00	58.24
41.16	1.27	6.15	487.14	79.18	0.11	0.00	79.18
41.66	1.13	6.41	452.38	70.62	0.00	0.00	70.62
42.16	1.21	6.26	405.36	64.72	0.00	0.00	64.72
42.66	1.25	6.20	362.63	58.53	0.00	0.00	58.53
43.16	1.34	6.03	329.24	54.59	0.79	0.00	54.59
43.66	1.26	6.18	452.95	73.28	0.00	0.00	73.28
44.16	1.32	6.06	474.90	78.32	0.60	0.00	78.32
44.66	1.32	6.06	500.00	82.54	0.63	0.00	82.54
45.16	1.23	6.23	458.99	73.68	0.00	0.00	73.68
45.66	1.06	6.54	488.92	74.73	0.00	0.00	74.73
46.16	1.05	6.56	490.79	74.78	0.00	0.00	74.78
46.66	1.15	6.37	496.36	77.86	0.00	0.00	77.86
47.16	1.07	6.52	500.00	76.70	0.00	0.00	76.70
47.66	1.35	6.01	500.00	83.18	0.91	0.00	83.18
48.16	1.48	5.76	483.77	83.99	2.60	0.00	83.99
48.66	1.00	6.66	500.00	75.10	0.00	0.00	75.10
49.16	1.08	6.51	500.00	76.79	0.00	0.00	76.79
49.66	1.06	6.54	500.00	76.44	0.00	0.00	76.44
50.16	1.19	6.30	500.00	79.33	0.00	0.00	79.33
50.66	1.44	5.85	425.81	72.82	1.96	0.00	72.82
51.16	1.22	6.24	434.44	69.61	0.00	0.00	69.61
51.66	1.30	6.10	479.31	78.53	0.38	0.00	78.53
52.16	1.32	6.07	410.02	67.56	0.57	0.00	67.56
52.66	1.23	6.23	411.75	66.05	0.00	0.00	66.05
53.16	1.46	5.80	470.16	81.04	2.29	0.00	81.04
53.66	1.43	5.85	420.46	71.87	1.95	0.00	71.87
54.16	1.20	6.28	481.77	76.74	0.00	0.00	76.74
54.66	1.22	6.24	423.08	67.76	0.00	0.00	67.76
55.16	1.41	5.90	372.03	63.06	1.61	0.00	63.06
55.66	1.16	6.35	500.00	78.74	0.00	0.00	78.74
56.16	1.23	6.22	452.82	72.78	0.00	0.00	72.78
56.66	1.34	6.02	301.16	49.99	0.83	0.00	49.99
57.16	1.61	5.53	148.63	26.86	4.45	0.00	26.86
57.66	1.94	4.91	156.21	31.79	11.40	0.00	31.79
58.16	1,38	5.95	308.21	51.80	1.29	0.00	51.80
						Page	

				$16-0107-$ CPT5.cal			
58.66	1.50	5.72	319.10	55.78	2.89	0.00	55.78
59.16	1.31	6.09	412.79	67.83	0.47	0.00	67.83
59.66	1.44	5.84	229.22	39.22	1.99	0.00	39.22
60.16	1.37	5.97	194.24	32.53	1.15	0.00	32.53
60.66	1.50	5.73	200.32	34.94	2.80	0.00	34.94
61.16	1.11	6.44	363.13	56.38	0.00	0.00	56.38
61.66	1.44	5.85	474.04	81.08	1.97	0.00	81.08

(N1)60s has been fines corrected in liquefaction analysis, therefore $d(N I) 60=0$. (N1) 60 is converted from qc1, (N1)60s is after fines correction
Fines=NoLiq means the soils are not liquefiable.

Settlement of Saturated Sands:

Depth ft	CSRsf	/ MSF*	$=C S R m$	F.S.	Fines \%	(N1) 60 s	$\begin{aligned} & \mathrm{Dr} \\ & \% \end{aligned}$	$\begin{aligned} & \text { ec } \\ & \% \end{aligned}$	$\begin{aligned} & \text { dsz } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { dsp } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { in. } \end{aligned}$
61.96	0.54	1.00	0.54	5.00	0.00	66.36	100.00	0.000	0.0 EO	0.000	0.000
61.66	0.54	1.00	0.54	5.00	1.97	81.08	100.00	0.000	0.050	0.000	0.000
61.16	0.55	1.00	0.55	5.00	0.00	56.38	100.00	0.000	0.0 EO	0.000	0.000
60.66	0.55	1.00	0.55	1.99	2.80	34.94	100.00	0.000	0.050	0.000	0.000
60.16	0.55	1.00	0.55	1.83	1.15	32.53	96.07	0.021	1.3E-4	0.003	0.003
59.66	0.56	1.00	0.56	2.87	1.99	39.22	100.00	0.000	0.0 EO	0.000	0.003
59.16	0.56	1.00	0.56	4.95	0.47	67.83	100.00	0.000	0.0 EO	0.000	0.003
58.66	0.56	1.00	0.56	4.93	2.89	55.78	100.00	0.000	0.0 EO	0.000	0.003
58.16	0.56	1.00	0.56	4.91	1.29	51.80	100.00	0.000	0.0 EO	0.000	0.003
57.66	0.57	1.00	0.57	1.02	11.40	31.79	94.25	0.245	$1.5 \mathrm{E}-3$	0.002	0.005
57.16	0.57	1.00	0.57	0.90	4.45	26.86	83.37	0.802	$4.8 \mathrm{E}-3$	0.071	0.076
56.66	0.57	1.00	0.57	4.86	0.83	49.99	100.00	0.000	0.0 EO	0.004	0.079
56.16	0.58	1.00	0.58	4.84	0.00	72.78	100.00	0.000	0.0EO	0.000	0.079
55.66	0.58	1.00	0.58	4.83	0.00	78.74	100.00	0.000	0.0 EO	0.000	0.079
55.16	0.58	1.00	0.58	4.81	1.61	63.06	100.00	0.000	O.OEO	0.000	0.079
54.66	0.58	1.00	0.58	4.79	0.00	67.76	100.00	0.000	O.OEO	0.000	0.079
54.16	0.59	1.00	0.59	4.78	0.00	76.74	100.00	0.000	0.0E0	0.000	0.079
53.66	0.59	1.00	0.59	4.76	1.95	71.87	100.00	0.000	0.0EO	0.000	0.079
53.16	0.59	1.00	0.59	4.74	2.29	81.04	100.00	0.000	0.0 EO	0.000	0.079
52.66	0.59	1.00	0.59	4.73	0.00	66.05	100.00	0.000	0.0EO	0.000	0.079
52.16	0.60	1.00	0.60	4.71	0.57	67.56	100.00	0.000	0.0EO	0.000	0.079
51.66	0.60	1.00	0.60	4.70	0.38	78.53	100.00	0.000	0.0 EO	0.000	0.079
51.16	0.60	1.00	0.60	4.69	0.00	69.61	100.00	0.000	O.0EO	0.000	0.079
50.66	0.61	1.00	0.61	4.67	1.96	72.82	100.00	0.000	0.0E0	0.000	0.079
50.16	0.61	1.00	0.61	4.66	0.00	79.33	100.00	0.000	0.0 E 0	0.000	0.079
49.66	0.61	1.00	0.61	4.64	0.00	76.44	100.00	0.000	O.0EO	0.000	0.079
49.16	0.61	1.00	0.61	4.63	0.00	76.79	100.00	0.000	0.0 E 0	0.000	0.079
48.66	0.62	1.00	0.62	4.62	0.00	75.10	100.00	0.000	0.0 E 0	0.000	0.079
48.16	0.62	1.00	0.62	4.60	2.60	83.99	100.00	0.000	0.0EO	0.000	0.079
47.66	0.62	1.00	0.62	4.59	0.91	83.18	100.00	0.000	O.OEO	0.000	0.079
47.16	0.62	1.00	0.62	4.58	0.00	76.70	100.00	0.000	0.0E0	0.000	0.079
46.66	0.63	1.00	0.63	4.57	0.00	77.86	100.00	0.000	0.0E0	0.000	0.079
46.16	0.63	1.00	0.63	4.56	0.00	74.78	100.00	0.000	O.OEO	0.000	0.079
45.66	0.63	1.00	0.63	4.52	0.00	74.73	100.00	0.000	0.0 E 0	0.000	0.079
45.16	0.63	1.00	0.63	4.50	0.00	73.68	100.00	0.000	0.0 E 0	0.000	0.079
44.66	0.64	1.00	0.64	4.48	0.63	82.54	100.00	0.000	O.OEO	0.000	0.079
44.16	0.64	1.00	0.64	4.46	0.60	78.32	100.00	0.000	0.0EO	0.000	0.079
43.66	0.64	1.00	0.64	4.45	0.00	73.28	100.00	0.000	0.0E0	0.000	0.079
43.16	0.64	1.00	0.64	4.43	0.79	54.59	100.00	0.000	0.0 E 0	0.000	0.079
42.66	0.65	1.00	0.65	4.42	0.00	58.53	100.00	0.000	0.0EO	0.000	0.079
42.16	0.65	1.00	0.65	4.40	0.00	64.72	100.00	0.000	0.0E0	0.000	0.079
41.66	0.65	1.00	0.65	4.38	0.00	70.62	100.00	0.000	0.0E0	0.000	0.079
41.16	0.65	1.00	0.65	4.37	0.11	79.18	100.00	0.000	0.0E0	0.000	0.079
40.66	0.65	1.00	0.65	4.35	0.77	58.24	100.00	0.000	0.0E0	0.000	0.079
40.16	0.66	1.00	0.66	2.21	5.45	40.42	100.00	0.000	0.0E0	0.000	0.079
39.66	0.66	1.00	0.66	1.25	2.98	31.11	92.62	0.176	1.1E-3	0.005	0.084
39.16	0.66	1.00	0.66	1.11	4.03	30.47	91.12	0.295	$1.8 \mathrm{E}-3$	0.016	0.100
38.66	0.66	1.00	0.66	0.92	14.66	33.61	98.85	0.069	4.1E-4	0.010	0.110
38.16	0.67	1.00	0.67	5.00	NoLiq	14.66	60.61	0.000	0.0 EO	0.000	0.111
37.66	0.67	1.00	0.67	5.00	NoLiq	11.30	53.56	0.000	0.0EO	0.000	0.111
37.16	0.67	1.00	0.67	5.00	NoLiq	7.74	44.78	0.000	0.0EO	0.000	0.111
36.66	0.67	1.00	0.67	5.00	NoLiq	6.31	40.75	0.000	0.0 EO	0.000	0.111
36.16	0.67	1.00	0.67	5.00	NoLiq	5.96	39.72	0.000	0.0 EO	0.000	0.111
35.66	0.68	1.00	0.68	5.00	Noliq	5.63	38.73	0.000	0.0 EO	0.000	0.111
35.16	0.68	1.00	0.68	5.00	NoLiq	6.57	41.52	0.000	0.0 EO	0.000	0.111
34.66	0.68	1.00	0.68	5.00	NoLiq	6.86	42.35	0.000	0.0 EO	0.000	0.111
34.16	0.68	1.00	0.68	0.58	29.54	33.40	98.29	0.195	$1.2 \mathrm{E}-3$	0.001	0.112
33.66	0.68	1.00	0.68	0.65	21.75	32.21	95.28	0.484	$2.9 \mathrm{E}-3$	0.073	0.185
33.16	0.68	1.00	0.68	5.00	NoLiq	9.49	49.30	0.000	0.0 EO	0.000	0.185
32.66	0.69	1.00	0.69	0.60	31.12	34.54	100.00	0.000	0.0 EO	0.020	0.205
32.16	0.69	1.00	0.69	0.81	15.58	32.87	96.94	0.229	$1.4 \mathrm{E}-3$	0.004	0.209
31.66	0.69	1.00	0.69	1.95	1.15	35.68	100.00	0.000	0.0 EO	0.005	0.214
31.16	0.69	1.00	0.69	1.65	4.28	36.12	100.00	0.000	0.0 EO	0.000	0.214
30.66	0.69	1.00	0.69	3.74	5.31	49.41	100.00	0.000	0.0 EO	0.000	0.214

	16-0107-CPT5.cal										
30.16	0.69	1.00	0.69	3.67	4.68	48.52	100.00	0.000	0.0EO	0.000	0.214
29.66	0.69	1.00	0.69	0.51	32.94	32.63	96.32	0.472	$2.8 \mathrm{E}-3$	0.003	0.217
29.16	0.69	1.00	0.69	0.28	30.34	22.10	74.32	2.001	1. $2 \mathrm{E}-2$	0.045	0.262
28.66	0.69	1.00	0.69	0.60	31.05	34.58	100.00	0.000	0.0EO	0.035	0.297
28.16	0.69	1.00	0.69	1.03	3.91	29.96	89.97	0.419	2.5E-3	0.080	0.377
27.66	0.69	1.00	0.69	4.14	1.24	46.85	100.00	0.000	$0.0 E 0$	0.001	0.378
27.16	0.69	1.00	0.69	2.17	5.57	40.86	100.00	0.000	0.0 O	0.000	0.378
26.66	0.69	1.00	0.69	1.00	3.40	29.27	88.43	0.479	2.9E-3	0.018	0.396
26.16	0.68	1.00	0.68	1.39	2.55	32.52	96.06	0.074	4.5E-4	0.009	0.405
25.66	0.68	1.00	0.68	0.89	8.08	30.45	91.09	0.575	3. $5 \mathrm{E}-3$	0.018	0.423
25.16	0.68	1.00	0.68	0.53	7.61	24.05	77.92	1.821	1.1E-2	0.075	0.498
24.66	0.68	1.00	0.68	0.71	8.59	27.86	85.43	1.148	$6.9 \mathrm{E}-3$	0.100	0.598
24.16	0.68	1.00	0.68	0.41	11.77	22.31	74.72	1.984	1.2E-2	0.100	0.698
23.66	0.68	1.00	0.68	5.00	NoLiq	5.40	38.03	0.000	0.0 E 0	0.037	0.735
23.16	0.67	1.00	0.67	5.00	NoLiq	5.84	39.37	0.000	0.0EO	0.000	0.735
22.66	0.67	1.00	0.67	5.00	NoLiq	9.80	50.05	0.000	0.0 EO	0.000	0.735
22.16	0.67	1.00	0.67	5.00	NoLiq	8.88	47.78	0.000	0.0 EO	0.000	0.735
21.66	0.67	1.00	0.67	5.00	NoLiq	5.91	39.55	0.000	0.0 EO	0.000	0.735
21.16	0.67	1.00	0.67	5.00	NoLiq	5.39	38.00	0.000	0.0 EO	0.000	0.735
20.66	0.66	1.00	0.66	5.00	NoLiq	4.43	34.92	0.000	0.0 EO	0.000	0.735
20.16	0.66	1.00	0.66	5.00	NoLiq	3.59	32.08	0.000	0.0 EO	0.000	0.735
19.66	0.66	1.00	0.66	5.00	NoLiq	3.54	31.91	0.000	0.0 EO	0.000	0.735
19.16	0.66	1.00	0.66	5.00	NoLiq	3.13	30.48	0.000	0.0 O 0	0.000	0.735
18.66	0.65	1.00	0.65	5.00	NoLiq	3. 51	31.83	0.000	0.0 EO	0.000	0.735
18.16	0.65	1.00	0.65	5.00	NoLiq	3.56	31.98	0.000	0.0 EO	0.000	0.735
17.66	0.65	1.00	0.65	5.00	NoLiq	3.30	31.09	0.000	0.0 EO	0.000	0.735
17.16	0.64	1.00	0.64	5.00	NoLiq	3.47	31.66	0.000	0.0 EO	0.000	0.735
16.66	0.64	1.00	0.64	5.00	NoLiq	3.88	33.09	0.000	0.0EO	0.000	0.735
16.16	0.63	1.00	0.63	5.00	NoLiq	3.80	32.80	0.000	0.0EO	0.000	0.735
15.66	0.63	1.00	0.63	5.00	NoLiq	3.58	32.06	0.000	0.0 EO	0.000	0.735
15.16	0.63	1.00	0.63	5.00	NoLiq	3.85	32.99	0.000	0.0EO	0.000	0.735
14.66	0.62	1.00	0.62	5.00	NoLiq	4.50	35.16	0.000	0.0EO	0.000	0.735
14.16	0.62	1.00	0.62	5.00	NoLiq	9.67	49.74	0.000	0.0 E 0	0.000	0.735
13.66	0.61	1.00	0.61	0.42	14.16	22.31	74.71	1.984	1. $2 \mathrm{E}-2$	0.087	0.822
13.16	0.60	1.00	0.60	0.36	16.82	20.84	72.04	2.104	1.3E-2	0.108	0.930
12.66	0.60	1.00	0.60	1.45	34.64	48.62	100.00	0.000	0.0EO	0.063	0.993
12.16	0.59	1.00	0.59	0.61	6.59	23.64	77.15	1.794	1.1E-2	0.099	1.092
11.66	0.58	1.00	0.58	1. 14	2.85	28.53	86.82	0.349	2.1E-3	0.053	1.145
11.16	0.58	1.00	0.58	1.40	4.82	32.09	94.98	0.093	5.6E-4	0.011	1.156
10.66	0.57	1.00	0.57	1. 64	4.57	33.72	99.15	0.010	5.7E-5	0.003	1.159
10.16	0.56	1.00	0.56	1.35	5.66	31.77	94.19	0.116	$6.9 \mathrm{E}-4$	0.006	1.165
9.66	0.55	1.00	0.55	2,18	3.98	36.61	100.00	0.000	0.0EO	0.003	1.168
9.16	0.54	1.00	0.54	4.10	3.47	45.11	100.00	0.000	0.0 EO	0.000	1.168
8.66	0.53	1.00	0.53	5.00	2.16	53.73	100.00	0.000	0.0 EO	0.000	1.168
8.16	0.52	1.00	0.52	4.74	4.08	47.37	100.00	0.000	0.0EO	0.000	1.168
7.66	0.51	1.00	0.51	1.82	9.34	36.51	100.00	0.000	0.0 EO	0.000	1.168
7.16	0.49	1.00	0.49	1.99	6.60	35.71	100.00	0.000	0.0 EO	0.000	1.168
6.66	0.48	1.00	0.48	2.06	9.16	37.35	100.00	0.000	0.0 E 0	0.000	1.168
6.16	0.46	1.00	0.46	1.42	13.20	33.91	99.66	0.006	3.7E-5	0.000	1.168
5.66	0.44	1.00	0.44	1.54	23.69	39.40	100.00	0.000	0.0 E0	0.000	1.168
5.16	0.42	1.00	0.42	1.20	22.85	34.57	100.00	0.000	0.0 O 0	0.000	1.168
5.01	0.42	1.00	0.42	0.90	30.30	32.89	96.98	0.189	1.1E-3	0.002	1.170

Settlement of Saturated Sands=1.170 in.
qc1 and (N1) 60 is after fines correction in liquefaction analysis
(N1) 60 s is converted from qcl and after fines correction
dsz is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth
Settlement of Unsaturated Sands:

Depth ft	$\begin{aligned} & \text { sigma' } \\ & \text { atm } \end{aligned}$	$\begin{aligned} & \text { sigC' } \\ & \text { atm } \end{aligned}$	(N1) 60 s	CSRsf	Gmax atm	$\mathrm{g}^{*} \mathrm{Ce} / \mathrm{Gm}$	g_eff	$\begin{aligned} & \mathrm{ec} 7.5 \\ & \% \end{aligned}$	Cec	$\begin{aligned} & \mathrm{ec} \\ & \% \end{aligned}$	$\begin{aligned} & \text { dsz } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { dsp } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { in. } \end{aligned}$
4.96	0.28	0.18	33.33	0.42	614.67	1.9E-4	0.0371	0.0178	0.82	0.0145	1.74E-4	0.000	0.000
4.66	0.26	0.17	0.10	0.42	86.09	1.3E-3	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
4.16	0.24	0.15	0.10	0.42	81.34	1.2E-3	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000	0.000
3.66	0.21	0.13	0.10	0.42	76.30	1.1E-3	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
3.16	0.18	0.12	0.10	0.42	70.90	1.1E-3	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000	0.000
2.66	0.15	0.10	0.10	0.42	65.05	9.7E-4	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
2.16	0.12	0.08	0.10	0.42	58.62	8.8E-4	1.0000	4.6774	0.82	3.8158	0.00 E0	0.000	0.000
1.66	0.09	0.06	0.10	0.42	51.39	7.7E-4	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
1.16	0.07	0.04	0.10	0.42	42.95	$6.5 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
0.66	0.04	0.02	0.10	0.42	32.40	4.9E-4	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
0.16	0.01	0.01	0.10	0.42	15.95	2.4E-4	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000

[^0]Page 13

5 is cumulated settlement at this depth
Total Settlement of Saturated and Unsaturated Sands=1.170 in. Differential Settlement $=0.585$ to 0.772 in.

Units: Unit: qc, fs, Stress or Pressure $=$ atm (1.0581tsf); Unit Weight $=$ pcf; Depth $=$ ft; Settlement $=$ in.

$1 \mathrm{~atm} \text { (at }$	$\mathrm{re})=1.0581 \mathrm{tsf}(1 \mathrm{tsf}=1$ ton $/ \mathrm{ft} 2=2 \mathrm{kip} / \mathrm{ft} 2)$ $\mathrm{re})=101.325 \mathrm{kPa}(1 \mathrm{kPa}=1 \mathrm{kN} / \mathrm{m} 2=0.001 \mathrm{Mpa})$
SPT	Field data from Standard Penetration Test (SPT)
BPT	Field data from Becker Penetration Test (BPT)
qc	Field data from Cone Penetration Test (CPT) [atm (tsf)]
fs	Friction from CPT testing [atm (tsf)]
Rf	Ratio of fs/qc (\%)
gamma	Total unit weight of soil
gamma'	Effective unit weight of soil
Fines	Fines content [\%]
D50	Mean grain size
Dr	Relative Density
sigma	Total vertical stress [atm]
sigma'	Effective vertical stress [atm]
sigC'	Effective confining pressure [atm]
rd	Acceleration reduction coefficient by Seed
a_max.	Peak Ground Acceleration (PGA) in ground surface
mZ	Linear acceleration reduction coefficient X depth
a_min.	Minimum acceleration under linear reduction, mZ
CRRv	CRR after overburden stress correction, CRRv=CRR7.5 * Ksig
CRR7.5	Cyclic resistance ratio ($M=7.5$)
Ksig	Overburden stress correction factor for CRR7.5
CRRm	After magnitude scaling correction CRRm=CRRv * MSF
MSF	Magnitude scaling factor from M=7.5 to user input M
CSR	Cyclic stress ratio induced by earthquake
CSRfs	CSRfs=CSR*fs1 (Default fsi=1)
fs1	First CSR curve in graphic defined in \#9 of Advanced page
fs2	2nd CSR curve in graphic defined in \#9 of Advanced page
F.S.	Calculated factor of safety against liquefaction F.S.=CRRm/CSRsf
Cebs	Energy Ratio, Borehole Dia., and Sampling Method Corrections
Cr	Rod Length Corrections
Cn	Overburden Pressure Correction
(N1)60	SPT after corrections, (N1)60=SPT * Cr * Cn * Cebs
d(N1)60	Fines correction of SPT
(N1) 60 f	(N1)60 after fines corrections, (N1) $60 \mathrm{f}=(\mathrm{N} 1) 60+\mathrm{d}(\mathrm{N} 1) 60$
Cq	Overburden stress correction factor
qci	CPT after Overburden stress correction
dqc1	Fines correction of CPT
qc1f	CPT after Fines and Overburden correction, qc1f=qc1 + dqc1
qcin	CPT after normalization in Robertson's method
Kc	Fine correction factor in Robertson's Method
qc1f	CPT after Fines correction in Robertson's Method
Ic	Soil type index in Suzuki's and Robertson's Methods
(N1)60s	(N1) 60 after settlement fines corrections
CSRm	After magnitude scaling correction for Settlement calculation CSRm=CSRsf / MSF*
CSRfs	Cyclic stress ratio induced by earthquake with user inputed fs
MSF*	Scaling factor from CSR, MSF*=1, based on Item 2 of Page C.
ec	Volumetric strain for saturated sands
dz	Calculation segment, $\mathrm{dz}=0.050 \mathrm{ft}$
dsz	Settlement in each segment, dz
dp	User defined print interval
dsp	Settlement in each print interval, dp
Gmax	Shear Modulus at low strain
g_eff	gamma_eff, Effective shear Strain
g*Ce/Gm	gamma_eff * G_eff/G_max, Strain-modulus ratio
ec7.5	Volumetric Strain for magnitude=7.5
Cec	Magnitude correction factor for any magnitude
ec NoLiq	Volumetric strain for unsaturated sands, ec=Cec * ec7.5 No-Liquefy Soils

References:

1. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Youd, T.L., and Idriss, I.M., eds., Technical Report NCEER 97-0022.

SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for

Analyzing and Mitigating Liquefaction in California. University of Southern California. March 1999
2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL-2,

PROCEEDINGS: Fourth
International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March 2001.
3. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK, Earthquake

Engineering Research Center,
Report No. EERC 2003-06 by R.B Seed and etc. April 2003.

Note: Print Interval you selected does not show complete results. To get complete results, you should select 'Segment' in Print Interval (Item 12, Page C).

Page 15

GEOSYSTEMS
gilac

SET: Soil Behavior Type (Robetson 1990)

GREGC DRILLING \& TESTING, INC.															
CONE PENETRATION TEST DATA															
									Units:			Imperial			
									Data averaging interval:			0.100	meters		
		Client:	GEOSYSTEMS						Assumed depth of water:			11.003	feet		
		Site:	12870 PANAMA ST.						Net area ratio of cone:			0.80			
		Engineer:	R.GLADSON						Unit weight of water:			62.4	lb/ft3		
									Relative density constant, CDR:			350			
		Sounding:	CPT-6						Young's modulus for sands, a:			4			
		Date:	5/26/2016						Small strain shear modulus number, SG (sands):			180			
		Time:	3:02 PM						Small strain shear modulus number, CG (clays):			50			
									Nkt for clays:			15			
								ـ.	OCR number, kocr:			0.3			
		Interpretation based on Lunne, Robertson and Powell, 1997													
Col 1i	Col 2i	Col 3i	Col 4i	Col 5 i	Col 6 i	Col 7i	Col 8i	Col 9 i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qtl	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
0.100	0.328	0.000	0.000	0.000							0.000				
0.200	0.656	0.000	0.000	0.000							0.000				
0.300	0.984	0.000	0.000	0.000							0.000				
0.400	1.312	0.000	0.000	0.000							0.000				
0.500	1.640	0.000	0.000	0.000							0.000				
0.600	1.969	0.000	0.000	0.000							0.000				
0.700	2.297	0.000	0.000	0.000							0.000				
0.800	2.625	0.000	0.000	0.000							0.000				
0.900	2.953	0.000	0.000	0.000							0.000				
1.000	3.281	0.000	0.000	0.000							0.000				
1.100	3.609	0.000	0.000	0.000							0.000				
1.200	3.937	0.000	0.000	0.000							0.000				
1.300	4.265	0.000	0.000	0.000							0.000				
1.400	4.593	0.000	0.000	0.000							0.000				
1.500	4.921	9.183	0.195	2.599		9.22	2.12	5	115	0.282	0.000	0.282	31.70	2.19	0.02
1.600	5.249	29.269	0.687	7.922		29.38	2.34	6	115	0.301	0.000	0.301	96.70	2.36	0.02
1.700	5.577	32.940	0.946	8.136		33.06	2.86	6	115	0.320	0.000	0.320	102.45	2.89	0.02
1.800	5.906	36.714	1.122	8.338		36.83	3.05	6	115	0.338	0.000	0.338	107.87	3.07	0.02
1.900	6.234	41.510	1.270	8.552		41.63	3.05	6	115	0.357	0.000	0.357	115.57	3.08	0.01
2.000	6.562	41.854	1.206	8.779		41.98	2.87	6	115	0.376	0.000	0.376	110.67	2.90	0.02
2.100	6.890	59.858	1.253	8.842		59.98	2.09	7	118	0.395	0.000	0.395	150.76	2.10	0.01
2.200	7.218	89.108	1.458	8.779		89.23	1.63	7	118	0.415	0.000	0.415	214.24	1.64	0.01
2.300	7.546	99.964	1.518	8.741		100.09	1.52	8	121	0.434	0.000	0.434	229.40	1.52	0.01
2.400	7.874	111.592	1.539	8.767		111.72	1.38	8	121	0.454	0.000	0.454	244.93	1.38	0.01
2.500	8.202	101.210	1.651	8.805		101.34	1.63	7	118	0.474	0.000	0.474	212.98	1.64	0.01
2.600	8.530	100.317	1.551	8.994		100.45	1.54	8	121	0.493	0.000	0.493	202.57	1.55	0.01
2.700	8.858	116.397	1.461	8.905		116.53	1.25	8	121	0.513	0.000	0.513	226.03	1.26	0.01
2.800	9.186	136.325	1.536	8.716		136.45	1.13	8	121	0.533	0.000	0.533	254.96	1.13	0.00
2.900	9.514	127.383	1.248	8.905		127.51	0.98	8	121	0.553	0.000	0.553	229.61	0.98	0.01
3.000	9.843	125.617	1.070	9.006		125.75	0.85	9	124	0.573	0.000	0.573	218.34	0.85	0.01
3.100	10.171	93.411	1.070	8.880		93.54	1.14	8	121	0.593	0.000	0.593	156.70	1.15	0.01
3.200	10.499	54.002	1.242	8.653		54.13	2.29	6	115	0.612	0.000	0.612	87.45	2.32	0.01

Col 1i	Col $2 i$	Col 3i	Col 4i	Col 5 i	Col $6 i$	Col 71	Col 8 i	Col 9i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, σv	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qtl	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
8.300	27.231	223.016	1.525	22.743		223.34	0.68	9	124	1.581	0.506	1.075	206.35	0.69	0.01
8.400	27.559	286.555	2.008	24.156		286.90	0.70	9	124	1.601	0.517	1.085	262.99	0.70	0.00
8.500	27.887	383.294	2.595	27.498		383.69	0.68	10	127	1.622	0.527	1.095	348.76	0.68	0.00
8.600	28.215	441.887	2.230	30.412		442.32	0.50	10	127	1.643	0.537	1.106	398.40	0.51	0.00
8.700	28.543	392.151	1.150	34.096		392.64	0.29	10	127	1.664	0.547	1.117	350.09	0.29	0.00
8.800	28.871	350.572	1.330	38.788		351.13	0.38	10	127	1.685	0.557	1.127	309.95	0.38	0.01
8.900	29.199	429.428	2.596	39.772		430.00	0.60	10	127	1.706	0.568	1.138	376.33	0.61	0.01
9.000	29.528	502.209	2.190	41.185		502.80	0.44	10	127	1.727	0.578	1.149	436.20	0.44	0.00
9.100	29.856	463.832	1.822	44.452		464.47	0.39	10	127	1.748	0.588	1.159	399.11	0.39	0.01
9.200	30.184	367.809	2.918	46.104		368.47	0.79	10	127	1.768	0.598	1.170	313.41	0.80	0.01
9.300	30.512	470.506	4.425	51.528		471.25	0.94	10	127	1.789	0.609	1.181	397.62	0.94	0.01
9.400	30.840	511.830	4.651	56.057		512.64	0.91	10	127	1.810	0.619	1.191	428.79	0.91	0.01
9.500	31.168	449.499	2.853	51.780		450.24	0.63	10	127	1.831	0.629	1.202	373.06	0.64	0.01
9.600	31.496	279.175	1.804	44.679		279.82	0.64	9	124	1.851	0.639	1.212	229.32	0.65	0.01
9.700	31.824	101.628	1.890	29.870		102.06	1.85	7	118	1.871	0.650	1.221	82.04	1.89	0.01
9.800	32.152	34.455	1.654	27.574		34.85	4.74	4	115	1.890	0.660	1.230	26.80	5.02	0.04
9.900	32.480	24.975	0.748	31.900		25.43	2.94	5	115	1.908	0.670	1.238	19.00	3.18	0.07
10.000	32.808	27.577	0.756	39.141		28.14	2.69	6	115	1.927	0.680	1.247	21.02	2.88	0.08
10.100	33.136	63.641	1.341	60.736		64.52	2.08	7	118	1.947	0.691	1.256	49.82	2.14	0.06
10.200	33.465	111.629	2.100	63.272		112.54	1.87	7	118	1.966	0.701	1.265	87.41	1.90	0.03
10.300	33.793	107.623	2.868	53.306		108.39	2.65	7	118	1.985	0.711	1.274	83.51	2.70	0.03
10.400	34.121	54.495	2.023	51.225		55.23	3.66	5	115	2.004	0.721	1.283	41.50	3.80	0.06
10.500	34.449	34.335	0.831	50.708		35.06	2.37	6	115	2.023	0.732	1.291	25.59	2.51	0.09
10.600	34.777	30.124	0.597	50.922		30.86	1.94	6	115	2.042	0.742	1.300	22.17	2.07	0.10
10.700	35.105	29.148	0.663	52.020		29.90	2.22	6	115	2.060	0.752	1.308	21.28	2.38	0.11
10.800	35.433	29.799	0.623	54.808		30.59	2.04	6	115	2.079	0.762	1.317	21.65	2.19	0.11
10.900	35.761	31.407	0.662	59.740		32.27	2.05	6	115	2.098	0.772	1.325	22.76	2.19	0.12
11.000	36.089	35.534	0.782	71.370		36.56	2.14	6	115	2.117	0.783	1.334	25.82	2.27	0.13
11.100	36.417	31.760	0.857	86.469		33.01	2.60	6	115	2.136	0.793	1.343	22.99	2.78	0.18
11.200	36.745	27.912	0.756	99.726		29.35	2.57	6	115	2.154	0.803	1.351	20.13	2.78	0.23
11.300	37.073	35.924	1.056	117.246		37.61	2.81	6	115	2.173	0.813	1.360	26.06	2.98	0.22
11.400	37.402	42.411	1.520	121.333		44.16	3.44	5	115	2.192	0.824	1.368	30.67	3.62	0.19
11.500	37.730	37.271	1.555	101.833		38.74	4.01	5	115	2.211	0.834	1.377	26.53	4.26	0.18
11.600	38.058	33.879	0.987	102.362		35.35	2.79	6	115	2.230	0.844	1.385	23.91	2.98	0.20
11.700	38.386	27.243	0.582	87.969		28.51	2.04	6	115	2.248	0.854	1.394	18.84	2.21	0.21
11.800	38.714	29.920	0.646	89.042		31.20	2.07	6	115	2.267	0.865	1.403	20.63	2.23	0.19
11.900	39.042	28.786	0.733	106.991		30.33	2.42	6	115	2.286	0.875	1.411	19.87	2.61	0.24
12.000	39.370	27.215	0.668	121.119		28.96	2.31	6	115	2.305	0.885	1.420	18.78	2.51	0.29
12.100	39.698	30.579	0.753	134.856		32.52	2.31	6	115	2.324	0.895	1.428	21.14	2.49	0.29
12.200	40.026	36.621	1.075	144.303		38.70	2.78	6	115	2.342	0.906	1.437	25.30	2.96	0.26
12.300	40.354	30.998	0.985	142.701		33.05	2.98	5	115	2.361	0.916	1.445	21.24	3.21	0.30
12.400	40.682	29.334	0.730	152.856		31.54	2.31	6	115	2.380	0.926	1.454	20.05	2.50	0.35
12.500	41.011	29.827	0.722	166.416		32.22	2.24	6	115	2.399	0.936	1.462	20.39	2.42	0.37
12.600	41.339	29.315	0.727	180.682		31.92	2.28	6	115	2.417	0.946	1.471	20.05	2.47	0.41
12.700	41.667	70.825	1.554	212.065		73.88	2.10	7	118	2.437	0.957	1.480	48.27	2.18	0.20
12.800	41.995	138.342	3.196	171.108		140.81	2.27	7	118	2.456	0.967	1.489	92.90	2.31	0.08
12.900	42.323	98.914	2.448	157.636		101.18	2.42	7	118	2.475	0.977	1.498	65.88	2.48	0.11
13.000	42.651	60.620	1.319	191.542		63.38	2.08	7	118	2.495	0.987	1.507	40.39	2.17	0.21
13.100	42.979	42.263	0.814	200.082		45.14	1.80	7	118	2.514	0.998	1.516	28.11	1.91	0.31
13.200	43.307	32.178	0.792	178.096		34.74	2.28	6	115	2.533	1.008	1.525	21.12	2.46	0.37

$\left\|\begin{array}{c} \bar{N} \\ \stackrel{\rightharpoonup}{0} \\ 0 \end{array}\right\|$													N					$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{0}$	\pm	－			0	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\circ}$	－		－	\bigcirc	\bigcirc				$\stackrel{\square}{6}$	\bigcirc					¢
$\left\|\begin{array}{c} \bar{\sim} \\ \overline{0} \\ \hline \mathbf{O} \end{array}\right\|$													$\stackrel{N}{\sim}$					ㄷ		フ	\＃	？		？	さ	I	N	？	¢̣	N	10		\％		${ }_{0}$	$\underset{\text { m }}{ }$					F
$\left.\begin{array}{\|c} i \\ \bar{O} \\ \hline \mathbf{O} \end{array} \right\rvert\,$		$\sqrt[4]{4}$											$\stackrel{\sim}{6}$	$\stackrel{N}{\sim}$				N		$\stackrel{\text { ¢ }}{\stackrel{\circ}{+}}$	8	，		N	N0	O	N		¢	－	$\stackrel{\infty}{\sim}$		－		$\stackrel{\square}{\square}$	$\stackrel{\text { ¢ }}{\square}$					$\stackrel{\sim}{\mathrm{N}}$
$\left\|\begin{array}{c} i \\ \stackrel{N}{0} \\ \overline{0} \end{array}\right\|$		중				$\underset{\sim}{\text { n }}$			$\begin{aligned} & 0 \\ & \stackrel{n}{n} \\ & \stackrel{2}{2} \end{aligned}$		$\stackrel{9}{\sim}$	付	N	－		\％	\％	\mathfrak{R}	\％	8	N	5	N	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\bar{\infty}$	\％	$\begin{array}{\|c} \stackrel{\rightharpoonup}{\mathbf{N}} \\ \mathbf{O} \end{array}$	\％	8	$\stackrel{6}{5}$	尔		\％		$\stackrel{\square}{6}$	$\begin{aligned} & 8 \\ & \stackrel{8}{\circ} \\ & \stackrel{2}{2} \end{aligned}$	$\underset{\infty}{N}$		－		
$\left\|\begin{array}{c} i \bar{N} \\ \stackrel{0}{0} \\ \mathrm{O} \end{array}\right\|$		웅	5		$\stackrel{n}{\sim}$	$\stackrel{N}{N}$		$\begin{gathered} \underset{\sim}{*} \\ \underset{\sim}{2} \\ \hline \end{gathered}$	$3 \text { 葆 }$							年																						笭	－		
$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$\stackrel{10}{7} \hat{F}$	$\mathcal{F} \mathcal{F}$	手	fo	$\dot{q} \underset{f}{\circ}$	$\% \mathrm{f}$	\mathfrak{f}	$\hat{8}$	40					9																					0	\％	\％	m	
$\left\|\begin{array}{c} \bar{N} \\ \overline{0} \\ 0 \end{array}\right\|$		O		둥융	등ㅇㅇ	©		송읃	$\underset{F}{F}$	웅	¢					N																					\％	$\stackrel{4}{6}$	$\stackrel{\sim}{9}$	－	
$\left\|\begin{array}{c} \bar{N} \\ \bar{O} \end{array}\right\|$	$\frac{5}{\infty}$				0	$\begin{array}{cc} 0 \\ \vdots i N \end{array}$		NO	N	¢	$\stackrel{\sim}{\sim}$	i	$\stackrel{10}{6}$	0		$\stackrel{4}{\sim}$	$\stackrel{\sim}{\sim}$	－	\bigcirc	\bigcirc	\bigcirc	$\stackrel{3}{\sim}$		$\stackrel{\sim}{0}$	\pm	\bigcirc	$\bar{\sigma}$	$\xrightarrow{\sim}$	${ }_{0}$	\bigcirc	ω		∞		∞	\bigcirc	$\stackrel{\rightharpoonup}{\sim}$	－	$\stackrel{\sim}{\sim}$	－	$\stackrel{\sim}{\sim}$
$\left\|\begin{array}{l} \overline{\mathrm{N}} \\ \frac{0}{0} \end{array}\right\|$	$\begin{aligned} & 8 \\ & \underset{i}{8} \\ & \stackrel{8}{\omega} \end{aligned}$				$\begin{array}{ccc} \text { y } \\ \text { in } \\ \text { in } \\ \hline \end{array}$				－	－	¢	∞	\bigcirc	$\xrightarrow{\sim}$	$\stackrel{4}{\square}$	バ	$\stackrel{\sim}{\sim}$	－	\cdots	－	∞	\cdots		\sim_{0}^{0}	－1	$\stackrel{\text { ¢ }}{\stackrel{1}{+}}$	$\stackrel{3}{\circ}$	\％	σ	∞	$\stackrel{\text { d }}{\sim}$		$\stackrel{\text { a }}{\text { a }}$		∞	$\stackrel{\text { a }}{\text { ？}}$	¢	N	N		
$\left\lvert\, \begin{gathered} \overline{0} \\ \overline{0} \end{gathered}\right.$													$\begin{gathered} \infty \\ \dot{u} \\ \dot{u} \\ 0 \\ \dot{m} \end{gathered}$	$\begin{aligned} & o \\ & \stackrel{9}{\mathbf{~}} \\ & \mathbf{N} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \dot{U} \\ \dot{O} \\ \end{gathered}$		웅		n	－	－	¢	－		－	－0	$\begin{aligned} & \text { op } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \text { M } \end{aligned}$	－		Co	¢		\cdots			¢	－	$\begin{aligned} & \varphi \\ & 山 \\ & \underset{O}{O} \\ & \end{aligned}$	$\begin{aligned} & 9 \\ & \hline \\ & \hline \end{aligned}$		
$\frac{\overline{3}}{\overline{0}}$								$\begin{array}{l\|l} \text { N } \\ \text { N } \\ \text { Nin } \\ \text { NO } \end{array}$				$\frac{2}{2}$	$\stackrel{\rightharpoonup}{9}$	$\stackrel{\stackrel{C}{\mathrm{~N}}}{\stackrel{1}{2}}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$			¢	¢	¢	－	Nom	N	U	－	N	ㅇ	N	N	－	작		\％		$\stackrel{4}{\sim}$	8	\％		$\stackrel{F}{i} \underset{\sim}{w}$	－	
$\left\lvert\, \frac{0}{\frac{0}{0}}\right.$								肙	$\stackrel{4}{\square}$	号	N		$\begin{aligned} & 9 \\ & n \\ & \cdots \end{aligned}$	$\stackrel{\substack{\text { N }}}{\substack{\text { N }}}$	N	\pm		¢	N	－	＋	－	$\stackrel{\sim}{\sim}$		－	$\stackrel{8}{\text { Ni }}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\sim}{\sim}$	N	N	－			N	大	N	N	$\stackrel{\infty}{\sim}$	へ	$\stackrel{\sim}{\sim}$	¢
$\left\lvert\, \frac{i}{i}\right.$		－	\cdots	\cdots－	$N \sim$	N		$\omega \omega$		∞			V	寸	5	\bigcirc	－	＋	\forall	＋	＋	寸		＊	＋	＋	V	＋	＋		＋		－		＋	\checkmark		is	\sim		
$\left\|\begin{array}{c} \overline{\mathrm{N}} \\ \bar{O} \end{array}\right\|$		$\underset{\substack{2}}{\underset{N}{N}}$											\％	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	¢		¢	g m m	N	¢0	¢	N00	O	－	N	N	－	－	\％	\％	¢		¢		－	テ	「	$\stackrel{18}{8}$			
$\frac{\bar{r}}{\overline{0}}$	$\begin{aligned} & \stackrel{5}{\circ} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	${ }^{-1}{ }_{0}^{8}$			$\begin{array}{l\|l\|l} \hline 0 \\ \hline \end{array} \mathbf{O}$	$\begin{array}{l\|l} \hline 8 \\ \hline 8 \\ \infty \\ \infty \\ \hline \end{array}$			$\begin{aligned} & \dot{8} \\ & \underset{\sim}{8} \\ & \dot{\infty} \end{aligned}$	$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		¢	O	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	－	\％	－		$\frac{8}{7}$	\％	\％	\|r	O	－	8	O		－		－	ㄴ	（	$\underset{\underset{\sim}{\infty}}{\infty}$			

Col 1i	Col 2 i	Col 3i	Col 4 i	Col 5 i	Col 6 i	Col 7i	Col 8 i	Col 9 i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qtl	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
13.300	43.635	30.180	0.802	176.015		32.71	2.45	6	115	2.552	1.018	1.534	19.67	2.66	0.39
13.400	43.963	31.240	0.893	174.665		33.75	2.65	6	115	2.570	1.028	1.542	20.22	2.86	0.37
13.500	44.291	32.253	1.004	171.751		34.73	2.89	6	115	2.589	1.039	1.551	20.72	3.12	0.35
13.600	44.619	32.494	1.014	179.080		35.07	2.89	6	115	2.608	1.049	1.559	20.82	3.12	0.36
13.700	44.948	30.542	0.941	175.561		33.07	2.85	6	115	2.627	1.059	1.568	19.42	3.09	0.38
13.800	45.276	33.665	0.886	180.253		36.26	2.44	6	115	2.646	1.069	1.576	21.32	2.64	0.35
13.900	45.604	37.764	0.833	190.155		40.50	2.06	6	115	2.664	1.080	1.585	23.87	2.20	0.33
14.000	45.932	39.948	0.874	216.531		43.07	2.03	6	115	2.683	1.090	1.593	25.34	2.16	0.36
14.100	46.260	38.359	0.940	240.749		41.83	2.25	6	115	2.702	1.100	1.602	24.42	2.40	0.41
14.200	46.588	35.524	1.019	235.502		38.92	2.62	6	115	2.721	1.110	1.611	22.47	2.81	0.44
14.300	46.916	61.001	1.357	246.539		64.55	2.10	7	118	2.740	1.120	1.620	38.16	2.20	0.27
14.400	47.244	108.357	1.875	184.605		111.02	1.69	8	121	2.760	1.131	1.629	66.44	1.73	0.11
14.500	47.572	86.403	1.917	127.098		88.23	2.17	7	118	2.779	1.141	1.638	52.16	2.24	0.09
14.600	47.900	40.683	1.021	115.859		42.35	2.41	6	115	2.798	1.151	1.647	24.02	2.58	0.18
14.700	48.228	30.068	0.497	157.372		32.33	1.54	6	115	2.817	1.161	1.655	17.83	1.68	0.34
14.800	48.556	34.762	0.567	212.103		37.82	1.50	7	118	2.836	1.172	1.665	21.01	1.62	0.40
14.900	48.885	37.169	0.744	282.312		41.23	1.80	7	118	2.856	1.182	1.674	22.93	1.94	0.50
15.000	49.213	106.888	1.536	335.417		111.72	1.37	8	121	2.875	1.192	1.683	64.66	1.41	0.21
15.100	49.541	377.187	3.259	212.469		380.25	0.86	9	124	2.896	1.202	1.693	222.84	0.86	0.04
15.200	49.869	539.537	3.989	98.124		540.95	0.74	10	127	2.917	1.213	1.704	315.74	0.74	0.01
15.300	50.197	562.318	3.135	94.554		563.68	0.56	10	127	2.938	1.223	1.715	327.02	0.56	0.01
15.400	50.525	528.384	3.108	90.656		529.69	0.59	10	127	2.958	1.233	1.725	305.29	0.59	0.01
15.500	50.853	502.851	3.264	88.197		504.12	0.65	10	127	2.979	1.243	1.736	288.68	0.65	0.01
15.600	51.181	511.848	1.610	82.091		513.03	0.31	10	127	3.000	1.254	1.747	292.01	0.32	0.01
15.700	51.509	604.377	0.748	61.152		605.26	0.12	10	127	3.021	1.264	1.757	342.71	0.12	0.01
15.800	51.837	640.338	0.518	43.379		640.96	0.08	10	127	3.042	1.274	1.768	360.83	0.08	0.00
15.900	52.165	651.649	0.732	34.815		652.15	0.11	10	127	3.063	1.284	1.779	364.95	0.11	0.00
16.000	52.493	663.259	1.379	36.934		663.79	0.21	10	127	3.084	1.295	1.789	369.27	0.21	0.00
16.100	52.822	677.507	1.819	32.784		677.98	0.27	10	127	3.105	1.305	1.800	374.95	0.27	0.00
16.200	53.150	672.321	2.871	31.913		672.78	0.43	10	127	3.126	1.315	1.811	369.87	0.43	0.00
16.300	53.478	654.967	2.863	32.052		655.43	0.44	10	127	3.146	1.325	1.821	358.16	0.44	0.00
16.400	53.806	659.215	2.787	34.272		659.71	0.42	10	127	3.167	1.335	1.832	358.41	0.42	0.00
16.500	54.134	638.442	1.650	35.004		638.95	0.26	10	127	3.188	1.346	1.842	345.05	0.26	0.00
16.600	54.462	629.463	2.640	35.079		629.97	0.42	10	127	3.209	1.356	1.853	338.22	0.42	0.00
16.700	54.790	602.118	2.333	35.041		602.62	0.39	10	127	3.230	1.366	1.864	321.60	0.39	0.00
16.800	55.118	607.565	3.105	38.094		608.11	0.51	10	127	3.251	1.376	1.874	322.69	0.51	0.00
16.900	55.446	606.403	6.723	39.418		606.97	1.11	9	124	3.271	1.387	1.885	320.34	1.11	0.00
17.000	55.774	557.188	2.858	38.599		557.74	0.51	10	127	3.292	1.397	1.895	292.55	0.52	0.00
17.100	56.102	530.419	1.252	36.744		530.95	0.24	10	127	3.313	1.407	1.906	276.85	0.24	0.00
17.200	56.430	495.090	3.643	35.243		495.60	0.74	10	127	3.334	1.417	1.917	256.85	0.74	0.00
17.300	56.759	456.415	6.025	33.944		456.90	1.32	9	124	3.354	1.428	1.927	235.41	1.33	0.00
17.400	57.087	440.521	5.185	33.389		441.00	1.18	9	124	3.375	1.438	1.937	225.96	1.18	0.00
17.500	57.415	436.505	2.422	34.373		437.00	0.55	10	127	3.395	1.448	1.947	222.66	0.56	0.00
17.600	57.743	436.301	5.023	35.319		436.81	1.15	9	124	3.416	1.458	1.958	221.40	1.16	0.00
17.700	58.071	438.048	3.526	34.159		438.54	0.80	10	127	3.437	1.469	1.968	221.07	0.81	0.00
17.800	58.399	464.882	2.854	36.505		465.41	0.61	10	127	3.458	1.479	1.979	233.45	0.62	0.00
17.900	58.727	492.999	2.773	37.413		493.54	0.56	10	127	3.478	1.489	1.989	246.32	0.57	0.00
18.000	59.055	498.724	3.979	37.628		499.27	0.80	10	127	3.499	1.499	2.000	247.87	0.80	0.00
18.100	59.383	536.953	3.585	37.539		537.49	0.67	10	127	3.520	1.509	2.011	265.55	0.67	0.00
18.200	59.711	571.158	3.244	37.754		571.70	0.57	10	127	3.541	1.520	2.021	281.07	0.57	0.00

Col 1i	Col 2 i	Col 3 i	Col 41	Col 5 i	Col 6 i	Col 71	Col $8 i$	Col 9i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, Y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qtl	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
18.300	60.039	570.702	3.169	37.981		571.25	0.55	10	127	3.562	1.530	2.032	279.36	0.56	0.00
18.400	60.367	577.617	2.724	37.211		578.15	0.47	10	127	3.583	1.540	2.043	281.28	0.47	0.00
18.500	60.696	601.458	2.051	36.189		601.98	0.34	10	127	3.604	1.550	2.053	291.41	0.34	0.00
18.600	61.024	622.957	0.897	37.678		623.50	0.14	10	127	3.625	1.561	2.064	300.32	0.14	0.00
18.700	61.352	639.882	1.239	36.921		640.41	0.19	10	127	3.646	1.571	2.075	306.92	0.19	0.00
18.800	61.680	602.667	2.467	33.036		603.14	0.41	10	127	3.666	1.581	2.085	287.47	0.41	0.00
18.900	62.008	627.808	0.933	30.791		628.25	0.15	10	127	3.687	1.591	2.096	297.98	0.15	0.00
19.000	62.336	664.272	0.861	28.886		664.69	0.13	10	127	3.708	1.602	2.107	313.76	0.13	0.00
19.100	62.664	669.718	0.624	28.281		670.13	0.09	10	127	3.729	1.612	2.117	314.74	0.09	0.00
19.200	62.992	705.047	0.596	28.381		705.46	0.08	10	127	3.750	1.622	2.128	329.76	0.08	0.00
19.300	63.320	737.619	0.571	25.127		737.98	0.08	10	127	3.771	1.632	2.139	343.32	0.08	0.00
19.400	63.648	753.912	0.211	23.373		754.25	0.03	10	127	3.792	1.643	2.149	349.18	0.03	0.00

Col 1 i	Col 2 i	Col 17i	Col 18i	Col 19i	Col 20i	Col 21i	Col 22i	Col 23i	Col 24i	Col 25 i	Col 26i	Col 27 i	Col 28i	Col 29 i
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, lc	$\begin{array}{\|c\|} \hline \text { Normalized } \\ \text { Cone resistance, } \\ \text { Qtn } \\ \hline \end{array}$	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ (\mathrm{N} 1) 60 \\ \hline \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	$\begin{gathered} \text { Young's } \\ \text { modulus, Es } \end{gathered}$	Small strain shear modulus, Go	Undrained shear strength, Su	Undrained strength ratio, su/o'v	Over consolidation ratio, OCR
(m)	(ft)				(t/sec)	(blows/ti)	(blows/ft)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
18.300	60.039	6	1.41	387.15	$3.00 \mathrm{E}-4$	91.4	66.0	105	46	2285	1928			
18.400	60.367	6	1.36	390.82	3.00E-4	91.1	65.6	106	46	2313	1939			
18.500	60.696	7	1.26	405.95	3.00E-2	92.0	66.1	108	46	2408	1968			
18.600	61.024	7	1.06	419.45	3.00E-2	90.1	64.5	109	46	2494	1995			
18.700	61.352	7	1.11	429.78	3.00E-2	93.7	66.9	111	46	2562	2016			
18.800	61.680	7	1.31	403.57	3.00E-2	93.7	66.8	107	46	2413	1980			
18.900	62.008	7	1.07	419.39	3.00E-2	91.0	64.7	109	46	2513	2010			
19.000	62.336	7	1.03	442.72	$3.00 \mathrm{E}-2$	95.2	67.4	112	46	2659	2052			
19.100	62.664	7	0.99	445.23	3.00E-2	94.9	67.1	113	46	2681	2061			
19.200	62.992	7	0.96	467.64	3.00E-2	99.2	69.9	116	46	2822	2100			
19.300	63.320	7	0.94	488.08	$3.00 \mathrm{E}-2$	103.1	72.5	118	47	2952	2136			
19.400	63.648	7	0.98	497.65	3.00E-2	106.6	74.8	119	47	3017	2155			

Input Data:
Surface Elev. $=0$
Hole No.=CPT6
Depth of Hole $=64.00 \mathrm{ft}$
Water Table during Earthquake= 5.00 ft
Water Table during In-Situ Testing $=10.00 \mathrm{ft}$
Max. Acceleration=0.65 g
Earthquake Magnitude=6.63
No-Liquefiable Soils: CL, OL are Non-Liq. Soil

1. CPT Calulation Method: Modify Robertson*
2. Settlement Analysis Method: Ishihara / Yoshimine
3. Fines Correction for Liquefaction: Stark/01son et al.*
4. Fine Correction for Settlement: During Liquefaction*
5. Settlement Calculation in: All zones*
6. User request factor of safety (apply to CSR) , User= 1.1 Plot two CSR (fsl=1, fs2=User)
7. Average two input data between two Depths: Yes*

* Recommended Options

In-Situ Depth ft	Test Data:					
	qC atm	fs atm	$\begin{aligned} & \mathrm{Rf} \\ & \% \end{aligned}$	Gamma pcf	Fines \%	D50 mm
0.16	0.00	0.00	100.00	120.00	0.00	0.50
0.66	0.00	0.00	100.00	120.00	0.00	0.50
1.15	0.00	0.00	100.00	120.00	0.00	0.50
1.64	0.00	0.00	100.00	120.00	0.00	0.50
2.13	0.00	0.00	100.00	120.00	0.00	0.50
2.62	0.00	0.00	100.00	120.00	0.00	0.50
3.12	0.00	0.00	100.00	120.00	0.00	0.50
3.61	0.00	0.00	100.00	120.00	0.00	0.50
4.10	0.00	0.00	100.00	120.00	0.00	0.50
4.59	0.00	0.00	100.00	120.00	0.00	0.50
5.09	27.54	0.59	2.13	120.00	0.00	0.50
5.58	33.37	1.00	2.98	120.00	0.00	0.50
6.07	40.48	1.23	3.04	120.00	0.00	0.50
6.56	40.87	1.23	3.01	120.00	0.00	0.50
7.05	79.41	1.46	1.83	120.00	0.00	0.50
7.55	95.61	1.59	1.66	120.00	0.00	0.50
8.04	107.10	1.60	1.50	120.00	0.00	0.50
8.53	96.28	1.56	1.62	120.00	0.00	0.50
9.02	131.50	1.69	1.29	120.00	0.00	0.50
9.51	126.30	1.23	0.98	120.00	0.00	0.50
10.00	121.20	0.98	0.81	120.00	0.00	0.50
10.49	55.54	1.53	2.75	120.00	0.00	0.50
10.99	57.77	0.75	1.30	120.00	0.00	0.50
11.48	26.43	0.84	3.19	120.00	0.00	0.50
11.97	29.78	0.47	1.56	120.00	0.00	0.50
12.46	43.97	0.55	1.26	120.00	0.00	0.50
12.95	42.77	0.58	1.36	120.00	0.00	0.50
13.45	41.63	0.46	1.10	120.00	0.00	0.50
13.94	15.69	0.25	1.60	120.00	0.00	0.50
14.43	8.39	0.17	1.98	120.00	NoLia	0.50
14.92	7.67	0.17	2.28	120.00	NoLia	0.50
15.41	8.34	0.21	2.47	120.00	NoLiq	0.50
15.91	13.66	0.20	1.50	120.00	NoLiq	0.50
16.40	12.15	0.41	3.36	120.00	NoLiq	0.50
16.89	11.93	0.45	3.78	120.00	NoLiq	0.50
17.38	6.66	0.37	5.48	120.00	NoLiq	0.50
17.88	8.92	0.37	4.15	120.00	NoLiq	0.50
18.37	10.51	0.38	3.64	120.00	NoLia	0.50
18.86	11.46	0.40	3.45	120.00	NoLiq	0.50
19.35	11.32	0.35	3.11	120.00	NoLiq	0.50
19.84	16.08	0.60	3.74	120.00	NoLiq	0.50
20.34	30.53	1.06	3.49	120.00	0.00	0.50
20.83	43.80	0.84	1.92	120.00	0.00	0.50
21.32	33.87	0.84	2.48	120.00	0.00	0.50
21.81	36.91	0.85	2.29	120.00	0.00	0.50
22.30	31.56	0.97	3.08	120.00	0.00	0.50
22.80	32.98	0.85	2.59	120.00	0.00	0.50

Page 1

					16-0107-CPT6.cal	
23.29	64.71	1.07	1.65	120.00	0.00	0.50
23.78	56.46	1.07	1.89	120.00	0.00	0.50
24.27	28.33	1.03	3.63	120.00	0.00	0.50
24.77	30.70	0.94	3.05	120.00	0.00	0.50
25.26	28.49	1.01	3.56	120.00	0.00	0.50
25.75	69.04	2.39	3.46	120.00	0.00	0.50
26.24	202.10	1.56	0.77	120.00	0.00	0.50
26.73	192.70	1.22	0.63	120.00	0.00	0.50
27.23	220.10	1.41	0.64	120.00	0.00	0.50
27.72	346.90	2.69	0.77	120.00	0.00	0.50
28.21	442.00	3.22	0.73	120.00	0.00	0.50
28.70	323.50	1.10	0.34	120.00	0.00	0.50
29.19	418.90	3.37	0.80	120.00	0.00	0.50
29.69	531.40	1.71	0.32	120.00	0.00	0.50
30.18	354.60	2.70	0.76	120.00	0.00	0.50
30.67	539.00	4.80	0.89	120.00	0.00	0.50
31.16	461.00	2.72	0.59	120.00	0.00	0.50
31.66	165.50	1.56	0.94	120.00	0.00	0.50
32.15	31.92	2.07	6.48	120.00	0.00	0.50
32.64	24.20	0.65	2.71	120.00	0.00	0.50
33.13	62.51	1.31	2.10	120.00	0.00	0.50
33.62	121.20	2.63	2.17	120.00	0.00	0.50
34.12	44.19	2.06	4.66	120.00	0.00	0.50
34.61	32.62	0.60	1.83	120.00	0.00	0.50
35.10	28.05	0.66	2.35	120.00	0.00	0.50
35.59	28.02	0.61	2.18	120.00	0.00	0.50
36.08	35.02	0.78	2.23	120.00	0.00	0.50
36.58	28.05	0.80	2.85	120.00	0.00	0.50
37.07	37.00	1.08	2.92	120.00	0.00	0.50
37.56	41.29	1.68	4.07	120.00	0.00	0.50
38.05	37.33	0.89	2.39	120.00	0.00	0.50
38.54	28.72	0.53	1.83	120.00	0.00	0.50
39.04	28.10	0.78	2.77	120.00	0.00	0.50
39.53	26.09	0.65	2.49	120.00	0.00	0.50
40.02	38.81	1.17	3.02	120.00	0.00	0.50
40.51	28.91	0.76	2.62	120.00	0.00	0.50
41.01	29.83	0.70	2.36	120.00	0.00	0.50
41.50	29.27	0.79	2.71	120.00	0.00	0.50
41.99	148.00	3.73	2.52	120.00	0.00	0.50
42.48	72.83	1.87	2.56	120.00	0.00	0.50
42.97	42.60	0.72	1.69	120.00	0.00	0.50
43.47	29.83	0.76	2.53	120.00	0.00	0.50
43.96	31.37	0.87	2.78	120.00	0.00	0.50
44.45	33.68	1.05	3.13	120.00	0.00	0.50
44.94	29.86	0.93	3.11	120.00	0.00	0.50
45.43	36.36	0.87	2.40	120.00	0.00	0.50
45.93	40.65	0.88	2.16	120.00	0.00	0.50
46.42	37.08	0.96	2.60	120.00	0.00	0.50
46.91	42.69	1.08	2.52	120.00	0.00	0.50
47.40	122.60	2.09	1.71	120.00	0.00	0.50
47.90	37.64	0.93	2.48	120.00	0.00	0.50
48.39	29.97	0.53	1.77	120.00	0.00	0.50
48.88	36.52	0.74	2.01	120.00	0.00	0.50
49.37	246.00	2.09	0.85	120.00	0.00	0.50
49.86	551.30	4.12	0.75	120.00	0.00	0.50
50.36	547.90	2.87	0.52	120.00	0.00	0.50
50.85	502.10	3.30	0.66	120.00	0.00	0.50
51.34	535.10	1.16	0.22	120.00	0.00	0.50
51.83	650.70	0.51	0.08	120.00	0.00	0.50
52.32	665.30	0.96	0.14	120.00	0.00	0.50
52.82	692.60	1.06	0.15	120.00	0.00	0.50
53.31	661.40	3.99	0.60	120.00	0.00	0.50
53.80	675.30	2.67	0.40	120.00	0.00	0.50
54.29	617.80	1.16	0.19	120.00	0.00	0.50
54.79	595.30	1.23	0.21	120.00	0.00	0.50
55.28	624.20	4.97	0.80	120.00	0.00	0.50
55.77	556.50	0.13	0.02	120.00	0.00	0.50
56.26	517.40	2.10	0.41	120.00	0.00	0.50
56.75	453.50	6.17	1.36	120.00	0.00	0.50
57.25	436.60	1.61	0.37	120.00	0.00	0.50
57.74	437.80	5.23	1.20	120.00	0.00	0.50
58.23	439.90	2.51	0.57	120.00	0.00	0.50
58.72	486.20	2.45	0.50	120.00	0.00	0.50
59.21	498.00	1.44	0.29	120.00	0.00	0.50
59.71	571.70	1.16	0.20	120.00	0.00	0.50
60.20	566.90	1.82	0.32	120.00	0.00	0.50
60.69	606.70	0.94	0.15	120.00	0.00	0.50
61.18	643.20	0.44	0.07	120.00	0.00	0.50
61.67	591.00	3.69	0.62	120.00	0.00	0.50
62.17	666.80	0.69	0.10	120.00	0.00	0.50
62.66	659.90	0.53	0.08	120.00	0.00	0.50
63.15	712.30	0.54	0.08	120.00	0.00	0.50

Page 2
$\begin{array}{lllllll}63.64 & 750.70 & 0.02 & 0.00 & 120.00 & 0.00 & 0.50\end{array}$
Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:
Calculation segment, $\mathrm{dz}=0.050 \mathrm{ft}$
User defined Print Interval, $\mathrm{dp}=0.50 \mathrm{ft}$
Peak Ground Acceleration (PGA), a_max $=0.65 \mathrm{~g}$

CSR C Depth ft	culatio gamma pcf	sigma atm	gamma' pcf	sigma' atm	rd	$\begin{aligned} & \mathrm{mZ} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & \mathrm{a}(\mathrm{z}) \\ & \mathrm{g} \end{aligned}$	CSR	x fs1	$=$ CSRfs
0.16	120.00	0.009	120.00	0.009	1.00	0.000	0.650	0.42	1.00	0.42
0.66	120.00	0.037	120.00	0.037	1.00	0.000	0.650	0.42	1.00	0.42
1.16	120.00	0.066	120.00	0.066	1.00	0.000	0.650	0.42	1.00	0.42
1.66	120.00	0.094	120.00	0.094	1.00	0.000	0.650	0.42	1.00	0.42
2.16	120.00	0.122	120.00	0.122	0.99	0.000	0.650	0.42	1.00	0.42
2.66	120.00	0.151	120.00	0.151	0.99	0.000	0.650	0.42	1.00	0.42
3.16	120.00	0.179	120.00	0.179	0.99	0.000	0.650	0.42	1.00	0.42
3.66	120.00	0.208	120.00	0.208	0.99	0.000	0.650	0.42	1.00	0.42
4.16	120.00	0.236	120.00	0.236	0.99	0.000	0.650	0.42	1.00	0.42
4.66	120.00	0.264	120.00	0.264	0.99	0.000	0.650	0.42	1.00	0.42
5.16	120.00	0.293	57.60	0.288	0.99	0.000	0.650	0.42	1.00	0.42
5.66	120.00	0.321	57.60	0.302	0.99	0.000	0.650	0.44	1.00	0.44
6.16	120.00	0.349	57.60	0.315	0.99	0.000	0.650	0.46	1.00	0.46
6.66	120.00	0.378	57.60	0.329	0.98	0.000	0.650	0.48	1.00	0.48
7.16	120.00	0.406	57.60	0.343	0.98	0.000	0.650	0.49	1.00	0.49
7.66	120.00	0.434	57.60	0.356	0.98	0.000	0.650	0.51	1.00	0.51
8.16	120.00	0.463	57.60	0.370	0.98	0.000	0.650	0.52	1.00	0.52
8.66	120.00	0.491	57.60	0.383	0.98	0.000	0.650	0.53	1.00	0.53
9.16	120.00	0.519	57.60	0.397	0.98	0.000	0.650	0.54	1.00	0.54
9.66	120.00	0.548	57.60	0.411	0.98	0.000	0.650	0.55	1.00	0.55
10.16	120.00	0.576	57.60	0.424	0.98	0.000	0.650	0.56	1.00	0.56
10.66	120.00	0.604	57.60	0.438	0.98	0.000	0.650	0.57	1.00	0.57
11.16	120.00	0.633	57.60	0.451	0.97	0.000	0.650	0.58	1.00	0.58
11.66	120.00	0.661	57.60	0.465	0.97	0.000	0.650	0.58	1.00	0.58
12.16	120.00	0.690	57.60	0.479	0.97	0.000	0.650	0.59	1.00	0.59
12.66	120.00	0.718	57.60	0.492	0.97	0.000	0.650	0.60	1.00	0.60
13.16	120.00	0.746	57.60	0.506	0.97	0.000	0.650	0.60	1.00	0.60
13.66	120.00	0.775	57.60	0.520	0.97	0.000	0.650	0.61	1.00	0.61
14.16	120.00	0.803	57.60	0.533	0.97	0.000	0.650	0.62	1.00	0.62
14.66	120.00	0.831	57.60	0.547	0.97	0.000	0.650	0.62	1.00	0.62
15.16	120.00	0.860	57.60	0.560	0.96	0.000	0.650	0.63	1.00	0.63
15.66	120.00	0.888	57.60	0.574	0.96	0.000	0.650	0.63	1.00	0.63
16.16	120.00	0.916	57.60	0.588	0.96	0.000	0.650	0.63	1.00	0.63
16.66	120.00	0.945	57.60	0.601	0.96	0.000	0.650	0.64	1.00	0.64
17.16	120.00	0.973	57.60	0.615	0.96	0.000	0.650	0.64	1.00	0.64
17.66	120.00	1.001	57.60	0.628	0.96	0.000	0.650	0.65	1.00	0.65
18.16	120.00	1.030	57.60	0.642	0.96	0.000	0.650	0.65	1.00	0.65
18.66	120.00	1.058	57.60	0.656	0.96	0.000	0.650	0.65	1.00	0.65
19.16	120.00	1.086	57.60	0.669	0.96	0.000	0.650	0.66	1.00	0.66
19.66	120.00	1.115	57.60	0.683	0.95	0.000	0.650	0.66	1.00	0.66
20.16	120.00	1.143	57.60	0.696	0.95	0.000	0.650	0.66	1.00	0.66
20.66	120.00	1.172	57.60	0.710	0.95	0.000	0.650	0.66	1.00	0.66
21.16	120.00	1.200	57.60	0.724	0.95	0.000	0.650	0.67	1.00	0.67
21.66	120.00	1.228	57.60	0.737	0.95	0.000	0.650	0.67	1.00	0.67
22.16	120.00	1.257	57.60	0.751	0.95	0.000	0.650	0.67	1.00	0.67
22.66	120.00	1.285	57.60	0.765	0.95	0.000	0.650	0.67	1.00	0.67
23.16	120.00	1.313	57.60	0.778	0.95	0.000	0.650	0.67	1.00	0.67
23.66	120.00	1.342	57.60	0.792	0.94	0.000	0.650	0.68	1.00	0.68
24.16	120.00	1.370	57.60	0.805	0.94	0.000	0.650	0.68	1.00	0.68
24.66	120.00	1.398	57.60	0.819	0.94	0.000	0.650	0.68	1.00	0.68
25.16	120.00	1.427	57.60	0.833	0.94	0.000	0.650	0.68	1.00	0.68
25.66	120.00	1.455	57.60	0.846	0.94	0.000	0.650	0.68	1.00	0.68
26.16	120.00	1.483	57.60	0.860	0.94	0.000	0.650	0.68	1.00	0.68
26.66	120.00	1.512	57.60	0.873	0.94	0.000	0.650	0.69	1.00	0.69
27.16	120.00	1.540	57.60	0.887	0.94	0.000	0.650	0.69	1.00	0.69
27.66	120.00	1.568	57.60	0.901	0.94	0.000	0.650	0.69	1.00	0.69
28.16	120.00	1.597	57.60	0.914	0.93	0.000	0.650	0.69	1.00	0.69
28.66	120.00	1.625	57.60	0.928	0.93	0.000	0.650	0.69	1.00	0.69
29.16	120.00	1.654	57.60	0.941	0.93	0.000	0.650	0.69	1.00	0.69
29.66	120.00	1.682	57.60	0.955	0.93	0.000	0.650	0.69	1.00	0.69
30.16	120.00	1.710	57.60	0.969	0.93	0.000	0.650	0.69	1.00	0.69
30.66	120.00	1.739	57.60	0.982	0.92	0.000	0.650	0.69	1.00	0.69
31.16	120.00	1.767	57.60	0.996	0.92	0.000	0.650	0.69	1.00	0.69
31.66	120.00	1.795	57.60	1.009	0.92	0.000	0.650	0.69	1.00	0.69
32.16	120.00	1.824	57.60	1.023	0.91	0.000	0.650	0.69	1.00	0.69
32.66	120.00	1.852	57.60	1.037	0.91	0.000	0.650	0.69	1.00	0.69
33.16	120.00	1.880	57.60	1.050	0.90	0.000	0.650	0.68	1.00	0.68

Page 3

		16-0107-CPT6.cal								
33.66	120.00	1.909	57.60	1.064	0.90	0.000	0.650	0.68	1.00	0.68
34.16	120.00	1.937	57.60	1.078	0.90	0.000	0.650	0.68	1.00	0.68
34.66	120.00	1.965	57.60	1.091	0.89	0.000	0.650	0.68	1.00	0.68
35.16	120.00	1.994	57.60	1.105	0.89	0.000	0.650	0.68	1.00	0.68
35.66	120.00	2.022	57.60	1.118	0.88	0.000	0.650	0.68	1.00	0.68
36.16	120.00	2.050	57.60	1.132	0.88	0.000	0.650	0.67	1.00	0.67
36.66	120.00	2.079	57.60	1.146	0.88	0.000	0.650	0.67	1.00	0.67
37.16	120.00	2.107	57.60	1.159	0.87	0.000	0.650	0.67	1.00	0.67
37.66	120.00	2.136	57.60	1.173	0.87	0.000	0.650	0.67	1.00	0.67
38.16	120.00	2.164	57.60	1.186	0.86	0.000	0.650	0.67	1.00	0.67
38.66	120.00	2.192	57.60	1.200	0.86	0.000	0.650	0.66	1.00	0.66
39.16	120.00	2.221	57.60	1.214	0.86	0.000	0.650	0.66	1.00	0.66
39.66	120.00	2.249	57.60	1.227	0.85	0.000	0.650	0.66	1.00	0.66
40.16	120.00	2.277	57.60	1.241	0.85	0.000	0.650	0.66	1.00	0.66
40.66	120.00	2.306	57.60	1.254	0.84	0.000	0.650	0.65	1.00	0.65
41.16	120.00	2.334	57.60	1.268	0.84	0.000	0.650	0.65	1.00	0.65
41.66	120.00	2.362	57.60	1.282	0.83	0.000	0.650	0.65	1.00	0.65
42.16	120.00	2.391	57.60	1.295	0.83	0.000	0.650	0.65	1.00	0.65
42.66	120.00	2.419	57.60	1.309	0.83	0.000	0.650	0.65	1.00	0.65
43.16	120.00	2.447	57.60	1.322	0.82	0.000	0.650	0.64	1.00	0.64
43.66	120.00	2.476	57.60	1.336	0.82	0.000	0.650	0.64	1.00	0.64
44.16	120.00	2.504	57.60	1.350	0.81	0.000	0.650	0.64	1.00	0.64
44.66	120.00	2.532	57.60	1.363	0.81	0.000	0.650	0.64	1.00	0.64
45.16	120.00	2.561	57.60	1.377	0.81	0.000	0.650	0.63	1.00	0.63
45.66	120.00	2.589	57.60	1.391	0.80	0.000	0.650	0.63	1.00	0.63
46.16	120.00	2.618	57.60	1.404	0.80	0.000	0.650	0.63	1.00	0.63
46.66	120.00	2.646	57.60	1.418	0.79	0.000	0.650	0.63	1.00	0.63
47.16	120.00	2.674	57.60	1.431	0.79	0.000	0.650	0.62	1.00	0.62
47.66	120.00	2.703	57.60	1.445	0.79	0.000	0.650	0.62	1.00	0.62
48.16	120.00	2.731	57.60	1.459	0.78	0.000	0.650	0.62	1.00	0.62
48.66	120.00	2.759	57.60	1.472	0.78	0.000	0.650	0.62	1.00	0.62
49.16	120.00	2.788	57.60	1.486	0.77	0.000	0.650	0.61	1.00	0.61
49.66	120.00	2.816	57.60	1.499	0.77	0.000	0.650	0.61	1.00	0.61
50.16	120.00	2.844	57.60	1.513	0.77	0.000	0.650	0.61	1.00	0.61
50.66	120.00	2.873	57.60	1.527	0.76	0.000	0.650	0.61	1.00	0.61
51.16	120.00	2.901	57.60	1.540	0.76	0.000	0.650	0.60	1.00	0.60
51.66	120.00	2.929	57.60	1.554	0.75	0.000	0.650	0.60	1.00	0.60
52.16	120.00	2.958	57.60	1.567	0.75	0.000	0.650	0.60	1.00	0.60
52.66	120.00	2.986	57.60	1.581	0.75	0.000	0.650	0.59	1.00	0.59
53.16	120.00	3.014	57.60	1.595	0.74	0.000	0.650	0.59	1.00	0.59
53.66	120.00	3.043	57.60	1.608	0.74	0.000	0.650	0.59	1.00	0.59
54.16	120.00	3.071	57.60	1.622	0.73	0.000	0.650	0.59	1.00	0.59
54.66	120.00	3.100	57.60	1.635	0.73	0.000	0.650	0.58	1.00	0.58
55.16	120.00	3.128	57.60	1.649	0.73	0.000	0.650	0.58	1.00	0.58
55.66	120.00	3.156	57.60	1.663	0.72	0.000	0.650	0.58	1.00	0.58
56.16	120.00	3.185	57.60	1.676	0.72	0.000	0.650	0.58	1.00	0.58
56.66	120.00	3.213	57.60	1.690	0.71	0.000	0.650	0.57	1.00	0.57
57.16	120.00	3.241	57.60	1.704	0.71	0.000	0.650	0.57	1.00	0.57
57.66	120.00	3.270	57.60	1.717	0.70	0.000	0.650	0.57	1.00	0.57
58.16	120.00	3.298	57.60	1.731	0.70	0.000	0.650	0.56	1.00	0.56
58.66	120.00	3.326	57.60	1.744	0.70	0.000	0.650	0.56	1.00	0.56
59.16	120.00	3.355	57.60	1.758	0.69	0.000	0.650	0.56	1.00	0.56
59.66	120.00	3.383	57.60	1.772	0.69	0.000	0.650	0.56	1.00	0.56
60.16	120.00	3.411	57.60	1.785	0.68	0.000	0.650	0.55	1.00	0.55
60.66	120.00	3.440	57.60	1.799	0.68	0.000	0.650	0.55	1.00	0.55
61.16	120.00	3.468	57.60	1.812	0.68	0.000	0.650	0.55	1.00	0.55
61.66	120.00	3.496	57.60	1.826	0.67	0.000	0.650	0.54	1.00	0.54
62.16	120.00	3.525	57.60	1.840	0.67	0.000	0.650	0.54	1.00	0.54
62.66	120.00	3.553	57.60	1.853	0.66	0.000	0.650	0.54	1.00	0.54
63.16	120.00	3.582	57.60	1.867	0.66	0.000	0.650	0.53	1.00	0.53
63.66	120.00	3.610	57.60	1.880	0.66	0.000	0.650	0.53	1.00	0.53

CSR is based on water table at 5.00 during earthquake
CRR Calculation from CPT data, using Modify Robertson's Method:
(Fines content is determined by qc and fric.)

Depth ft	qc atm	fric. atm	n	Qm	Rf	Ic	Cq	Fines \%	Kc	qcin atm	qc1f atm	CRR7. 5
0.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
0.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
0.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
0.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						

Page 4

	16-0107-CPT6.cal											
3.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.66			1.00	1.00E-4	0.00	7.97						
3.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.66	0.00	0.00	1.00	1.00E-4	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
5.16			1.00	$9.54 \mathrm{E1}$	2.19	2.16						
5.16			0.50	5.22E1	2.19	2.35						
5.16	28.22	0.61	0.50	$5.22 \mathrm{E1}$	2.19	2.35	1.85	24.30	0.52	52.16	107.61	0.20
5.66			1.00	1.04 E 2	3.00	2.23						
5.66			0.50	5.97E1	3.00	2.40						
5.66	33.80	1.00	0.50	5.97E1	3.00	2.40	1.77	26.33	0.57	59.65	138.60	0.33
6.16			1.00	1.18E2	3.08	2.21						
6.16			0.50	7.03E1	3.08	2.36						
6.16	41.53	1.27	0.50	7.03E1	3.08	2.36	1.69	24.68	0.53	70.28	148.11	0.38
6.66			1.00	1.11 E 2	2.77	2.19						
6.66			0.50	6.86 E 1	2.77	2.33						
6.66	42.17	1.16	0.50	$6.86 \mathrm{E1}$	2.77	2.33	1.63	23.67	0.50	68.62	136.83	0.32
7.16			1.00	2.20E2	1.66	1.83						
7.16			0.50	1.41 E 2	1.66	1.95						
7.16	89.67	1.48	0.50	1.41 E 2	1.66	1.95	1.57	11.73	0.18	140.73	171.57	0.55
7.66			1.00	2.45 E 2	1.46	1.76						
7.66			0.50	1.62 E 2	1.46	1.87						
7.66	106.75	1.55	0.50	1.62 E 2	1.46	1.87	1.52	9.74	0.13	161.98	185.43	0.67
8.16			1.00	2.22E2	1.54	1.80						
8.16			0.50	1.52 E 2	1.54	1.91						
8.16	103.38	1.58	0.50	1.52E2	1.54	1.91	1.47	10.57	0.15	151.98	178.54	0.61
8.66			1.00	2.18 E 2	1.28	1.74						
8.66			0.50	1.53 E 2	1.28	1.85						
8.66	107.39	1.37	0.50	1.53 E 2	1.28	1.85	1.43	9.14	0.11	153.25	172.30	0.56
9.16			1.00	2.69 E 2	1.12	1.64						
9.16			0.50	1.94 E 2	1.12	1.73						
9.16	140.08	1.56	0.50	$1.94 \mathrm{E2}$	1.12	1.73	1.39	6.75	0.05	194.37	203.88	0.87
9.66			1.00	2.19 E 2	0.95	1.65						
9.66			0.50	1.63 E 2	0.95	1.74						
9.66	120.69	1.14	0.50	1.63 E 2	0.95	1.74	1.35	6.82	0.05	163.07	171.41	0.55
10.16			1.00	1.62 E 2	1.16	1.80						
10.16			0.50	1.23 E 2	1.16	1.89						
10.16	93.12	1.07	0.50	1.23 E 2	1.16	1.89	1.32	10.04	0.13	123.16	142.29	0.35
10.66			1.00	6.54 El	2.74	2.34						
10.66			0.50	5.08E1	2.74	2.42						
10.66	38.87	1.05	0.50	5.08E1	2.74	2.42	1.31	27.25	0.59	50.81	125.15	0.26
11.16			1.00	6.88 E 1	1.60	2.17						
11.16			0.50	$5.40 \mathrm{E1}$	1.60	2.25						
11.16	41.83	0.66	0.50	$5.40 \mathrm{E1}$	1.60	2.25	1.29	20.56	0.42	54.05	92.47	0.15
11.66			1.00	2.80E1	4.15	2.73						
11.66	17.82	0.71	1.00	$2.80 \mathrm{E1}$	4.15	2.73	1.00	NoLiq	1.00	17.82	17.82	2.08
12.16			1.00	7.12E1	1.01	2.03						
12.16			0.50	5.72 E 1	1.01	2.11						
12.16	45.26	0.45	0.50	5.72 El	1.01	2.11	1.26	16.00	0.29	57.20	80.99	0.13
12.66			1.00	8.24E1	1.06	1.99						
12.66			0.50	6.68 E 1	1.06	2.06						
12.66	53.42	0.56	0.50	6.68 E 1	1.06	2.06	1.25	14.71	0.26	66.79	90.17	0.15
13.16			1.00	6.48 E 1	1.40	2.15						
13.16			0.50	5.33 E 1	1.40	2.22						
13.16	43.09	0.59	0.50	5.33 E 1	1.40	2.22	1.24	19.50	0.39	53.31	86.99	0.14
13.66			1.00	5.07E1	0.92	2.12						
13.66			0.50	4.24E1	0.92	2.19						
13.66	34.60	0.31	0.50	$4.24 \mathrm{E1}$	0.92	2.19	1.22	18.66	0.36	42.37	66.69	0.11
14.16			1.00	1.28 E 1	2.47	2.86						
14.16	9.54	0.22	1.00	$1.28 \mathrm{E1}$	2.47	2.86	1.00	NoLiq	1.00	9.54	9.54	2.08
14.66			1.00	$1.08 \mathrm{E1}$	2.41	2.92						
14.66	8.30	0.18	1.00	$1.08 \mathrm{E1}$	2.41	2.92	1.00	NoLiq	1.00	8.30	8.30	2.08
15.16			1.00	8.85E0	2.55	3.00						
15.16	7.13	0.16	1.00	8.85E0	2.55	3.00	1.00	NoLiq	1.00	7.13	7.13	2.08
15.66			1.00	1.30E1	2.37	2.84						
15.66	10.30	0.22	1.00	$1.30 E 1$	2.37	2.84	1.00	NoLiq	1.00	10.30	10.30	2.08
16.16			1.00	$1.68 \mathrm{E1}$	3.16	2.83						
16.16	13.30	0.39	1.00	1.68 E 1	3.16	2.83	1.00	NoLiq	1.00	13.30	13.30	2.08
16.66			1.00	1.62 E 1	3.42	2.86						
16.66	13.06	0.41	1.00	$1.62 \mathrm{E1}$	3.42	2.86	1.00	NoLiq	1.00	13.06	13.06	2.08
17.16			1.00	$1.01 \mathrm{E1}$	5.80	3.17						
17.16	8.64	0.44	1.00	$1.01 \mathrm{E1}$	5.80	3.17	1.00	NoLiq	1.00	8.64	8.64	2.08
17.66			1.00	8.34 EO	4.19	3.14						
17.66	7.47	0.27	1.00	8.34 EO	4.19	3.14	1.00	NoLiq	1.00	7.47	7.47	2.08
18.16			1.00	1.17E1	4.32	3.03						
18.16	10.29	0.40	1.00	1.17E1	4.32	3.03	1.00	NoLiq	1.00	10.29	10.29	2.08
18.66			1.00	1.34E1	3.90	2.96						
18.66	11.84	0.42	1.00	$1.34 \mathrm{E1}$	3.90	2.96	1.00	NoLiq	1.00	11.84	11.84	2.08
19.16			1.00	1.14 E 1	3.47	2.99						
19.16	10.41	0.32	1.00	1.14 E 1	3.47	2.99	1.00	NoLiq	1.00	10.41	10.41	2.08

Page 5

	16-0107-CPT6.ca1											
19.66			1.00	1.54 El	3.77	2.90						
19.66	13.92	0.48	1.00	$1.54 \mathrm{E1}$	3.77	2.90	1.00	NoLiq	1.00	13.92	13.92	2.08
20.16			1.00	2.16 E 1	4.54	2.84						
20.16	19.36	0.83	1.00	2.16E1	4.54	2.84	1.00	NoLiq	1.00	19.36	19.36	2.08
20.66			1.00	3.18E1	3.64	2.65						
20.66	28.47	1.00	1.00	3.18 E 1	3.64	2.65	1.00	NoLiq	1.00	28.47	28.47	2.08
21.16			1.00	4.00 El	2.33	2.45						
21.16			0.50	3.87E1	2.33	2.46						
21.16	36.08	0.81	0.50	3.87 E 1	2.33	2.46	1.07	29.06	0.64	38.66	108.09	0.20
21.66			1.00	3.04 El	4.03	2.70						
21.66	28.12	1.08	1.00	3.04 E 1	4.03	2.70	1.00	NoLiq	1.00	28.12	28.12	2.08
22.16			1.00	$3.94 \mathrm{E1}$	2.94	2.52						
22.16			0.50	3.86 E 1	2.94	2.53						
22.16	36.61	1.04	0.50	$3.86 \mathrm{E1}$	2.94	2.53	1.06	31.98	0.72	38.63	138.14	0.33
22.66			1.00	$2.71 \mathrm{E1}$	3.12	2.66						
22.66	26.02	0.77	1.00	2.71E1	3.12	2.66	1.00	NoLiq	1.00	26.02	26.02	2.08
23.16			1.00	5.43 EI	2.47	2.37						
23.16			0.50	5.36 El	2.47	2.37						
23.16	51.61	1.24	0.50	5.36 El	2.47	2.37	1.04	25.30	0.54	53.65	117.12	0.23
23.66			1.00	8.25E1	1.00	1.98						
23.66			0.50	8.13 El	1.00	1.98						
23.66	78.81	0.78	0.50	$8.13 \mathrm{E1}$	1.00	1.98	1.03	12.44	0.20	81.32	101.49	0.18
24.16			1.00	3.38 E 1	3.57	2.63						
24.16	33.57	1.15	1.00	$3.38 \mathrm{E1}$	3.57	2.63	1.00	NoLiq	1.00	33.57	33.57	2.08
24.66			1.00	$2.91 \mathrm{E1}$	3.24	2.65						
24.66	29.54	0.91	1.00	$2.91 \mathrm{E1}$	3.24	2.65	1.00	NoLiq	1.00	29.54	29.54	2.08
25.16			1.00	2.65 El	3.85	2.73						
25.16	27.39	1.00	1.00	$2.65 \mathrm{E1}$	3.85	2.73	1.00	NoLiq	1.00	27.39	27.39	2.08
25.66			1.00	5.73 E 1	3.57	2.46						
25.66			0.50	5.86 El	3.57	2.46						
25.66	58.42	2.03	0.50	5.86E1	3.57	2.46	1.00	28.83	0.64	58.61	161.09	0.47
26.16			1.00	1.75E2	1.13	1.77						
26.16			0.50	1.77 E 2	1.13	1.76						
26.16	178.12	2.00	0.50	1.77 E 2	1.13	1.76	1.00	7.37	0.06	177.48	189.47	0.71
26.66			1.00	1.85 E 2	0.62	1.57						
26.66			0.50	1.88 E 2	0.62	1.57						
26.66	190.11	1.17	0.50	1.88 E 2	0.62	1.57	0.99	3.84	0.00	188.17	188.17	0.70
27.16			1.00	2.11 E 2	0.67	1.55						
27.16			0.50	2.16 E 2	0.67	1.54						
27.16	219.89	1.45	0.50	2.16 E 2	0.67	1.54	0.98	3.45	0.00	216.20	216.20	1.02
27.66			1.00	3.08 E 2	0.72	1.46						
27.66			0.50	3.17 E 2	0.72	1.45						
27.66	324.44	2.33	0.50	3.17 E 2	0.72	1.45	0.98	2.16	0.00	316.92	316.92	2.08
28.16			1.00	4.11 E 2	0.67	1.35						
28.16			0.50	4.25 E 2	0.67	1.34						
28.16	438.18	2.94	0.50	4.25 E 2	0.67	1.34	0.97	0.87	0.00	425.26	425.26	2.08
28.66			1.00	3.17 E 2	0.33	1.22						
28.66			0.50	3.30 E 2	0.33	1.20						
28.66	342.47	1.12	0.50	3.30 E 2	0.33	1.20	0.96	0.00	0.00	330.27	330.27	2.08
29.16			1.00	3.77 E 2	0.74	1.41						
29.16			0.50	3.95 E 2	0.74	1.40						
29.16	412.68	3.05	0.50	3.95 E 2	0.74	1.40	0.96	1.49	0.00	395.48	395.48	2.08
29.66			1.00	4.74 E 2	0.34	1.09						
29.66			0.50	4.99E2	0.34	1.08						
29.66	524.36	1.78	0.50	4.99 E 2	0.34	1.08	0.95	0.00	0.00	499.39	499.39	2.08
30.16			1.00	3.18 E 2	0.74	1.46						
30.16			0.50	3.38 E 2	0.74	1.44						
30.16	357.04	2.63	0.50	3.38 E 2	0.74	1.44	0.95	2.01	0.00	337.97	337.97	2.08
30.66			1.00	4.73 E 2	0.89	1.42						
30.66			0.50	5.05 E 2	0.89	1.40						
30.66	536.45	4.78	0.50	5.05 E 2	0.89	1.40	0.94	1.53	0.00	500.00	500.00	2.08
31.16			1.00	4.02 E 2	0.59	1.32						
31.16			0.50	4.31 E 2	0.59	1.30						
31.16	461.02	2.72	0.50	4.31 E 2	0.59	1.30	0.94	0.38	0.00	431.16	431.16	2.08
31.66			1.00	1.42 E 2	0.95	1.78						
31.66			0.50	1.54 E 2	0.95	1.76						
31.66	165.61	1.56	0.50	1.54E2	0.95	1.76	0.93	7.21	0.06	153.97	163.64	0.49
32.16			1.00	$2.54 \mathrm{E1}$	6.71	2.91						
32.16	31.56	2.00	1.00	2.54 El	6.71	2.91	1.00	NoLiq	1.00	31.56	31.56	2.08
32.66			1.00	1.90E1	2.92	2.76						
32.66	24.39	0.66	1.00	1.90E1	2.92	2.76	1.00	NoLiq	1.00	24.39	24.39	2.08
33.16			1.00	5.55E1	2.10	2.31						
33.16			0.50	6.24 El	2.10	2.28						
33.16	68.31	1.39	0.50	6.24 E 1	2.10	2.28	0.91	21.66	0.44	62.42	112.42	0.21
33.66			1.00	9.80E1	2.32	2.17						
33.66			0.50	1.10 E 2	2.32	2.14						
33.66	120.62	2.76	0.50	1.10E2	2.32	2.14	0.91	16.90	0.32	109.59	160.65	0.47
34.16			1.00	3.29E1	4.58	2.71						
34.16	42.24	1.85	1.00	$3.29 \mathrm{E1}$	4.58	2.71	1.00	NoLiq	1.00	42.24	42.24	2.08
34.66			1.00	2.39E1	1.93	2.58						
34.66			0.50	2.84 E 1	1.93	2.52						
34.66	31.61	0.57	0.50	$2.84 \mathrm{E1}$	1.93	2.52	0.90	31.46	0.71	28.40	96.76	0.16

Page 6

	16-0107-CPT6.cal											
35.16			1.00	2.17E1	2.42	2.67						
35.16	29.15	0.66	1.00	2.17E1	2.42	2.67	1.00	NoLiq	1.00	29.15	29.15	2.08
35.66			1.00	2.14 EI	2.39	2.67						
35.66	29.14	0.65	1.00	2.14 El	2.39	2.67	1.00	NoLiq	1.00	29.14	29.14	2.08
36.16			1.00	2.62 El	2.49	2.61						
36.16	35.54	0.83	1.00	$2.62 \mathrm{E1}$	2.49	2.61	1.00	NoLiq	1.00	35.54	35.54	2.08
36.66			1.00	1.98 El	2.97	2.75						
36.66	27.72	0.76	1.00	1.98 E 1	2.97	2.75	1.00	NoLiq	1.00	27.72	27.72	2.08
37.16			1.00	2.90 E 1	3.24	2.65						
37.16	40.06	1.23	1.00	2.90 El	3.24	2.65	1.00	NoLiq	1.00	40.06	40.06	2.08
37.66			1.00	2.66 E 1	4.64	2.78						
37.66	37.26	1.63	1.00	2.66 El	4.64	2.78	1.00	NoLiq	1.00	37.26	37.26	2.08
38.16			1.00	2.21 El	2.57	2.68						
38.16	31.70	0.76	1.00	2.21 El	2.57	2.68	1.00	NoLiq	1.00	31.70	31.70	2.08
38.66			1.00	2.10E1	2.23	2.66						
38.66	30.47	0.63	1.00	2.10 E 1	2.23	2.66	1.00	NoLiq	1.00	30.47	30.47	2.08
39.16			1.00	1.92 E 1	2.71	2.74						
39.16	28.33	0.71	1.00	$1.92 \mathrm{E1}$	2.71	2.74	1.00	NoLiq	1.00	28.33	28.33	2.08
39.66			1.00	$1.85 \mathrm{E1}$	2.83	2.76						
39.66	27.74	0.72	1.00	$1.85 \mathrm{E1}$	2.83	2.76	1.00	NoLiq	1.00	27.74	27.74	2.08
40.16			1.00	$2.32 \mathrm{E1}$	3.67	2.76						
40.16	34.48	1.18	1.00	$2.32 \mathrm{E1}$	3.67	2.76	1.00	NoLiq	1.00	34.48	34.48	2.08
40.66			1.00	1.92 E 1	2.52	2.72						
40.66	29.28	0.68	1.00	1.92 E 1	2.52	2.72	1.00	NoLiq	1.00	29.28	29.28	2.08
41.16			1.00	1.95 E 1	2.54	2.72						
41.16	29.89	0.70	1.00	$1.95 \mathrm{E1}$	2.54	2.72	1.00	NoLiq	1.00	29.89	29.89	2.08
41.66			1.00	2.91 E 1	2.81	2.61						
41.66	43.94	1.17	1.00	$2.91 \mathrm{E1}$	2.81	2.61	1.00	NoLiq	1.00	43.94	43.94	2.08
42.16			1.00	$8.56 \mathrm{E1}$	2.52	2.23						
42.16			0.50	1.05 E 2	2.52	2.18						
42.16	125.91	3.11	0.50	1.05 E 2	2.52	2.18	0.83	18.17	0.35	104.83	161.68	0.47
42.66			1.00	$4.00 \mathrm{E1}$	2.04	2.42						
42.66			0.50	5.03 E 1	2.04	2.34						
42.66	60.64	1.19	0.50	5.03 E 1	2.04	2.34	0.83	24.00	0.51	50.25	101.98	0.18
43.16			1.00	$2.27 \mathrm{E1}$	2.49	2.66						
43.16	35.82	0.83	1.00	$2.27 \mathrm{E1}$	2.49	2.66	1.00	NoLiq	1.00	35.82	35.82	2.08
43.66			1.00	1.88 El	2.88	2.76						
43.66	30.35	0.80	1.00	1.88 E 1	2.88	2.76	1.00	NoLiq	1.00	30.35	30.35	2.08
44.16			1.00	1.96 El	3.29	2.79						
44.16	31.79	0.96	1.00	$1.96 \mathrm{E1}$	3.29	2.79	1.00	NoLiq	1.00	31.79	31.79	2.08
44.66			1.00	$1.97 \mathrm{E1}$	3.36	2.79						
44.66	32.27	1.00	1.00	$1.97 \mathrm{E1}$	3.36	2.79	1.00	NoLiq	1.00	32.27	32.27	2.08
45.16			1.00	$1.91 \mathrm{E1}$	3.09	2.78						
45.16	31.73	0.90	1.00	$1.91 \mathrm{E1}$	3.09	2.78	1.00	NoLiq	1.00	31.73	31.73	2.08
45.66			1.00	2.31E1	2.28	2.63						
45.66	38.13	0.81	1.00	2.31E1	2.28	2.63	1.00	NoLiq	1.00	38.13	38.13	2.08
46.16			1.00	$2.35 \mathrm{E1}$	2.54	2.65						
46.16	39.05	0.93	1.00	$2.35 \mathrm{E1}$	2.54	2.65	1.00	NoLiq	1.00	39.05	39.05	2.08
46.66			1.00	2.05 El	3.25	2.77						
46.66	34.74	1.04	1.00	$2.05 \mathrm{E1}$	3.25	2.77	1.00	NoLiq	1.00	34.74	34.74	2.08
47.16			1.00	$6.24 \mathrm{E1}$	1.79	2.23						
47.16			0.50	8.05 E 1	1.79	2.15						
47.16	101.19	1.77	0.50	8.05 E 1	1.79	2.15	0.80	17.32	0.33	80.54	120.02	0.24
47.66			1.00	4.00 E 1	2.84	2.51						
47.66			0.50	$5.27 \mathrm{E1}$	2.84	2.42						
47.66	66.47	1.81	0.50	5.27 El	2.84	2.42	0.79	27.22	0.59	52.67	129.50	0.28
48.16			1.00	1.69 E 1	1.78	2.68						
48.16	29.84	0.48	1.00	1.69 E 1	1.78	2.68	1.00	NoLiq	1.00	29.84	29.84	2.08
48.66			1.00	2.17 El	1.70	2.58						
48.66			0.50	2.98E1	1.70	2.47						
48.66	37.89	0.60	0.50	2.98 E 1	1.70	2.47	0.79	29.26	0.65	29.77	84.51	0.14
49.16			1.00	$2.17 \mathrm{E1}$	4.01	2.81						
49.16	38.15	1.42	1.00	$2.17 E 1$	4.01	2.81	1.00	NoLiq	1.00	38.15	38.15	2.08
49.66			1.00	2.81E2	0.89	1.55						
49.66			0.50	3.63 E 2	0.89	1.48						
49.66	465.97	4.12	0.50	3.63 E 2	0.89	1.48	0.78	2.57	0.00	363.11	363.11	2.08
50.16			1.00	3.38 E 2	0.56	1.35						
50.16			0.50	4.38 E 2	0.56	1.27						
50.16	564.59	3.15	0.50	4.38 E 2	0.56	1.27	0.78	0.15	0.00	438.15	438.15	2.08
50.66			1.00	3.03 E 2	0.66	1.44						
50.66			0.50	3.94 E 2	0.66	1.36						
50.66	509.88	3.36	0.50	3.94 E 2	0.66	1.36	0.77	1.05	0.00	394.08	394.08	2.08
51.16			1.00	2.95 E 2	0.18	1.10						
51.16			0.50	3.85 E 2	0.18	1.00						
51.16	500.73	0.88	0.50	3.85 E 2	0.18	1.00	0.77	0.00	0.00	385.45	385.45	2.08
51.66			1.00	3.68 E 2	0.08	0.91						
51.66			0.50	4.82 E 2	0.08	0.80						
51.66	628.65	0.51	0.50	4.82 E 2	0.08	0.80	0.77	0.00	0.00	481.97	481.97	2.08
52.16			1.00	3.75 E 2	0.11	0.93						
52.16			0.50	4.94 E 2	0.11	0.82						
52.16	646.59	0.69	0.50	4.94 E 2	0.11	0.82	0.76	0.00	0.00	493.76	493.76	2.08
52.66			1.00	3.83 E 2	0.35	1.17						

Page 7

	16-0107-CPT6.cal											
52.66			0.50	5.05E2	0.35	1.08						
52.66	664.18	2.31	0.50	5.05E2	0.35	1.08	0.76	0.00	0.00	500.00	500.00	2.08
53.16			1.00	3.86 E 2	0.41	1.21						
53.16			0.50	5.12 E 2	0.41	1.13						
53.16	676.19	2.76	0.50	5.12 E 2	0.41	1.13	0.76	0.00	0.00	500.00	500.00	2.08
53.66			1.00	3.68 E 2	0.34	1.17						
53.66			0.50	4.90 E 2	0.34	1.08						
53.66	649.13	2.18	0.50	4.90 E 2	0.34	1.08	0.75	0.00	0.00	489.90	489.90	2.08
54.16			1.00	3.58 E 2	0.06	0.92						
54.16			0.50	4.79 E 2	0.06	0.79						
54.16	636.48	0.39	0.50	4.79 E 2	0.06	0.79	0.75	0.00	0.00	478.50	478.50	2.08
54.66			1.00	3.43 E 2	0.61	1.37						
54.66			0.50	$4.60 E 2$	0.61	1.29						
54.66	614.65	3.71	0.50	4.60 E 2	0.61	1.29	0.75	0.28	0.00	460.32	460.32	2.08
55.16			1.00	3.39 E 2	0.59	1.37						
55.16			0.50	4.57E2	0.59	1.28						
55.16	612.64	3.60	0.50	4.57E2	0.59	1.28	0.75	0.21	0.00	457.08	457.08	2.08
55.66			1.00	3.17 E 2	0.95	1.54						
55.66			0.50	4.29 E 2	0.95	1.46						
55.66	577.58	5.45	0.50	$4.29 E 2$	0.95	1.46	0.74	2.30	0.00	429.29	429.29	2.08
56.16			1.00	2.92 E 2	0.27	1.20						
56.16			0.50	3.96 E 2	0.27	1.09						
56.16	535.31	1.43	0.50	3.96 E 2	0.27	1.09	0.74	0.00	0.00	396.39	396.39	2.08
56.66			1.00	2.50E2	1.20	1.69						
56.66			0.50	3.42E2	1.20	1.60						
56.66	463.41	5.54	0.50	3.42 E 2	1.20	1.60	0.74	4.40	0.00	341.87	341.87	2.08
57.16			1.00	2.35E2	1.04	1.66						
57.16			0.50	3.22E2	1.04	1.57						
57.16	438.52	4.54	0.50	3.22E2	1.04	1.57	0.74	3.84	0.00	322.32	322.32	2.08
57.66			1.00	2.32E2	1.02	1.65						
57.66			0.50	3.19 E 2	1.02	1.56						
57.66	435.24	4.40	0.50	3.19 E 2	1.02	1.56	0.73	3.77	0.00	318.74	318.74	2.08
58.16			1.00	2.31E2	0.50	1.44						
58.16			0.50	3.20E2	0.50	1.33						
58.16	437.96	2.16	0.50	3.20 E 2	0.50	1.33	0.73	0.73	0.00	319.57	319.57	2.08
58.66			1.00	2.57E2	0.44	1.37						
58.66			0.50	3.55E2	0.44	1.26						
58.66	488.62	2.16	0.50	3.55 E 2	0.44	1.26	0.73	0.05	0.00	355.25	355.25	2.08
59.16			1.00	2.60E2	0.60	1.45						
59.16			0.50	3.61 E2	0.60	1.35						
59.16	498.00	2.98	0.50	3.61 E 2	0.60	1.35	0.72	0.99	0.00	360.77	360.77	2.08
59.66			1.00	2.97 E 2	0.45	1.33						
59.66			0.50	4.14 E 2	0.45	1.22						
59.66	572.98	2.58	0.50	4.14 E 2	0.45	1.22	0.72	0.00	0.00	413.62	413.62	2.08
60.16			1.00	2.93 E 2	0.46	1.33						
60.16			0.50	4.10 E 2	0.46	1.23						
60.16	569.89	2.59	0.50	4.10 E 2	0.46	1.23	0.72	0.00	0.00	409.94	409.94	2.08
60.66			1.00	3.09 E 2	0.25	1.16						
60.66			0.50	4.34 E 2	0.25	1.04						
60.66	605.13	1.53	0.50	4.34 E 2	0.25	1.04	0.72	0.00	0.00	433.76	433.76	2.08
61.16			1.00	$3.25 E 2$	0.08	0.97						
61.16			0.50	4.58E2	0.08	0.82						
61.16	641.03	0.52	0.50	4.58 E 2	0.08	0.82	0.71	0.00	0.00	457.90	457.90	2.08
61.66			1.00	2.99E2	0.61	1.41						
61.66			0.50	4.22E2	0.61	1.31						
61.66	592.95	3.59	0.50	4.22E2	0.61	1.31	0.71	0.54	0.00	422.09	422.09	2.08
62.16			1.00	3.32 E 2	0.10	0.98						
62.16			0.50	4.71 E 2	0.10	0.83						
62.16	663.85	0.69	0.50	4.71 E 2	0.10	0.83	0.71	0.00	0.00	470.94	470.94	2.08
62.66			1.00	3.28 E 2	0.08	0.96						
62.66			0.50	4.67E2	0.08	0.81						
62.66	659.86	0.53	0.50	4.67E2	0.08	0.81	0.71	0.00	0.00	466.51	466.51	2.08
63.16			1.00	3.53 E 2	0.08	0.93						
63.16			0.50	5.03 E 2	0.08	0.77						
63.16	714.31	0.54	0.50	5.03 E 2	0.08	0.77	0.70	0.00	0.00	500.00	500.00	2.08
63.66			1.00	3.69E2	0.00	1.63						
63.66			0.50	5.28E2	0.00	1.55						
63.66	751.68	0.02	0.50	5.28 E 2	0.00	1.55	0.70	3.51	0.00	500.00	500.00	2.08

Fines have been calculated, and correction is made by Modify Robertson Method.
Fines=NoLiq means the soils are not liquefiable.
CRR is based on water table at 10.00 during In-Situ Testing

Factor Depth ft	of Safe sigC' atm	$\begin{aligned} & y, \\ & \text { CRR7. } \\ & \hline \end{aligned}$	thquake $\times \mathrm{Ksig}$	$\begin{aligned} & \text { Magni } \\ & =\text { CRRv } \end{aligned}$	$\begin{gathered} \mathrm{de}=6 . t \\ \mathrm{x} \text { MSF } \end{gathered}$	$=C R R m$	CSRfs	F.S.	CRRm
0.16	0.01	2.08	1.00	2.08	1.37	2.00	0.42	5.00	\wedge
0.66	0.02	2.08	1.00	2.08	1.37	2.00	0.42	5.00	\wedge
1.16	0.04	2.08	1.00	2.08	1.37	2.00	0.42	5.00	\wedge
1.66	0.06	2.08	1.00	2.08	1.37	2.00	0.42	5.00	\wedge
2.16	0.08	2.08	1.00	2.08	1.37	2.00	0.42	5.00	\wedge

Page 8

* F.S.<1: Liquefaction Potential Zone. (If above water table: F.S.=5)
\wedge No-liquefiable Soils or above Water Table.
(F.S. is limited to 5, CRR is limited to 2 , \quad CSR is limited to 2)

CPT convert to SPT for Settlement Analysis:

					16-0107-СРТ6.cal		
15.16	3.00	2.95	7.13	2.41	NoLiq	0.00	2.41
15.66	2.84	3.25	10.30	3.17	NoLiq	0.00	3.17
16.16	2.83	3.28	13.30	4.06	NoLiq	0.00	4.06
16.66	2.86	3.21	13.06	4.07	NoLiq	0.00	4.07
17.16	3.17	2.65	8.64	3.26	NoLiq	0.00	3.26
17.66	3.14	2.69	7.47	2.78	NoLiq	0.00	2.78
18.16	3.03	2.89	10.29	3.56	NoLiq	0.00	3.56
18.66	2.96	3.03	11.84	3.91	NoLiq	0.00	3.91
19.16	2.99	2.98	10.41	3.49	NoLiq	0.00	3.49
19.66	2.90	3.13	13.92	4.44	NoLiq	0.00	4.44
20.16	2.84	3.25	19.36	5.96	NoLiq	0.00	5.96
20.66	2.65	3.60	28.47	7.92	NoLiq	0.00	7.92
21.16	2.46	3.95	108.09	27.37	29.06	0.00	27.37
21.66	2.70	3.51	28.12	8.00	NoLiq	0.00	8.00
22.16	2.53	3.83	138.14	36.09	31.98	0.00	36.09
22.66	2.66	3.58	26.02	7.27	NoLiq	0.00	7.27
23.16	2.37	4.12	117.12	28.45	25.30	0.00	28.45
23.66	1.98	4.84	101.49	20.97	12.44	0.00	20.97
24.16	2.63	3.64	33.57	9.22	NoLiq	0.00	9.22
24.66	2.65	3.60	29.54	8.20	NoLiq	0.00	8.20
25.16	2.73	3.46	27.39	7.92	NoLiq	0.00	7.92
25.66	2.46	3.96	161.09	40.69	28.83	0.00	40.69
26.16	1.76	5.24	189.47	36.16	7.37	0.00	36.16
26.66	1.57	5.60	188.17	33.58	3.84	0.00	33.58
27.16	1.54	5.65	216.20	38.26	3.45	0.00	38.26
27.66	1.45	5.82	316.92	54.45	2.16	0.00	54.45
28.16	1.34	6.02	425.26	70.68	0.87	0.00	70.68
28.66	1.20	6.28	330.27	52.62	0.00	0.00	52.62
29.16	1.40	5.92	395.48	66.82	1.49	0.00	66.82
29.66	1.08	6.51	499.39	76.74	0.00	0.00	76.74
30.16	1.44	5.84	337.97	57.86	2.01	0.00	57.86
30.66	1.40	5.91	500.00	84.56	1.53	0.00	84.56
31.16	1.30	6.10	431.16	70.64	0.38	0.00	70.64
31.66	1.76	5.25	163.64	31.14	7.21	0.00	31.14
32.16	2.91	3.13	31.56	10.09	NoLiq	0.00	10.09
32.66	2.76	3.39	24.39	7.19	Noliq	0.00	7.19
33.16	2.28	4.29	112.42	26.18	21.66	0.00	26.18
33.66	2.14	4.55	160.65	35.28	16.90	0.00	35.28
34.16	2.71	3.49	42.24	12.10	NoLiq	0.00	12.10
34.66	2.52	3.85	96.76	25.14	31.46	0.00	25.14
35.16	2.67	3.57	29.15	8.17	NoLiq	0.00	8.17
35.66	2.67	3.57	29.14	8.17	NoLiq	0.00	8.17
36.16	2.61	3.67	35.54	9.67	NoLiq	0.00	9.67
36.66	2.75	3.41	27.72	8.13	NoLiq	0.00	8.13
37.16	2.65	3.60	40.06	11.12	NoLiq	0.00	11.12
37.66	2.78	3.36	37.26	11.09	NoLiq	0.00	11.09
38.16	2.68	3.55	31.70	8.92	NoLiq	0.00	8.92
38.66	2.66	3.58	30.47	8.50	NoLiq	0.00	8.50
39.16	2.74	3.43	28.33	8.25	NoLiq	0.00	8.25
39.66	2.76	3.39	27.74	8.18	NoLiq	0.00	8.18
40.16	2.76	3.40	34.48	10.14	NoLiq	0.00	10.14
40.66	2.72	3.47	29.28	8.44	NoLiq	0.00	8.44
41.16	2.72	3.48	29.89	8.60	NoLiq	0.00	8.60
41.66	2.61	3.68	43.94	11.95	Noliq	0.00	11.95
42.16	2.18	4.48	161.68	36.08	18.17	0.00	36.08
42.66	2.34	4.18	101.98	24.41	24.00	0.00	24.41
43.16	2.66	3.58	35.82	10.00	NoLiq	0.00	10.00
43.66	2.76	3.39	30.35	8.95	NoLiq	0.00	8.95
44.16	2.79	3.35	31.79	9.48	NoLiq	0.00	9.48
44.66	2.79	3.34	32.27	9.65	NoLiq	0.00	9.65
45.16	2.78	3.37	31.73	9.42	NoLiq	0.00	9.42
45.66	2.63	3.64	38.13	10.48	NoLiq	0.00	10.48
46.16	2.65	3.59	39.05	10.86	NoLiq	0.00	10.86
46.66	2.77	3.39	34.74	10.26	NoLiq	0.00	10.26
47.16	2.15	4.53	120.02	26.50	17.32	0.00	26.50
47.66	2.42	4.03	129.50	32.14	27.22	0.00	32.14
48.16	2.68	3.55	29.84	8.42	NoLiq	0.00	8.42
48.66	2.47	3.94	84.51	21.45	29.26	0.00	21.45
49.16	2.81	3.31	38.15	11.51	NoLiq	0.00	11.51
49.66	1.48	5.76	363.11	63.01	2.57	0.00	63.01
50.16	1.27	6.14	438.15	71.31	0.15	0.00	71.31
50.66	1.36	5.99	394.08	65.82	1.05	0.00	65.82
51.16	1.00	6.65	385.45	57.95	0.00	0.00	57.95
51.66	0.80	7.03	481.97	68.60	0.00	0.00	68.60
52.16	0.82	6.99	493.76	70.61	0.00	0.00	70.61
52.66	1.08	6.50	500.00	76.90	0.00	0.00	76.90
53.16	1.13	6.42	500.00	77.93	0.00	0.00	77.93
53.66	1.08	6.50	489.90	75.33	0.00	0.00	75.33
54.16	0.79	7.04	478.50	67.97	0.00	0.00	67.97
54.66	1.29	6.12	460.32	75.20	0.28	0.00	75.20
55.16	1.28	6.13	457.08	74.51	0.21	0.00	74.51
55.66	1.46	5.80	429.29	74.01	2.30	0.00	74.01

				16-0107-CPT6.cal			
56.16	1.09	6.49	396.39	61.08	0.00	0.00	61.08
56.66	1.60	5.54	341.87	61.72	4.40	0.00	61.72
57.16	1.57	5.60	322.32	57.52	3.84	0.00	57.52
57.66	1.56	5.61	318.74	56.79	3.77	0.00	56.79
58.16	1.33	6.04	319.57	52.90	0.73	0.00	52.90
58.66	1.26	6.16	355.25	57.64	0.05	0.00	57.64
59.16	1.35	6.00	360.77	60.15	0.99	0.00	60.15
59.66	1.22	6.24	413.62	66.30	0.00	0.00	66.30
60.16	1.23	6.23	409.94	65.81	0.00	0.00	65.81
60.66	1.04	6.58	433.76	65.96	0.00	0.00	65.96
61.16	0.82	6.99	457.90	65.55	0.00	0.00	65.55
61.66	1.31	6.07	422.09	69.49	0.54	0.00	69.49
62.16	0.83	6.96	470.94	67.65	0.00	0.00	67.65
62.66	0.81	7.00	466.51	66.63	0.00	0.00	66.63
63.16	0.77	7.07	500.00	70.74	0.00	0.00	70.74
63.66	1.55	5.64	500.00	88.59	3.51	0.00	88.59

(N1) 60s has been fines corrected in liquefaction analysis, therefore $d(N 1) 60=0$.
(N1) 60 is converted from qc1, (N1)60s is after fines correction
Fines=NoLiq means the soils are not liquefiable.

Settlement of Saturated Sands:

16-0107-CPT6.cal											
36.66	0.67	1.00	0.67	5.00	NoLiq	8.13	45.82	0.000	0.0EO	0.000	0.352
36.16	0.67	1.00	0.67	5.00	NoLiq	9.67	49.75	0.000	0.0EO	0.000	0.352
35.66	0.68	1.00	0.68	5.00	NoLiq	8.17	45.94	0.000	0.0 EO	0.046	0.398
35.16	0.68	1.00	0.68	5.00	NoLiq	8.17	45.94	0.000	0.0 E 0	0.000	0.398
34.66	0.68	1.00	0.68	0.33	31.46	25.14	79.99	1.747	1. $0 \mathrm{E}-2$	0.021	0.419
34.16	0.68	1.00	0.68	5.00	NoLiq	12.10	55.33	0.000	0.0EO	0.040	0.459
33.66	0.68	1.00	0.68	0.94	16.90	35.28	100.00	0.000	0.0 EO	0.000	0.459
33.16	0.68	1.00	0.68	0.43	21.66	26.18	82.02	1.659	$1.0 \mathrm{E}-2$	0.063	0.523
32.66	0.69	1.00	0.69	5.00	NoLiq	7.19	43.28	0.000	0.0 O 0	0.022	0.545
32.16	0.69	1.00	0.69	5.00	NoLiq	10.09	50.76	0.000	0.0 O 0	0.000	0.545
31.66	0.69	1.00	0.69	0.97	7.21	31.14	92.69	0.369	2.2E-3	0.021	0.566
31.16	0.69	1.00	0.69	4.13	0.38	70.64	100.00	0.000	0.0 O 0	0.000	0.566
30.66	0.69	1.00	0.69	4.12	1.53	84.56	100.00	0.000	0.0 EO	0.000	0.566
30.16	0.69	1.00	0.69	4.12	2.01	57.86	100.00	0.000	0.0 EO	0.000	0.566
29.66	0.69	1.00	0.69	4.12	0.00	76.74	100.00	0.000	0.0 EO	0.000	0.566
29.16	0.69	1.00	0.69	4.12	1.49	66.82	100.00	0.000	0.0EO	0.000	0.566
28.66	0.69	1.00	0.69	4.13	0.00	52.62	100.00	0.000	0.0 EO	0.000	0.566
28.16	0.69	1.00	0.69	4.13	0.87	70.68	100.00	0.000	0.0 EO	0.000	0.566
27.66	0.69	1.00	0.69	4.14	2.16	54.45	100.00	0.000	0.0 EO	0.000	0.566
27.16	0.69	1.00	0.69	2.03	3.45	38.26	100.00	0.000	0.0 EO	0.000	0.566
26.66	0.69	1.00	0.69	1.40	3.84	33.58	98.78	0.023	1.4E-4	0.000	0.566
26.16	0.68	1.00	0.68	1.43	7.37	36.16	100.00	0.000	0.0EO	0.001	0.567
25.66	0.68	1.00	0.68	0.94	28.83	40.69	100.00	0.000	0.0 E 0	0.000	0.567
25.16	0.68	1.00	0.68	5.00	NoLiq	7.92	45.28	0.000	0.0 O 0	0.000	0.567
24.66	0.68	1.00	0.68	5.00	NoLiq	8.20	46.00	0.000	0.0 E 0	0.000	0.567
24.16	0.68	1.00	0.68	5.00	NoLiq	9.22	48.62	0.000	0.0E0	0.000	0.567
23.66	0.68	1.00	0.68	0.36	12.44	20.97	72.29	2.093	1.3E-2	0.074	0.641
23.16	0.67	1.00	0.67	0.47	25.30	28.45	86.67	1.452	8.7E-3	0.110	0.752
22.66	0.67	1.00	0.67	5.00	NoLiq	7.27	43.48	0.000	0.0EO	0.056	0.808
22.16	0.67	1.00	0.67	0.66	31.98	36.09	100.00	0.000	0.0 EO	0.000	0.808
21.66	0.67	1.00	0.67	5.00	NoLiq	8.00	45.49	0.000	0.0 EO	0.057	0.865
21.16	0.67	1.00	0.67	0.41	29.06	27.37	84.41	1.558	9.4E-3	0.036	0.901
20.66	0.66	1.00	0.66	5.00	NoLiq	7.92	45.26	0.000	0.0 EO	0.084	0.985
20.16	0.66	1.00	0.66	5.00	NoLiq	5.96	39.73	0.000	0.0EO	0.000	0.985
19.66	0.66	1.00	0.66	5.00	NoLiq	4.44	34.96	0.000	0.0 EO	0.000	0.985
19.16	0.66	1.00	0.66	5.00	NoLiq	3.49	31.75	0.000	0.0 EO	0.000	0.985
18.66	0.65	1.00	0.65	5.00	NoLiq	3.91	33.18	0.000	0.0 EO	0.000	0.985
18.16	0.65	1.00	0.65	5.00	NoLiq	3.56	31.98	0.000	0.0 EO	0.000	0.985
17.66	0.65	1.00	0.65	5.00	NoLiq	2.78	29.22	0.000	0.0 EO	0.000	0.985
17.16	0.64	1.00	0.64	5.00	NoLiq	3.26	30.94	0.000	O.0EO	0.000	0.985
16.66	0.64	1.00	0.64	5.00	NoLiq	4.07	33.71	0.000	0.0 EO	0.000	0.985
16.16	0.63	1.00	0.63	5.00	NoLiq	4.06	33.69	0.000	0.0 EO	0.000	0.985
15.66	0.63	1.00	0.63	5.00	NoLiq	3.17	30.64	0.000	0.0 OO	0.000	0.985
15.16	0.63	1.00	0.63	5.00	NoLiq	2.41	27.87	0.000	0.0EO	0.000	0.985
14.66	0.62	1.00	0.62	5.00	NoLiq	2.67	28.82	0.000	0.0 EO	0.000	0.985
14.16	0.62	1.00	0.62	5.00	NoLiq	2.96	29.89	0.000	0.0 E 0	0.000	0.985
13.66	0.61	1.00	0.61	0.24	18.66	14.98	61.23	2.729	1.6E-2	0.100	1.085
13.16	0.60	1.00	0.60	0.32	19.50	19.74	70.07	2.193	1.3E-2	0.145	1.230
12.66	0.60	1.00	0.60	0.34	14.71	19.23	69.16	2.247	1.3E-2	0.134	1.363
12.16	0.59	1.00	0.59	0.30	16.00	17.58	66.14	2.431	1.5E-2	0.141	1.505
11.66	0.58	1.00	0.58	5.00	NoLiq	5.17	37.28	0.000	0.0E0	0.074	1. 579
11.16	0.58	1.00	0.58	0.36	20.56	21.26	72.80	2.070	1.2E-2	0.060	1.639
10.66	0.57	1.00	0.57	0.63	27.25	31.07	92.53	0.792	$4.8 \mathrm{E}-3$	0.104	1.743
10.16	0.56	1.00	0.56	0.85	10.04	28.36	86.48	0.815	$4.9 \mathrm{E}-3$	0.050	1.793
9.66	0.55	1.00	0.55	1.36	6.82	32.40	95.75	0.083	$5.0 \mathrm{E}-4$	0.010	1.803
9.16	0.54	1.00	0.54	2.20	6.75	38.48	100.00	0.000	0.0 EO	0.000	1.803
8.66	0.53	1.00	0.53	1.44	9.14	33.86	99.53	0.008	5.0E-5	0.000	1.804
8.16	0.52	1.00	0.52	1.61	10.57	35.88	100.00	0.000	0.0 OO	0.000	1.804
7.66	0.51	1.00	0.51	1.82	9.74	36.79	100.00	0.000	0.0 EO	0.000	1.804
7.16	0.49	1.00	0.49	1.53	11.73	35.09	100.00	0.000	0.0 EO	0.000	1.804
6.66	0.48	1.00	0.48	0.91	23.67	32.63	96.33	0.224	1. 3E-3	0.018	1.822
6.16	0.46	1.00	0.46	1.14	24.68	35.73	100.00	0.000	0.0EO	0.000	1.822
5.66	0.44	1.00	0.44	1.01	26.33	34.07	100.00	0.000	0.0 EO	0.000	1.822
5.16	0.42	1.00	0.42	0.63	24.30	25.85	81.36	1.515	9.1E-3	0.045	1.868
5.01	0.42	1.00	0.42	0.69	33.05	29.51	88.95	1.023	$6.1 E-3$	0.026	1.893

Settlement of Saturated Sands $=1.893 \mathrm{in}$.
qc1 and (N1) 60 is after fines correction in liquefaction analysis
(N1) 60 s is converted from qc1 and after fines correction
dsz is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth
Settlement of Unsaturated Sands:
$\begin{array}{lllllllllllll}\text { Depth } & \text { sigma' } & \text { sigC' } & \text { (N1) } 60 \text { s CSRsf } & \text { Gmax } & g^{*} G e / G m & \text { g_eff } & \text { ec7.5 } & \text { Cec } & \text { ec } & \text { dsz } & \text { dsp } & \text { S } \\ \mathrm{ft} & \text { atm } & \text { atm } & & \text { atm } & & & & \% & & \% & \text { in. } & \text { in. }\end{array}$

4.96	0.28	0.18	1.81	0.42	232.83	$5.0 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
0.000												
4.66	0.26	0.17	0.10	0.42	86.09	$1.3 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000
4.16	0.24	0.15	0.10	0.42	81.34	$1.2 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000
3.66	0.21	0.13	0.10	0.42	76.30	$1.1 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000

16-0107-CPT6.cal													
3.16	0.18	0.12	0.10	0.42	70.90	$1.1 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
2.66	0.15	0.10	0.10	0.42	65.05	9.7E-4	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
2.16	0.12	0.08	0.10	0.42	58.62	8.8E-4	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
1.66	0.09	0.06	0.10	0.42	51.39	7.7E-4	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
1.16	0.07	0.04	0.10	0.42	42.95	6. $5 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
0.66	0.04	0.02	0.10	0.42	32.40	4.9E-4	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
0.16	0.01	0.01	0.10	0.42	15.95	2.4E-4	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
Sett1	\%	atur	San										

Units: Unit: qc, fs, Stress or Pressure $=\operatorname{atm}$ (1.0581tsf); Unit Weight $=$ pef; Depth $=f t$; Settlement $=$ in.

$\begin{aligned} & 1 \text { atm (at } \\ & 1 \text { atm (at } \end{aligned}$	$\mathrm{re})=1.0581 \mathrm{tsf}(1 \mathrm{tsf}=1 \mathrm{ton} / \mathrm{ft} 2=2 \mathrm{kip} / \mathrm{ft2})$ $\mathrm{re})=101.325 \mathrm{kPa}(1 \mathrm{kPa}=1 \mathrm{kN} / \mathrm{m} 2=0.001 \mathrm{Mpa})$
SPT	Field data from Standard Penetration Test (SPT)
BPT	Field data from Becker Penetration Test (BPT)
qc	Field data from Cone Penetration Test (CPT) [atm (tsf)]
fs	Friction from CPT testing [atm (tsf)]
Rf	Ratio of fs/qc (\%)
gamma	Total unit weight of soil
gamma'	Effective unit weight of soil
Fines	Fines content [\%]
D50	Mean grain size
Dr	Relative Density
sigma	Total vertical stress [atm]
sigma'	Effective vertical stress [atm]
sigC'	Effective confining pressure [atm]
rd	Acceleration reduction coefficient by Seed
a_max.	Peak Ground Acceleration (PGA) in ground surface
mZ	Linear acceleration reduction coefficient X depth
a_min.	Minimum acceleration under linear reduction, mZ
CRRV	CRR after overburden stress correction, CRRv=CRR7.5 * Ksig
CRR7. 5	Cyclic resistance ratio ($\mathrm{M}=7.5$)
Ksig	Overburden stress correction factor for CRR7.5
CRRm	After magnitude scaling correction CRRm=CRRv * MSF
MSF	Magnitude scaling factor from M=7.5 to user input M
CSR	Cyclic stress ratio induced by earthquake
CSRfs	CSRfs=CSR*fs1 (Default fsi=1)
fsi	First CSR curve in graphic defined in \#9 of Advanced page
fs2	2nd CSR curve in graphic defined in \#9 of Advanced page
F.S.	Calculated factor of safety against liquefaction F.S.=CRRm/CSRsf
Cebs	Energy Ratio, Borehole Dia., and Sampling Method Corrections
Cr	Rod Length Corrections
Cn	Overburden Pressure Correction
(N1) 60	SPT after corrections, (N1) $60=$ SPT * Cr * Cn * Cebs
d(N1) 60	Fines correction of SPT
(N1) 60 f	(N1) 60 after fines corrections, (N1) $60 \mathrm{f}=(\mathrm{N} 1) 60+\mathrm{d}(\mathrm{N} 1) 60$
Cq	Overburden stress correction factor
qc1	CPT after Overburden stress correction
dqc1	Fines correction of CPT
qc1f	CPT after Fines and Overburden correction, qc1f=qc1 + dqc1
qcin	CPT after normalization in Robertson's method
Kc	Fine correction factor in Robertson's Method
qc1f	CPT after Fines correction in Robertson's Method
Ic	Soil type index in Suzuki's and Robertson's Methods
(N1) 60 s	(N1)60 after settlement fines corrections
CSRm	After magnitude scaling correction for Settlement calculation CSRm=CSRsf / MSF*
CSRfs	Cyclic stress ratio induced by earthquake with user inputed fs
MSF*	Scaling factor from CSR, MSF* $=1$, based on Item 2 of Page C.
ec	Volumetric strain for saturated sands
dz	Calculation segment, $\mathrm{dz}=0.050 \mathrm{ft}$
dsz	Settlement in each segment, dz
dp	User defined print interval
dsp	Settlement in each print interval, dp
$C_{\text {max }}$	Shear Modulus at low strain
g_eff	gamma_eff, Effective shear Strain
$\mathrm{g} * \mathrm{Ge} / \mathrm{Cm}$	gamma_eff * G_eff/G_max, Strain-modulus ratio
ec7.5	Volumetric Strain for magnitude=7.5
Cec	Magnitude correction factor for any magnitude
ec	Volumetric strain for unsaturated sands, ec=Cec * ec7.5
NoLiq	No-Liquefy Soils

References:

1. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Youd, T.L., and Idriss, I.M., eds., Technical Report NCEER 97-0022.

SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for

Analyzing and Mitigating Liquefaction in California. University of Southern California. March 1999.
2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL-2, PROCEEDINGS: Fourth

International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March 2001.
3. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK, Earthquake Engineering Research Center

Report No. EERC 2003-06 by R.B Seed and etc. April 2003.
Note: Print Interval you selected does not show complete results. To get complete results, you should select 'Segment' in Print Interval (Item 12, Page C).

GEOSYSTEMS

Col 1i	Col 2 i	Col 3i	Col 4i	Col $5 i$	Col 61	Col 71	Col $8 i$	Col 9 i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, Y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qt\|	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
3.300	10.827	100.224	1.322	10.987		100.38	1.32	8	121	0.615	0.000	0.615	162.34	1.33	0.01
3.400	11.155	101.200	1.254	10.709		101.35	1.24	8	121	0.634	0.005	0.630	159.96	1.24	0.01
3.500	11.483	89.564	1.398	10.583		89.72	1.56	7	118	0.654	0.015	0.639	139.44	1.57	0.01
3.600	11.811	83.280	1.288	10.772		83.44	1.54	7	118	0.673	0.025	0.648	127.76	1.56	0.01
3.700	12.139	65.118	0.985	10.507		65.27	1.51	7	118	0.692	0.035	0.657	98.31	1.52	0.01
3.800	12.467	37.374	0.853	10.079		37.52	2.27	6	115	0.711	0.046	0.665	55.31	2.32	0.02
3.900	12.795	17.818	0.478	9.183		17.95	2.66	5	115	0.730	0.056	0.674	25.55	2.77	0.04
4.000	13.123	14.370	0.163	8.805		14.50	1.12	6	115	0.749	0.066	0.683	20.14	1.19	0.04
4.100	13.451	10.624	0.088	8.905		10.75	0.82	6	115	0.768	0.076	0.691	14.45	0.88	0.06
4.200	13.780	8.570	0.104	9.082		8.70	1.20	5	115	0.786	0.087	0.700	11.31	1.32	0.07
4.300	14.108	9.583	0.117	9.259		9.72	1.20	5	115	0.805	0.097	0.708	12.58	1.31	0.06
4.400	14.436	11.367	0.138	9.524		11.50	1.20	6	115	0.824	0.107	0.717	14.90	1.29	0.05
4.500	14.764	12.734	0.247	10.116		12.88	1.92	5	115	0.843	0.117	0.725	16.59	2.05	0.05
4.600	15.092	13.561	0.380	10.924		13.72	2.77	5	115	0.862	0.128	0.734	17.52	2.95	0.05
4.700	15.420	14.964	0.532	11.781		15.13	3.52	4	115	0.880	0.138	0.743	19.20	3.73	0.05
4.800	15.748	14.351	0.570	12.387		14.53	3.92	4	115	0.899	0.148	0.751	18.15	4.18	0.05
4.900	16.076	13.403	0.564	13.800		13.60	4.15	3	111	0.917	0.158	0.759	16.71	4.45	0.07
5.000	16.404	12.185	0.487	14.721		12.40	3.93	3	111	0.936	0.169	0.767	14.94	4.25	0.08
5.100	16.732	10.893	0.365	14.834		11.11	3.28	4	115	0.954	0.179	0.776	13.09	3.59	0.09
5.200	17.060	11.181	0.284	15.314		11.40	2.49	5	115	0.973	0.189	0.784	13.30	2.72	0.09
5.300	17.388	11.079	0.275	16.449		11.32	2.43	5	115	0.992	0.199	0.793	13.02	2.66	0.10
5.400	17.717	10.977	0.312	17.319		11.23	2.78	5	115	1.011	0.209	0.801	12.75	3.06	0.10
5.500	18.045	10.280	0.320	18.089		10.54	3.03	4	115	1.030	0.220	0.810	11.74	3.36	0.11
5.600	18.373	9.332	0.326	19.375		9.61	3.39	4	115	1.048	0.230	0.819	10.46	3.80	0.14
5.700	18.701	9.982	0.425	20.460		10.28	4.14	3	111	1.067	0.240	0.827	11.14	4.61	0.13
5.800	19.029	19.389	0.657	20.826		19.69	3.34	5	115	1.086	0.250	0.835	22.28	3.53	0.07
5.900	19.357	23.070	0.786	19.363		23.35	3.37	5	115	1.104	0.261	0.844	26.37	3.54	0.05
6.000	19.685	20.848	0.753	21.709		21.16	3.56	5	115	1.123	0.271	0.852	23.51	3.76	0.06
6.100	20.013	27.475	1.152	26.868		27.86	4.13	4	115	1.142	0.281	0.861	31.04	4.31	0.06
6.200	20.341	27.429	1.417	26.918		27.82	5.09	3	111	1.160	0.291	0.869	30.68	5.32	0.06
6.300	20.669	17.335	0.881	25.102		17.70	4.98	3	111	1.178	0.302	0.877	18.84	5.33	0.09
6.400	20.997	16.154	0.825	26.414		16.53	4.99	3	111	1.197	0.312	0.885	17.33	5.38	0.10
6.500	21.325	72.490	1.418	33.251		72.97	1.94	7	118	1.216	0.322	0.894	80.26	1.98	0.03
6.600	21.654	133.946	1.018	33.427		134.43	0.76	9	124	1.236	0.332	0.904	147.32	0.76	0.02
6.700	21.982	112.949	0.574	29.302		113.37	0.51	9	124	1.257	0.343	0.914	122.63	0.51	0.02
6.800	22.310	71.216	0.813	24.925		71.57	1.14	8	121	1.277	0.353	0.924	76.09	1.16	0.02
6.900	22.638	58.371	1.287	18.341		58.64	2.20	7	118	1.296	0.363	0.933	61.46	2.25	0.02
7.000	22.966	51.632	1.564	16.398		51.87	3.02	6	115	1.315	0.373	0.941	53.69	3.09	0.02
7.100	23.294	33.981	1.198	18.000		34.24	3.50	5	115	1.334	0.383	0.950	34.64	3.64	0.03
7.200	23.622	23.887	0.718	21.583		24.20	2.97	5	115	1.352	0.394	0.959	23.83	3.14	0.05
7.300	23.950	23.562	0.621	25.228		23.93	2.60	5	115	1.371	0.404	0.967	23.32	2.75	0.06
7.400	24.278	18.896	0.750	28.028		19.30	3.89	4	115	1.390	0.414	0.976	18.36	4.19	0.09
7.500	24.606	13.273	0.793	27.738		13.67	5.80	3	111	1.408	0.424	0.984	12.47	6.46	0.13
7.600	24.934	11.442	0.589	27.511		11.84	4.98	3	111	1.426	0.435	0.992	10.50	5.66	0.15
7.700	25.262	16.758	0.774	28.962		17.18	4.51	3	111	1.445	0.445	1.000	15.73	4.92	0.10
7.800	25.591	65.174	1.657	33.780		65.66	2.52	6	115	1.464	0.455	1.008	63.66	2.58	0.03
7.900	25.919	157.359	2.388	29.088		157.78	1.51	8	121	1.483	0.465	1.018	153.53	1.53	0.01
8.000	26.247	280.922	2.120	24.181		281.27	0.75	9	124	1.504	0.476	1.028	272.11	0.76	0.00
8.100	26.575	382.113	2.257	22.175		382.43	0.59	10	127	1.525	0.486	1.039	366.68	0.59	0.00
8.200	26.903	349.387	2.249	13.195		349.58	0.64	10	127	1.546	0.496	1.049	331.63	0.65	0.00

Col 11	Col 2 i	Col 17i	Col 18i	Col 19i	Col 20i	Col 21i	Col 22i	Col 23i	Col 24i	Col $25 i$	Col 26i	Col 27i	Col 28i	Col 29i
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, lc	Normalized Cone resistance, Qtn	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ \text { (Ni)60 } \end{gathered}$	Relative Density, Dr	Friction Angle, φ^{\prime}	Young's modulus, Es	Small strain shear modulus, Go	Undrained shear strength. su	Undrained strength ratio, su/o'v	Over consolidation ratio, OCR
(m)	(ft)				(ft/sec)	(blows/ft)	(blows/ft)	(\%)	(degrees)	(tsf)	(tsf)	(tsf)		
3.300	10.827	6	1.84	127.84	$3.00 \mathrm{E}-4$	18.6	24.4	60	43	402	725			
3.400	11.155	6	1.83	127.01	3.00E-4	18.7	24.2	60	43	405	733			
3.500	11.483	6	1.94	113.36	$3.00 \mathrm{E}-4$	17.2	22.2	57	42	359	707			
3.600	11.811	6	1.96	104.83	3.00E-4	16.2	20.6	55	42	334	694			
3.700	12.139	6	2.04	81.99	$3.00 \mathrm{E}-4$	13.0	16.5	48	40	261	642			
3.800	12.467	5	2.34	48.38	$3.00 \mathrm{E}-6$	8.5	10.7	37	37	150	536			
3.900	12.795	4	2.65	23.38	$3.00 \mathrm{E}-8$	4.7	5.9				898	1.15	1.70	7.7
4.000	13.123	5	2.52	18.17	$3.00 \mathrm{E}-6$	3.5	4.4	23	31	58	394			
4.100	13.451	5	2.59	13.18	$3.00 \mathrm{E}-6$	2.7	3.3	19	29	43	358			
4.200	13.780	4	2.76	10.57	$3.00 \mathrm{E}-8$	2.4	2.9				435	0.53	0.75	3.4
4.300	14.108	4	2.72	11.73	$3.00 \mathrm{E}-8$	2.6	3.2				486	0.59	0.84	3.8
4.400	14.436	4	2.65	13.81	$3.00 \mathrm{E}-8$	3.0	3.6				575	0.71	0.99	4.5
4.500	14.764	4	2.72	15.53	$3.00 \mathrm{E}-8$	3.5	4.2				644	0.80	1.11	5.0
4.600	15.092	4	2.80	16.56	$3.00 \mathrm{E}-8$	3.8	4.6				686	0.86	1.17	5.3
4.700	15.420	3	2.83	18.24	1.00E-9	4.3	5.2				757	0.95	1.28	5.8
4.800	15.748	3	2.88	17.36	1.00E-9	4.3	5.1				726	0.91	1.21	5.4
4.900	16.076	3	2.92	16.08	1.00E-9	4.1	4.8				680	0.85	1.11	5.0
5.000	16.404	3	2.95	14.43	1.00E-9	3.8	4.4				620	0.76	1.00	4.5
5.100	16.732	3	2.95	12.66	1.00E-9	3.4	3.9				555	0.68	0.87	3.9
5.200	17.060	4	2.87	12.79	$3.00 \mathrm{E}-8$	3.3	3.8				570	0.70	0.89	4.0
5.300	17.388	4	2.87	12.54	$3.00 \mathrm{E}-8$	3.3	3.8				566	0.69	0.87	3.9
5.400	17.717	3	2.92	12.34	$1.00 \mathrm{E}-9$	3.3	3.8				561	0.68	0.85	3.8
5.500	18.045	3	2.97	11.43	$1.00 \mathrm{E}-9$	3.2	3.7				527	0.63	0.78	3.5
5.600	18.373	3	3.04	10.25	1.00E-9	3.1	3.5				481	0.57	0.70	3.1
5.700	18.701	3	3.07	10.95	$1.00 \mathrm{E}-9$	3.3	3.8				514	0.61	0.74	3.3
5.800	19.029	4	2.76	21.43	$3.00 \mathrm{E}-8$	5.4	6.1				984	1.24	1.49	6.7
5.900	19.357	4	2.71	25.31	$3.00 \mathrm{E}-8$	6.2	7.0				1167	1.48	1.76	7.9
6.000	19.685	4	2.76	22.69	$3.00 \mathrm{E}-8$	5.8	6.5				1058	1.34	1.57	7.1
6.100	20.013	4	2.71	29.92	$3.00 \mathrm{E}-8$	7.4	8.2				1393	1.78	2.07	9.3
6.200	20.341	3	2.78	29.74	1.00E-9	7.7	8.5				1391	1.78	2.05	9.2
6.300	20.669	3	2.93	18.45	1.00E-9	5.3	5.8				885	1.10	1.26	5.7
6.400	20.997	3	2.96	17.02	$1.00 \mathrm{E}-9$	5.0	5.5				827	1.02	1.16	5.2
6.500	21.325	5	2.18	75.81	$3.00 \mathrm{E}-6$	15.3	16.7	47	39	292	738			
6.600	21.654	6	1.71	136.60	$3.00 \mathrm{E}-4$	23.7	25.6	62	43	538	909			
6.700	21.982	6	1.66	114.11	$3.00 \mathrm{E}-4$	19.7	21.2	57	42	453	862			
6.800	22.310	6	2.04	72.28	$3.00 \mathrm{E}-4$	14.2	15.2	45	39	286	742			
6.900	22.638	5	2.30	59.17	$3.00 \mathrm{E}-6$	13.0	13.8	41	38	235	696			
7.000	22.966	4	2.44	52.09	$3.00 \mathrm{E}-8$	12.2	13.0				2593	3.37	3.58	16.1
7.100	23.294	4	2.63	33.88	$3.00 \mathrm{E}-8$	8.8	9.3				1712	2.19	2.31	10.4
7.200	23.622	4	2.71	23.41	$3.00 \mathrm{E}-8$	6.5	6.8				1210	1.52	1.59	7.1
7.300	23.950	4	2.68	22.93	$3.00 \mathrm{E}-8$	6.3	6.6				1196	1.50	1.55	7.0
7.400	24.278	3	2.87	18.16	$1.00 \mathrm{E}-9$	5.6	5.8				965	1.19	1.22	5.5
7.500	24.606	3	3.12	12.42	$1.00 \mathrm{E}-9$	4.6	4.8				684	0.82	0.83	3.7
7.600	24.934	3	3.14	10.46	$1.00 \mathrm{E}-9$	4.0	4.2				592	0.69	0.70	3.1
7.700	25.262	3	2.97	15.64	$1.00 \mathrm{E}-9$	5.3	5.4				859	1.05	1.05	4.7
7.800	25.591	5	2.33	62.77	$3.00 \mathrm{E}-6$	14.7	15.1	42	38	263	742			
7.900	25.919	6	1.90	151.05	3.00E-4	29.8	30.4	66	43	631	997			
8.000	26.247	6	1.51	268.23	3.00E-4	46.5	47.2	88	45	1125	1213			
8.100	26.575	7	1.34	363.32	$3.00 \mathrm{E}-2$	60.0	60.6	102	47	1530	1348			
8.200	26.903	6	1.40	330.27	$3.00 \mathrm{E}-4$	55.9	56.1	97	46	1398	1313			

$\left\|\begin{array}{l} \overline{0} \\ \overline{0} \\ \hline 0.0 \end{array}\right\|$				$\overline{5}$	$\begin{array}{c\|c} 5 \\ \hline \end{array}$	8		5	\dot{B}_{0}°	0_{0}°	5			$\begin{array}{ll} 2 \\ 0 & 0 \\ 0 \\ 0 \end{array}$					$\begin{gathered} \frac{m}{2} \\ \mathbf{c} \\ \hline 0 \\ \hline \end{gathered}$	$\begin{aligned} & 80 \\ & \hline 0.0 \\ & \hline 0 \end{aligned}$				\cdots			¢				ค		0	\％					Y\％
$\frac{5}{\bar{\circ}}$						Oom		${ }^{2}$	$\underset{i}{N}$	$0 . \sqrt{6}$	${ }_{5}^{n}$	$\underset{\sim}{\circ}$	S_{i}^{3}	$\stackrel{\substack{\circ \\ \sim \\ \sim \\ \sim \\ \sim}}{ }$	$\underset{\sim}{\text { a }}$	∞	$\stackrel{8}{9}$	$\underset{\sim}{\infty}$	$\underset{N}{N}$	$\underset{N}{\text { N}}$		\mathfrak{N}	\cdots	－			？				8			4			8		－
$\frac{\square}{0}$				\mathfrak{m}		\mathfrak{c}						$\begin{gathered} 3 \\ \vdots \\ \vdots \end{gathered}$	0		－	N	$\stackrel{y}{4}$	$\frac{8}{0}$	$\begin{array}{c\|c\|c} \substack{8 \\ 0 \\ \\ \hline \\ \hline \\ \hline} \end{array}$		$\begin{aligned} & \underset{\sim}{n} \\ & \vdots \\ & \hline \end{aligned}$	\mathfrak{j}	$\stackrel{\leftrightarrow}{~}$			$\dot{b} \dot{b} \dot{i}$	N్ల్ర	\％		－${ }^{\circ}$	$\bar{\square}$		$\stackrel{\substack{6}}{\sim}$	\mathfrak{c}		$\stackrel{R}{?}$	$\dot{寸}$	요	
$\stackrel{\bar{m}}{\overline{3}}$		気家宫			$\stackrel{N}{\square}$	$\stackrel{\text { \％}}{\substack{\text { ¢ }}}$					$\stackrel{\rightharpoonup}{\underset{\sim}{c}} \underset{\sim}{\infty} \underset{\sim}{\infty}$	－		NTM	$\stackrel{\sim}{\sim}$		N	－	Bi io	\％	¢	nemp	¢్ల్ల	Nopp		免	¢				－	\％	夺	年	N	－	\％		${ }_{0}^{\circ}$
$\begin{array}{\|} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{array}$				0						9:9		$\overbrace{0}^{0} 8$	Blol	Boy	$\stackrel{\Phi}{0}$	\bar{k}	\approx	NiN	${ }^{N}$	NiNㅇㅇNㅇ	$\underset{i}{c}$	\％	${ }_{2}^{\infty}$		d		L				㺂			¢			B_{0}°	$\mathbf{w o}_{0}^{\circ} \mathrm{O}$	\％
$\left\lvert\, \begin{aligned} & \overline{0} \\ & \overline{0} \\ & \hline \end{aligned}\right.$					0	둔	$\begin{gathered} N_{N}^{n} \\ \\ \\ \end{gathered}$				$\stackrel{(C O M}{\infty}$	－		Bon			$\pm \underset{8}{4}$	－		등융		－	$\stackrel{y}{x}$	夺	\％		N				－			－		$\underset{\substack{\underset{\sim}{2} \\ \underset{\sim}{\sim} \\ \underset{\sim}{f} \\ \hline}}{ }$	\|ợ	$\left\lvert\, \begin{aligned} & \text { 品 } \end{aligned}\right.$	へì
$\left\|\begin{array}{l} \overline{0} \\ \overline{0} \\ \hline 0 \end{array}\right\|$		웅	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$\underset{N}{N}$	N	$\underset{\sim}{N}$			\mathfrak{N}	N	$\underset{\mathrm{V}}{\mathrm{~N}}$		$\pm \infty$	$\underset{\sim}{n}$				$\mathbb{\infty}$	은울	$\stackrel{5}{2}$	$\stackrel{\sim}{8}$	요		\bigcirc	－	$\stackrel{\infty}{\sim}$				$\stackrel{\square}{\square}$	$\stackrel{\sim}{-}$		5		을	$\text { \| } \stackrel{\rightharpoonup}{\mathrm{m}}$	5	$\stackrel{4}{\square} \stackrel{4}{\square}$
产	\％	으응	－のの		ㅇar？	으은	으으	으응	으앙	으응	으으앙	은	o	r																	－	－					$=$		
$\left\|\begin{array}{l} \overline{\mathbf{a}} \\ \overline{0} \\ \hline \end{array}\right\|$		oc dicu				Bo mo	$\stackrel{\omega}{c} \left\lvert\, \begin{gathered} \infty \\ 0 \\ 0 \end{gathered}\right.$		$\mathrm{N}_{\mathrm{N}}^{\mathrm{O}}$	Bin	$\left\lvert\, \begin{array}{cc} \infty \\ n & 2 \\ 0 & 0 \\ 0 \end{array}\right.$	$\overbrace{0}^{9}$	$\underset{i}{n}$	join ion	$\xlongequal{\circ}$	$\underset{N}{N}$	Nol	2	$\mathfrak{\sim}$	$\stackrel{\infty}{\dot{N}}$		O	\％	Oִ	nom		\bigcirc				¢	¢		\cdots		$7 \vDash$	®	$\underset{\sim}{q}$	\cdots
$\left\lvert\, \begin{aligned} & i \\ & \overline{0} \\ & \hline \end{aligned}\right.$			\mathfrak{c}				$\begin{array}{l\|l} 8 & 2 \\ & 2 \\ 0 & 0 \\ 0 \end{array}$										$\stackrel{8}{\circ}$		$\begin{array}{ll} 8 & \infty \\ \\ \\ \hline \end{array}$			－	$\dot{\vdots}$		$\bar{\varphi}$	\bar{c}	80			\％	$\underset{\substack{\mathrm{N}}}{ }$	$\begin{aligned} & \mathscr{C}_{1}^{2} \\ & Q_{0} \\ & \hline \end{aligned}$	$\underset{\sim}{\underset{\sim}{1}}$	$9 \times$	$\stackrel{4}{c}$	$\underset{\substack{4 \\ ⿻ 日 禸}}{\substack{\infty \\ N}}$	\mathfrak{y}		
$\left\lvert\, \begin{array}{r\|} \overline{0} \\ \hline 0 \end{array}\right.$	¢																																						
$\left\|\begin{array}{l} i \bar{i} \\ \overline{0} \\ 0 \end{array}\right\|$		-					± 0 $\stackrel{m}{n}$										Nom	0				بy	\mathfrak{c}				$\stackrel{9}{\dot{y}}$						N	－	No in		둥		
$\left\|\frac{\mathrm{x}}{\mathrm{o}}\right\|$							Ro						$\stackrel{\rightharpoonup}{\mathrm{t}}$			品薄薄		Sid			－	完			\％		N			－	－	－	员	\％					$\stackrel{m}{\circ}$
$\left\|\begin{array}{l} \overline{3} \\ \hline 0 \\ 0 \end{array}\right\|$			召菏菏荷荷						$\begin{aligned} & \hat{e} \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$								$\underset{\sim}{\underset{\sim}{N}}$	$\begin{gathered} v \\ \forall \end{gathered}$			$\frac{4}{2}$	－	\mathfrak{c}				－		8	8	－	\％	$\mathscr{\infty}$	$0: \frac{10}{\infty}$	m				
$\overline{\overline{0}}$													$\underset{\sim}{c}$					\bar{y}				－	－	$\stackrel{y}{4}$		$\underset{n}{2}$	－		$\stackrel{ \pm}{*}$	No	－	\％		－		$\begin{gathered} \stackrel{\rightharpoonup}{8} \\ \stackrel{y}{8} \\ \underset{\sim}{8} \\ \underset{\sim}{2} \end{gathered}$			
$\bar{\square}$		E							\mathfrak{c}		$\begin{array}{c\|c} 8 & 0 \\ 0 \\ 0 \\ 0 \end{array}$							Br	O	$\begin{aligned} & 80 \\ & 0.8 \\ & 0.0 \\ & 0 \end{aligned}$		8	$=$:			8		F	F	－	묵	نِ		$\pm \underset{\sim}{N}$		$\underset{\sim}{\text { Nid }}$	Bo	

$\left\lvert\, \begin{aligned} & \overline{2} \\ & \mathbf{0} \\ & \mathbf{0} \end{aligned}\right.$														$\begin{aligned} & 0 \\ & \dot{\sigma} \end{aligned}$		＋					0										$\stackrel{\infty}{\infty}$	$\stackrel{0}{\square}$	\bigcirc	0		안			${ }^{\infty}$	\bigcirc
$\left\lvert\, \begin{gathered} \bar{\sim} \\ \overline{0} \\ \hline 0 \end{gathered}\right.$														$\begin{aligned} & \mathbf{S} \\ & \dot{N} \end{aligned}$	$\stackrel{\text { Y }}{\square}$						\％		$\stackrel{\infty}{\sim}$									$\begin{gathered} \substack{6 \\ \mathbf{N} \\ \hline} \\ \hline \end{gathered}$	$\stackrel{\sim}{\mathrm{N}} \stackrel{\square}{\infty}$			J			-	
$\frac{\bar{\lambda}}{\mathrm{N}}$		$\stackrel{9}{4}$												$\stackrel{\bar{\sim}}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\text { O }}{\substack{\text {－} \\ \sim}}$					$\stackrel{\sim}{N}$										$\underset{\sim}{O}$	¢		¢		¢		\％	¢0．	－
$\left\lvert\, \begin{gathered} i \overline{0} \\ \frac{0}{0} \\ \hline \end{gathered}\right.$		気				N్~Nㅜㅁ		\mathfrak{m}				$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{N}$	$\underset{N}{\bar{N}} \bar{\infty}$	$\begin{array}{l\|l} 0 \\ \stackrel{0}{6} & \stackrel{5}{6} \\ \hline 6 \end{array}$		？	N	$\underset{\infty}{\infty}$	©	$\stackrel{\text { ®28}}{\sim}$		$\stackrel{9}{9}$	\％	g	$\stackrel{10}{\sim}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\sim}$		n	$\stackrel{ \pm}{\infty}$	$\begin{array}{c\|c} \infty \\ \hline \end{array}$		N	N		$\underset{\sim}{\infty}$	¢		$\underset{\sim}{\infty}$	$\underset{\sim}{\underset{\sim}{N}} \underset{\sim}{\underset{\sim}{2}}$
$\left\|\begin{array}{c} i n \\ 0 \\ 0 \end{array}\right\|$		붕	$\stackrel{\mathscr{m}}{\stackrel{m}{N}}$					$\stackrel{\substack{9 \\ \underset{\sim}{2} \\ \underset{N}{2} \\ \hline}}{ }$		웅		$\begin{gathered} \circ \\ \stackrel{\circ}{\circ} \\ \hline \end{gathered}$	$\stackrel{\circ}{\circ}$		$\stackrel{\rightharpoonup}{r}$		$\stackrel{\text { ¢ }}{ }$	$\stackrel{7}{7}$	－										$\stackrel{4}{2}$	～										
$\begin{array}{\|c} \frac{\pi}{N} \\ \overline{0} \end{array}$			∞	\mathfrak{q}		$\text { 号 } 9$	¢ ¢ ¢	－8	$\underline{8} \times \infty$			テ	\％${ }^{\infty}$	m	m			m f	\％							¢		¢	（											
$\begin{aligned} & \bar{N} \\ & \underset{0}{0} \\ & \hline \end{aligned}$			ํㅜํ	$\underset{\sim}{\sim} \underset{\sim}{\sim}$	$\underset{\sim}{\circ}$	∞	우N	$\underset{\sim}{\sim}$	$\stackrel{\sim}{\mathrm{N}} \underset{\sim}{\mathrm{~N}}$	$\underset{\sim}{\sim}$		$\stackrel{O}{\circ} \mathrm{~A}$	－\ddagger		$\stackrel{\sim}{\sim}$			\％	N	\％																				
$\frac{\stackrel{i}{N}}{\bar{O}}$			$\vdots \stackrel{\infty}{\infty} \dot{\infty}$	00 N らへ。		すo	\bigcirc			$\underset{\infty}{\text { N }}$	N	\％	－	¢ু	$\stackrel{\sim}{*}$	¢0	${ }_{\infty}^{\circ}$	N	두ํ	$\stackrel{\sim}{0}$	O	∞	$\stackrel{-}{-}$	\pm	∞	0	O－	\cdots	0	$\stackrel{\square}{\square}$	$\stackrel{\sim}{¢}$	$\stackrel{\text { N }}{\text { N }}$	¢0	O		ก	V		$F \infty$	∞
$\left\lvert\, \begin{aligned} & \overline{\mathrm{N}} \\ & \overline{\mathrm{O}} \end{aligned}\right.$	$\begin{aligned} & \text { O} \\ & \frac{0}{2} \\ & \frac{1}{0} \end{aligned}$								¢ ${ }_{6}^{\circ}$	$\stackrel{\leftrightarrow}{\infty}$	－			O－	\cdots	－${ }^{\circ}$	$\stackrel{\sim}{\circ}$	$\stackrel{N}{\circ}$	$\stackrel{\sim}{N}$	웅	∞	∞	os	0	${ }^{\circ}$	$\stackrel{-}{\square}$		$\stackrel{\text { N}}{ }$	$\stackrel{\bigcirc}{\square}$	$\stackrel{\infty}{\sim}$		$\begin{aligned} & N \\ & \underset{\sim}{*} \\ & \hline \end{aligned}$	$\stackrel{\text { Y }}{\square}$	눙	～	$\stackrel{N}{\text { N }}$	N	N	4	$\stackrel{\square}{\circ}$
$\begin{array}{\|c} \overline{0} \\ \overline{0} \end{array}$																	¢					－	$\begin{gathered} \infty \\ \stackrel{\leftrightarrow}{U} \\ \stackrel{C}{\mathrm{C}} \end{gathered}$	－	－	¢	¢							号			－	山		
$\frac{\overline{7}}{\overline{3}}$					M	OM				安品						$\begin{gathered} \infty \\ \underset{N}{N} \\ \underset{\sim}{N} \\ \hline \end{gathered}$	ָ	$\begin{aligned} & \text { Z } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$				F			－	M		$\begin{aligned} & \stackrel{8}{0} \\ & \dot{ल} \end{aligned}$	\dot{c}			$\begin{aligned} & \text { gex } \\ & \text { Nu } \\ & \text { a } \\ & \hline \end{aligned}$			$\underset{\substack{F \\ \infty \\ \hline}}{ }$	$\begin{aligned} & 9 \\ & \hline \end{aligned}$	5	\％	$\hat{N}_{\substack{4 \\ 0 \\ 0 \\ 0 \\ 0}}^{2}$	
－				\cdots	$\xrightarrow{\sim}$	¢	$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\sim}$	－	N	$\stackrel{\text { O }}{\sim}$	$\stackrel{\substack{\text { ¢ }}}{\sim}$	$\underset{\sim}{N} \underset{\sim}{\infty} \underset{\sim}{\infty}$				$\underset{\sim}{N} \underset{\sim}{\sim}$		$\stackrel{y}{2}$	－		～0		$\stackrel{\sim}{\sim}$	N	$\stackrel{40}{4}$		$\dot{\sim}$		$\begin{array}{c\|c} 0 \\ 0 \\ \sim \\ \sim & 0 \\ N \end{array}$	$\mathbf{N ⿱ 冂}_{\substack{0 \\ \sim}}^{\circ}$	べ	－		－	足	¢	－80	－
$\stackrel{i}{i}$			00	$\cdots \infty$	$\cdots \cdots$	$\cdots 0$	－N	N	$\cdots \cdots$	ω	N N	$N \infty$	6 ↔			寸	15	15		$0 \text { U }$	\forall	＋	－	5	∞	\％		18		∞	寸	V	＊	＊		－		＋	＊	－+
$\frac{\bar{N}}{\overline{0}}$	$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\circ}{\circ} \end{aligned}$											N No			$\begin{array}{ll} n \\ 0 \\ \hline \end{array}$						$\mathfrak{l} \left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	8	\mathfrak{c}	ハ		－				$\stackrel{c}{\stackrel{o}{m}}$				－	号	促	謜	－		
$\overline{8}$	$\begin{aligned} & \text { ᄃ } \bar{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	빕															\％				$\mathfrak{3}$	운	$\begin{aligned} & \mathrm{B} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	－			$\begin{aligned} & 8 \\ & \underset{8}{8} \\ & = \end{aligned}$		8	?	오두둗		－	－	－	－	$\stackrel{\infty}{\infty}$	눈	$\left\{\begin{array}{l} 8 \\ 0 \\ \text { mid } \end{array}\right.$	

				$\underset{\sim}{\infty} \underset{\sim}{\sim}$	＋	\bigcirc	0	$0{ }_{0}^{0}$	$\xrightarrow{\sim}$	J	－	${ }_{\infty}^{+}$																
\|				实			9		$\stackrel{\mathrm{C}}{6}$	$\stackrel{\rightharpoonup}{\omega}$	＋																	
$\begin{aligned} & \overline{\mathrm{N}} \\ & \overline{\mathrm{O}} \\ & \hline \end{aligned}$		雨等		$\begin{array}{cc} \mathfrak{N} \\ \underset{\sim}{N} \\ \text { N } \end{array}$		$\stackrel{2}{\infty}$	8	，	$\stackrel{\Perp}{\mathbb{N}} \underset{\sim}{1}$	$$	$$	$\begin{aligned} & 8 \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$																
$\left\lvert\, \begin{aligned} & \bar{N} \\ & \stackrel{N}{O} \\ & \hline 0 \end{aligned}\right.$		둔		N:	$\underset{\sim}{\circ} \underset{\sim}{\circ}$	$\stackrel{\sim}{N} \underset{\sim}{N}$	No	N్N	$\stackrel{\sim}{\sim}$	$\stackrel{y}{4} \underset{\sim}{\underset{N}{N}}$	$\frac{\bar{N}}{\stackrel{m}{N}}$	－	N	जै	$\frac{5}{6}$	8	N	$\stackrel{1}{2}$	∞	$\stackrel{i}{f}$	$\stackrel{10}{\wedge}$	人	$\stackrel{ \pm}{\infty}$	$\stackrel{\text {－}}{\sim}$	N	$\begin{aligned} & \underset{\sim}{\sigma} \\ & \hline \end{aligned}$		
$\left\lvert\, \begin{aligned} & \text { Nin } \\ & \overline{0} \\ & \hline 0 \end{aligned}\right.$		둔													－	$\stackrel{\sim}{\sim}$	$\stackrel{-}{-}$	令	\％	\％	$\stackrel{N}{\text { N }}$	－	N	N	N	N	－	珨
$\frac{\bar{d}}{\bar{d}}$		$\begin{array}{c\|c} 7 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \end{array}$												\＃	－	4	年	9	9	8	\％	9	\％	\％	9	－	才	大
$\begin{aligned} & \text { N} \\ & \overline{0} \\ & 0 \end{aligned}$		0												－	os	¢	人̀	\％	안	\％		안	\％		F	N	－	눈
$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \bar{O} \\ & \hline \end{aligned}\right.$	$\frac{-8}{2}$		ก	－	－	－10	\bigcirc	∞	\pm	－	\pm	－へ		\％	－	8	L	－	O	－	－	$\dot{\infty}$	－	$\stackrel{\infty}{0}$	¢	N	N	¢
$\mid \overline{\mathrm{N}}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{2} \\ & \stackrel{5}{0} \end{aligned}$			$0 \cdot$	\cdots	$\underset{\sim}{\sim} \underset{\sim}{\circ}$	웅	－	$\stackrel{m}{\mathrm{~m}}$		$\stackrel{?}{\circ}$	¢				－	N0	－	－	N	$\stackrel{-}{+}$	$\underset{\infty}{\infty}$	－	－	－	$\underset{\sigma}{\dot{\sigma}}$		－
													$\begin{gathered} \circ \\ \hline \end{gathered}$		＋	＋		N	N	H	＋		＋	N	N			
$\left\lvert\, \frac{\overline{3}}{\bar{\circ}}\right.$							$\underset{\sim}{c}$	－	－			\cdots	\％		N00	O2	O	N		¢	N	寺	－	－	$\stackrel{\text { \％}}{\substack{\text { ¢ } \\ \hline \\ \hline}}$	¢	$\begin{array}{c\|c} 5 \\ \hline & 8 \\ \hline & 10 \\ 7 \end{array}$	
$\frac{\overline{0}}{\overline{0}}$				$\stackrel{m}{\infty} \underset{\sim}{\infty}$	寸	$\stackrel{\sim}{0}$	－	－	－	N	－	N	$\stackrel{\text { N }}{\text { N }}$	$\stackrel{\text {－}}{\sim}$	8	$\stackrel{\infty}{6}$		m	$\stackrel{\text { N }}{\text {＋}}$	O	$\xrightarrow{\text { ¢ }}$	$\stackrel{9}{+}$	\％	$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{\sim}$	－	－	O
$\frac{1}{3}$											\checkmark	\square	\pm	\bigcirc	0	0	ω	－	\sim	0	ω	ω	ω	N	N	N	，	－
$\overline{\mathrm{O}}$					$\begin{array}{l\|l\|} \hline 0 & 0 \\ & 0 \\ \hline & 0 \\ \hline \end{array}$			＋				\％			（	最	－	m		O	合	N	W	$\stackrel{\text { ¢ }}{\text { ¢ }}$	\％			
$\overline{0}$	$\begin{aligned} & \text { 듬 } \\ & \stackrel{\circ}{\circ} \end{aligned}$											＋	－		－	8	－	8	\％	－	－	$0 \begin{gathered} 8 \\ 0 \\ 1 \end{gathered}$	－	¢	¢			

LIQUEFACTION ANALYSIS CALCULATION DETAILS

Copyright by CivilTech Software
www. civiltechsoftware.com

Font: Courier New, Regular, Size 8 is recommended for this report. Licensed to , 6/2/2016 4:21:49 PM

Input File Name: G:\GS16\GS16-0107_Panama\Design \& Analysis\LIQUEFACTION\16-0107-CPT7.1iq
Title: 12870 Panama Street
Subtitle: CPT 7
Input Data:
Surface Elev. $=0$
Hole No. =CPT7
Depth of Hole $=53.00 \mathrm{ft}$
Water Table during Earthquake= 5.00 ft
Water Table during In-Situ Testing= 10.00 ft
Max. Acceleration $=0.65 \mathrm{~g}$
Earthquake Magnitude $=6.63$
No-Liquefiable Soils: CL, OL are Non-Liq. Soil

1. CPT Calulation Method: Modify Robertson*
2. Settlement Analysis Method: Ishihara / Yoshimine
3. Fines Correction for Liquefaction: Stark/O1son et a1.*
4. Fine Correction for Settlement: During Liquefaction*
5. Settlement Calculation in: All zones*
6. User request factor of safety (apply to CSR), User= 1.1 Plot two CSR (fsl=1, fs2=User)
7. Average two input data between two Depths: Yes*

* Recommended Options

In-Situ Depth ft	Test Data:		$\begin{aligned} & \mathrm{Rf} \\ & \% \end{aligned}$	Gamma pcf	Fines \%	$\begin{aligned} & \text { D50 } \\ & \mathrm{mm} \end{aligned}$
	qc atm	fs atm				
0.16	0.00	0.00	100.00	120.00	NoLiq	0.50
0.66	0.00	0.00	100.00	120.00	NoLiq	0.50
1.15	0.00	0.00	100.00	120.00	NoLiq	0.50
1.64	0.00	0.00	100.00	120.00	NoLiq	0.50
2.13	0.00	0.00	100.00	120.00	NoLiq	0.50
2.62	0.00	0.00	100.00	120.00	NoLiq	0.50
3.12	0.00	0.00	100.00	120.00	NoLiq	0.50
3.61	0.00	0.00	100.00	120.00	NoLiq	0.50
4.10	0.00	0.00	100.00	120.00	NoLiq	0.50
4.59	0.00	0.00	100.00	120.00	NoLiq	0.50
5.09	34.52	1.82	5.26	120.00	NoLiq	0.50
5.58	32.17	1.56	4.84	120.00	NoLiq	0.50
6.07	30.56	1.70	5.56	120.00	NoLiq	0.50
6.56	32.31	1.70	5.26	120.00	NoLiq	0.50
7.05	53.23	1.43	2.68	120.00	0.00	0.50
7.55	103.70	1.91	1.84	120.00	0.00	0.50
8.04	123.80	1.89	1.52	120.00	0.00	0.50
8.53	84.96	2.31	2.71	120.00	0.00	0.50
9.02	33.93	1.40	4.12	120.00	0.00	0.50
9.51	33.07	1.30	3.93	120.00	0.00	0.50
10.00	82.42	1.72	2.08	120.00	0.00	0.50
10.49	54.54	1.48	2.72	120.00	0.00	0.50
10.99	104.40	1.26	1.20	120.00	0.00	0.50
11.48	84.23	1.45	1.72	120.00	0.00	0.50
11.97	74.50	1.07	1.44	120.00	0.00	0.50
12.46	35.63	0.85	2.40	120.00	0.00	0.50
12.95	16.00	0.25	1.58	120.00	0.00	0.50
13.45	10.31	0.09	0.85	120.00	0.00	0.50
13.94	8.56	0.12	1.43	120.00	0.00	0.50
14.43	11.51	0.12	1.03	120.00	0.00	0.50
14.92	13.69	0.30	2.20	120.00	0.00	0.50
15.41	15.53	0.58	3.73	120.00	0.00	0.50
15.91	13.21	0.58	4.43	120.00	0.00	0.50
16.40	12.10	0.49	4.03	120.00	NoLiq	0.50
16.89	10.76	0.29	2.71	120.00	NoLiq	0.50
17.38	10.93	0.27	2.47	120.00	NoLiq	0.50
17.88	11.23	0.34	3.04	120.00	NoLiq	0.50
18.37	8.95	0.34	3.85	120.00	NoLiq	0.50
18.86	10.73	0.52	4.89	120.00	NoLiq	0.50
19.35	20.30	0.86	4.25	120.00	NoLiq	0.50
19.84	23.92	0.88	3.66	120.00	NoLiq	0.50
20.34	29.13	1.50	5.15	120.00	NoLiq	0.50
20.83	12.74	0.54	4.25	120.00	NoLiq	0.50
21.32	71.99	1.50	2.08	120.00	NoLiq	0.50
21.81	135.10	0.62	0.46	120.00	Noliq	0.50
22.30	67.59	0.79	1.17	120.00	NoLiq	0.50
22.80	59.47	1.55	2.61	120.00	NoLiq	0.50

					16-0107-CPT7. cal	
23.29	38.28	1.24	3.24	120.00	NoLiq	0.50
23.78	26.37	0.60	2.29	120.00	NoLiq	0.50
24.27	19.49	0.73	3.74	120.00	NoLia	0.50
24.77	11.20	0.70	6.25	120.00	NoLiq	0.50
25.26	16.28	0.69	4.24	120.00	NoLiq	0.50
25.75	127.40	2.60	2.04	120.00	NoLiq	0.50
26.24	270.20	2.28	0.84	120.00	0.00	0.50
26.73	361.80	2.49	0.69	120.00	0.00	0.50
27.23	355.20	2.75	0.77	120.00	0.00	0.50
27.72	645.90	4.80	0.74	120.00	0.00	0.50
28.21	494.40	5.48	1.11	120.00	0.00	0.50
28.70	344.20	1.33	0.39	120.00	0.00	0.50
29.19	264.30	3.64	1.38	120.00	0.00	0.50
29.69	446.40	1.30	0.29	120.00	0.00	0.50
30.18	613.50	3.29	0.54	120.00	0.00	0.50
30.67	627.00	4.19	0.67	120.00	0.00	0.50
31.16	572.70	5.76	1.01	120.00	0.00	0.50
31.66	668.80	2.88	0.43	120.00	0.00	0.50
32.15	439.30	1.12	0.26	120.00	0.00	0.50
32.64	130.30	2.45	1.88	120.00	0.00	0.50
33.13	36.30	0.91	2.51	120.00	0.00	0.50
33.62	31.20	0.50	1.62	120.00	0.00	0.50
34.12	26.12	0.41	1.57	120.00	0.00	0.50
34.61	50.69	1.04	2.04	120.00	0.00	0.50
35.10	120.20	2.59	2.16	120.00	0.00	0.50
35.59	47.04	2.34	4.97	120.00	0.00	0.50
36.08	35.10	0.69	1.97	120.00	0.00	0.50
36.58	35.55	0.69	1.94	120.00	0.00	0.50
37.07	38.64	0.76	1.96	120.00	0.00	0.50
37.56	41.60	0.79	1.90	120.00	0.00	0.50
38.05	43.41	0.77	1.78	120.00	0.00	0.50
38.54	44.89	0.92	2.05	120.00	0.00	0.50
39.04	42.91	0.97	2.26	120.00	0.00	0.50
39.53	63.43	1.90	2.99	120.00	0.00	0.50
40.02	57.49	2.09	3.64	120.00	0.00	0.50
40.51	37.83	1.20	3.18	120.00	0.00	0.50
41.01	41.49	1.08	2.59	120.00	0.00	0.50
41.50	49.80	1.42	2.85	120.00	0.00	0.50
41.99	76.06	3.03	3.99	120.00	0.00	0.50
42.48	61.84	3.17	5.13	120.00	0.00	0.50
42.97	38.78	1.20	3.10	120.00	0.00	0.50
43.47	33.82	0.92	2.72	120.00	0.00	0.50
43.96	32.98	0.90	2.73	120.00	0.00	0.50
44.45	32.84	1.32	4.02	120.00	0.00	0.50
44.94	41.77	1.28	3.05	120.00	0.00	0.50
45.43	40.23	1.10	2.73	120.00	0.00	0.50
45.93	40.68	1.15	2.83	120.00	0.00	0.50
46.42	38.56	1.10	2.86	120.00	0.00	0.50
46.91	39.12	1.09	2.78	120.00	0.00	0.50
47.40	51.36	2.45	4.77	120.00	0.00	0.50
47.90	350.30	4.60	1.31	120.00	0.00	0.50
48.39	453.30	2.40	0.53	120.00	0.00	0.50
48.88	435.80	2.36	0.54	120.00	0.00	0.50
49.37	510.70	1.17	0.23	120.00	0.00	0.50
49.86	504.90	3.04	0.60	120.00	0.00	0.50
50.36	522.50	2.84	0.54	120.00	0.00	0.50
50.85	567.00	5.16	0.91	120.00	0.00	0.50
51.34	582.50	1.57	0.27	120.00	0.00	0.50
51.83	577.10	1.26	0.22	120.00	0.00	0.50
52.32	672.30	1.47	0.22	120.00	0.00	0.50
52.82	662.20	0.02	0.00	120.00	0.00	0.50

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:
Calculation segment, $d z=0.050 \mathrm{ft}$
User defined Print Interval, $d p=0.50 \mathrm{ft}$
Peak Cround Acceleration (PGA), a_max $=0.65 \mathrm{~g}$

CSR Calculation: Depth ft	gamma pcf	sigma atm	gamma' pcf	sigma' atm	rd	mZ g	$\mathrm{a}(\mathrm{z})$ g	CSR	$\mathrm{xfs1}$	=CSRfs
0.16	120.00	0.009	120.00	0.009	1.00	0.000	0.650	0.42	1.00	0.42
0.66	120.00	0.037	120.00	0.037	1.00	0.000	0.650	0.42	1.00	0.42
1.16	120.00	0.066	120.00	0.066	1.00	0.000	0.650	0.42	1.00	0.42
1.66	120.00	0.094	120.00	0.094	1.00	0.000	0.650	0.42	1.00	0.42
2.16	120.00	0.122	120.00	0.122	0.99	0.000	0.650	0.42	1.00	0.42
2.66	120.00	0.151	120.00	0.151	0.99	0.000	0.650	0.42	1.00	0.42
3.16	120.00	0.179	120.00	0.179	0.99	0.000	0.650	0.42	1.00	0.42

Page 2

Page 3

				16-0107-CPT7.cal						
44.66	120.00	2.532	57.60	1.363	0.81	0.000	0.650	0.64	1.00	0.64
45.16	120.00	2.561	57.60	1.377	0.81	0.000	0.650	0.63	1.00	0.63
45.66	120.00	2.589	57.60	1.391	0.80	0.000	0.650	0.63	1.00	0.63
46.16	120.00	2.618	57.60	1.404	0.80	0.000	0.650	0.63	1.00	0.63
46.66	120.00	2.646	57.60	1.418	0.79	0.000	0.650	0.63	1.00	0.63
47.16	120.00	2.674	57.60	1.431	0.79	0.000	0.650	0.62	1.00	0.62
47.66	120.00	2.703	57.60	1.445	0.79	0.000	0.650	0.62	1.00	0.62
48.16	120.00	2.731	57.60	1.459	0.78	0.000	0.650	0.62	1.00	0.62
48.66	120.00	2.759	57.60	1.472	0.78	0.000	0.650	0.62	1.00	0.62
49.16	120.00	2.788	57.60	1.486	0.77	0.000	0.650	0.61	1.00	0.61
49.66	120.00	2.816	57.60	1.499	0.77	0.000	0.650	0.61	1.00	0.61
50.16	120.00	2.844	57.60	1.513	0.77	0.000	0.650	0.61	1.00	0.61
50.66	120.00	2.873	57.60	1.527	0.76	0.000	0.650	0.61	1.00	0.61
51.16	120.00	2.901	57.60	1.540	0.76	0.000	0.650	0.60	1.00	0.60
51.66	120.00	2.929	57.60	1.554	0.75	0.000	0.650	0.60	1.00	0.60
52.16	120.00	2.958	57.60	1.567	0.75	0.000	0.650	0.60	1.00	0.60
52.66	120.00	2.986	57.60	1.581	0.75	0.000	0.650	0.59	1.00	0.59

$\overline{\text { CSR }}$ is based on water table at 5.00 during earthquake
CRR Calculation from CPT data, using Modify Robertson's Method:

Depth ft	(Fines qC atm	cont fric. atm	$\begin{aligned} & \text { is de } \\ & \mathrm{n} \end{aligned}$	Q Q	$\begin{aligned} & \text { y qc } \\ & \text { Rf } \end{aligned}$	fric Ic	Cq	Fines \%	Kc	$\begin{aligned} & \text { qc1n } \\ & \text { atm } \end{aligned}$	$\begin{aligned} & \text { qc1f } \\ & \text { atm } \end{aligned}$	CRR7. 5
0.16			1.00	1.00E-4	0.00	7.97						
0.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
0.66			1.00	1.00E-4	0.00	7.97						
0.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.65			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.66			1.00	1.00E-4	0.00	7.97						
3.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
5.16			1.00	1.16 E 2	5.24	2.39						
5.16	34.33	1.78	1.00	1.16E2	5.24	2.39	1.00	NoLiq	1.00	34.33	34.33	2.08
5.66			1.00	9.58 El	5.16	2.44						
5.66	31.07	1.59	1.00	9.58 E 1	5.16	2.44	1.00	NoLiq	1.00	31.07	31.07	2.08
6.16			1.00	8.70 El	5.61	2.49						
6.16	30.73	1.70	1.00	8.70 EL	5.61	2.49	1.00	NoLiq	1.00	30.73	30.73	2.08
6.66			1.00	8.94 El	5.14	2.46						
6.66	34.13	1.74	1.00	8.94 El	5.14	2.46	1.00	Noliq	1.00	34.13	34.13	2.08
7.16			1.00	1.64 E 2	2.37	2.03						
7.16			0.50	1.05 E 2	2.37	2.15						
7.16	67.08	1.58	0.50	1.05 E 2	2.37	2.15	1.57	17.49	0.33	105.27	157.92	0.45
7.66			1.00	2.57E2	1.95	1.85						
7.66			0.50	1.70E2	1.95	1.95						
7.66	111.98	2.18	0.50	1.70 E 2	1.95	1.95	1.52	11.74	0.18	169.90	207.19	0.91
8.16			1.00	2.52E2	1.90	1.84						
8.16			0.50	1.72E2	1.90	1.94						
8.16	117.18	2.22	0.50	1.72 E 2	1.90	1.94	1.47	11.43	0.17	172.26	207.95	0.92
8.66			1.00	1.44 E 2	2.94	2.14						
8.66			0.50	1.01 E 2	2.94	2.23						
8.66	70.97	2.07	0.50	1.01 E 2	2.94	2.23	1.43	20.17	0.41	101.27	170.23	0.54
9.16			1.00	$5.15 \mathrm{E1}$	4.63	2.58						
9.16			0.50	3.79 El	4.63	2.67						
9.16			0.70	$4.32 \mathrm{E1}$	4.63	2.63						
9.16	27.29	1.24	0.70	$4.32 \mathrm{E1}$	4.63	2.63	1.58	36.90	0.80	43.17	215.83	1.02
9.66			1.00	1.02 E 2	2.65	2.20						
9.66			0.50	$7.59 \mathrm{E1}$	2.65	2.29						
9.66	56.16	1.48	0.50	$7.59 \mathrm{E1}$	2.65	2.29	1.35	22.04	0.45	75.88	139.19	0.33
10.16			1.00	9.88 El	3.10	2.26						
10.16			0.50	$7.55 \mathrm{E1}$	3.10	2.34						
10.16	57.06	1.75	0.50	7.55 El	3.10	2.34	1.32	23.94	0.51	75.47	152.69	0.41
10.66			1.00	1.58 E 2	1.44	1.88						
10.66			0.50	1.22 E 2	1.44	1.95						
10.66	93.30	1.34	0.50	1.22 E 2	1.44	1.95	1.31	11.73	0.18	121.95	148.68	0.39
11.16			1.00	1.71 E 2	1.18	1.79						
11.16			0.50	1.33 E 2	1.18	1.86						
11.16	103.09	1.20	0.50	1.33 E 2	1.18	1.86	1.29	9.55	0.12	133.21	151.62	0.40
11.66			1.00	1.44 E 2	1.63	1.94						
							Page					

	16-0107-CPT7.cal											
11.66			0.50	1.13E2	1.63	2.01						
11.66	88.65	1.43	0.50	1.13E2	1.63	2.01	1.28	13.31	0.22	113.27	145.57	0.37
12.16			1.00	9.85E1	1.49	2.03						
12.16			0.50	7.88 El	1.49	2.10						
12.16	62.37	0.92	0.50	7.88 El	1.49	2.10	1.26	15.85	0.29	78.82	110.96	0.21
12.66			1.00	2.85E1	3.72	2.70						
12.66	18.94	0.68	1.00	2.85 El	3.72	2.70	1.00	NoLiq	1.00	18.94	18.94	2.08
13.16			1.00	$2.01 \mathrm{E1}$	1.02	2.49						
13.16			0.50	$1.72 \mathrm{E1}$	1.02	2.55						
13.16	13.88	0.13	0.50	1.72 El	1.02	2.55	1.24	33.02	0.75	17.18	68.24	0.11
13.66			1.00	1.17 El	1.19	2.73						
13.66	8.61	0.09	1.00	1.17E1	1.19	2.73	1.00	NoLiq	1.00	8.61	8.61	2.08
14.16			1.00	1.32E1	1.27	2.70						
14.16	9.81	0.11	1.00	1.32 El	1.27	2.70	1.00	NoLiq	1.00	9.81	9.81	2.08
14.66			1.00	$1.63 \mathrm{E1}$	1.89	2.71						
14.66	12.13	0.21	1.00	1.63 El	1.89	2.71	1.00	NoLiq	1.00	12.13	12.13	2.08
15.16			1.00	1.78 El	3.30	2.82						
15.16	13.42	0.41	1.00	1.78 El	3.30	2.82	1.00	NoLiq	1.00	13.42	13.42	2.08
15.66			1.00	1.94 El	4.01	2.84						
15.66	14.91	0.56	1.00	$1.94 \mathrm{E1}$	4.01	2.84	1.00	NoLiq	1.00	14.91	14.91	2.08
16.16			1.00	1.71 El	4.41	2.91						
16.16	13.47	0.55	1.00	1.71 El	4.41	2.91	1.00	NoLiq	1.00	13.47	13.47	2.08
16.66			1.00	1.33E1	3.97	2.97						
16.66	10.90	0.40	1.00	1.33 E 1	3.97	2.97	1.00	NoLiq	1.00	10.90	10.90	2.08
17.16			1.00	1.37 E 1	2.67	2.85						
17.16	11.43	0.28	1.00	1.37E1	2.67	2.85	1.00	NoLiq	1.00	11.43	11.43	2.08
17.66			1.00	1.27E1	3.08	2.92						
17.66	10.88	0.30	1.00	1.27E1	3.08	2.92	1.00	NoLiq	1.00	10.88	10.88	2.08
18.16			1.00	1.10E1	3.40	3.00						
18.16	9.70	0.29	1.00	1.10E1	3.40	3.00	1.00	NoLiq	1.00	9.70	9.70	2.08
18.66			1.00	$1.07 \mathrm{E1}$	4.49	3.07						
18.66	9.69	0.39	1.00	$1.07 \mathrm{E1}$	4.49	3.07	1.00	NoLiq	1.00	9.69	9.69	2.08
19.16			1.00	$3.21 \mathrm{E1}$	2.86	2.58						
19.16	27.33	0.75	1.00	$3.21 \mathrm{E1}$	2.86	2.58	1.00	NoLiq	1.00	27.33	27.33	2.08
19.66			1.00	2.16E1	3.69	2.78						
19.66	19.08	0.66	1.00	2.16E1	3.69	2.78	1.00	NoLiq	1.00	19.08	19.08	2.08
20.16			1.00	3.44 El	5.00	2.72						
20.16	30.15	1.45	1.00	3.44 El	5.00	2.72	1.00	NoLiq	1.00	30.15	30.15	2.08
20.66			1.00	1.77E1	5.43	2.96						
20.66	16.39	0.83	1.00	1.77 El	5.43	2.96	1.00	NoLiq	1.00	16.39	16.39	2.08
21.16			1.00	2.47E1	5.81	2.87						
21.16	22.69	1.25	1.00	2.47E1	5.81	2.87	1.00	NoLiq	1.00	22.69	22.69	2.08
21.66			1.00	1.61 E 2	0.64	1.63						
21.66	143.35	0.91	1.00	1.61 E 2	0.64	1.63	1.00	NoLiq	1.00	143.35	143.35	2.08
22.16			1.00	9.47E1	0.74	1.85						
22.16	86.30	0.63	1.00	9.47E1	0.74	1.85	1.00	Noliq	1.00	86.30	86.30	2.08
22.66			1.00	$6.30 \mathrm{E1}$	2.30	2.30						
22.66	58.71	1.32	1.00	$6.30 \mathrm{E1}$	2.30	2.30	1.00	NoLiq	1.00	58.71	58.71	2.08
23.16			1.00	4.07E1	3.91	2.60						
23.16	38.94	1.47	1.00	4.07E1	3.91	2.60	1.00	NoLiq	1.00	38.94	38.94	2.08
23.66			1.00	2.22E1	3.39	2.75						
23.66	22.17	0.71	1.00	2.22E1	3.39	2.75	1.00	NoLiq	1.00	22.17	22.17	2.08
24.16			1.00	2.05 E 1	3.52	2.79						
24.16	20.93	0.69	1.00	2.05 E 1	3.52	2.79	1.00	NoLiq	1.00	20.93	20.93	2.08
24.66			1.00	1.13 E 1	7.13	3.18						
24.66	12.36	0.78	1.00	$1.13 \mathrm{E1}$	7.13	3.18	1.00	NoLiq	1.00	12.36	12.36	2.08
25.16			1.00	1.28 El	4.65	3.02						
25.16	14.00	0.58	1.00	1.28 El	4.65	3.02	1.00	NoLiq	1.00	14.00	14.00	2.08
25.66			1.00	8.09 E 1	2.29	2.22						
25.66	81.86	1.84	1.00	$8.09 \mathrm{E1}$	2.29	2.22	1.00	NoLiq	1.00	81.86	81.86	2.08
26.16			1.00	2.27E2	0.94	1.63						
26.16			0.50	2.29E2	0.94	1.63						
26.16	229.69	2.15	0.50	$2.29 E 2$	0.94	1.63	1.00	4.88	0.00	228.87	228.87	1.19
26.66			1.00	3.70 E 2	0.63	1.36						
26.66			0.50	3.75 E 2	0.63	1.36						
26.66	379.11	2.37	0.50	3.75 E 2	0.63	1.36	0.99	1.01	0.00	375.23	375.23	2.08
27.16			1.00	3.36 E 2	0.72	1.43						
27.16			0.50	3.43 E 2	0.72	1.42						
27.16	348.89	2.49	0.50	3.43 E 2	0.72	1.42	0.98	1.83	0.00	343.03	343.03	2.08
27.66			1.00	5.76 E 2	0.76	1.31						
27.66			0.50	5.91 E 2	0.76	1.31						
27.66	604.94	4.61	0.50	5.91 E 2	0.76	1.31	0.98	0.46	0.00	500.00	500.00	2.08
28.16			1.00	4.64 E 2	1.21	1.53						
28.16			0.50	4.79 E 2	1.21	1.52						
28.16	494.06	5.97	0.50	4.79 E 2	1.21	1.52	0.97	3.18	0.00	479.50	479.50	2.08
28.66			1.00	$3.37 E 2$	0.39	1.24						
28.66			0.50	3.51 E 2	0.39	1.23						
28.66	364.18	1.40	0.50	$3.51 E 2$	0.39	1.23	0.96	0.00	0.00	351.20	351.20	2.08
29.16			1.00	2.35 E 2	1.26	1.72						
29.16			0.50	2.47E2	1.26	1.70						
29.16	257.99	3.23	0.50	$2.47 E 2$	1.26	1.70	0.96	6.19	0.03	247.23	255.35	1.63
29.66			1.00	3.95 E 2	0.36	1.17						

Page 5

	16-0107-CPT7.cal											
29.66			0.50	4.17E2	0.36	1.15						
29.66	437.63	1.57	0.50	4.17E2	0.36	1.15	0.95	0.00	0.00	416.80	416.80	2.08
30.16			1.00	5.47 E 2	0.53	1.19						
30.16			0.50	5.80 E 2	0.53	1.18						
30.16	612.56	3.23	0.50	5.80 E 2	0.53	1.18	0.95	0.00	0.00	500.00	500.00	2.08
30.66			1.00	5.53 E 2	0.66	1.27						
30.66			0.50	$5.89 E 2$	0.66	1.25						
30.66	626.41	4.15	0.50	5.89 E 2	0.66	1.25	0.94	0.00	0.00	500.00	500.00	2.08
31.16			1.00	4.99 E 2	1.01	1.45						
31.16			0.50	5.36 E 2	1.01	1.43						
31.16	572.66	5.76	0.50	5.36 E 2	1.01	1.43	0.94	1.90	0.00	500.00	500.00	2.08
31.66			1.00	5.77E2	0.43	1.11						
31.66			0.50	6.22 E 2	0.43	1.09						
31.66	668.81	2.88	0.50	6.22 E 2	0.43	1.09	0.93	0.00	0.00	500.00	500.00	2.08
32.16			1.00	3.70 E 2	0.26	1.10						
32.16			0.50	4.02 E 2	0.26	1.07						
32.16	434.51	1.11	0.50	4.02 E 2	0.26	1.07	0.92	0.00	0.00	401.62	401.62	2.08
32.66			1.00	1.03 E 2	1.98	2.10						
32.66			0.50	1.13 E 2	1.98	2.08						
32.66	123.41	2.41	0.50	1.13 E 2	1.98	2.08	0.92	15.07	0.27	113.41	155.12	0.43
33.16			1.00	2.87E1	2.54	2.59						
33.16			0.50	$3.31 \mathrm{E1}$	2.54	2.54						
33.16	36.26	0.87	0.50	$3.31 \mathrm{E1}$	2.54	2.54	0.91	32.39	0.73	33.13	123.30	0.25
33.66			1.00	2.35 E 1	1.70	2.55						
33.66			0.50	2.76 E 1	1.70	2.49						
33.66	30.42	0.48	0.50	2.76 E 1	1.70	2.49	0.91	30.39	0.68	27.64	85.82	0.14
34.16			1.00	2.05 E 1	1.71	2.60						
34.16	27.03	0.43	1.00	2.05 EI	1.71	2.60	1.00	NoLiq	1.00	27.03	27.03	2.08
34.66			1.00	4.60 El	2.07	2.37						
34.66			0.50	$5.30 \mathrm{E1}$	2.07	2.32						
34.66	58.99	1.18	0.50	5.30 El	2.07	2.32	0.90	23.45	0.49	53.00	104.46	0.19
35.16			1.00	$9.75 \mathrm{E1}$	2.14	2.14						
35.16			0.50	1.11 E 2	2.14	2.11						
35.16	124.08	2.62	0.50	1.11 E 2	2.14	2.11	0.89	16.01	0.29	110.89	157.05	0.44
35.66			1.00	3.15 E 1	5.29	2.77						
35.66	41.88	2.11	1.00	3.15 E 1	5.29	2.77	1.00	NoLiq	1.00	41.88	41.88	2.08
36.16			1.00	2.52 El	2.18	2.59						
36.16			0.50	3.03 EI	2.18	2.53						
36.16	34.29	0.70	0.50	3.03 EI	2.18	2.53	0.88	31.86	0.72	30.31	107.16	0.19
36.66			1.00	$2.61 \mathrm{E1}$	2.10	2.57						
36.66			0.50	$3.15 \mathrm{E1}$	2.10	2.50						
36.66	35.85	0.71	0.50	$3.15 \mathrm{E1}$	2.10	2.50	0.88	30.83	0.69	31.53	101.61	0.18
37.16			1.00	2.85E1	2.07	2.53						
37.16			0.50	$3.44 \mathrm{E1}$	2.07	2.47						
37.16	39.30	0.77	0.50	$3.44 \mathrm{E1}$	2.07	2.47	0.87	29.33	0.65	34.38	98.11	0.17
37.66			1.00	$3.01 \mathrm{E1}$	1.98	2.50						
37.66			0.50	3.65 E 1	1.98	2.44						
37.66	41.89	0.79	0.50	3.65 EI	1.98	2.44	0.87	27.98	0.61	36.46	94.37	0.16
38.16			1.00	$3.11 \mathrm{E1}$	1.90	2.48						
38.16			0.50	3.78 E 1	1.90	2.41						
38.16	43.63	0.79	0.50	3.78 El	1.90	2.41	0.87	27.01	0.59	37.78	91.63	0.15
38.66			1.00	$3.13 \mathrm{E1}$	2.29	2.53						
38.66			0.50	3.82 E 1	2.29	2.46						
38.66	44.34	0.97	0.50	3.82 E 1	2.29	2.46	0.86	29.03	0.64	38.20	106.56	0.19
39.16			1.00	3.36 E 1	2.23	2.50						
39.16			0.50	$4.11 \mathrm{E1}$	2.23	2.43						
39.16	47.97	1.02	0.50	4.11 El	2.23	2.43	0.86	27.64	0.60	41.12	103.94	0.18
39.66			1.00	4.12 EI	3.94	2.60						
39.66			0.50	5.02 El	3.94	2.54						
39.66	58.91	2.23	0.50	$5.02 \mathrm{E1}$	3.94	2.54	0.85	32.28	0.73	50.24	184.88	0.67
40.16			1.00	$3.59 \mathrm{E1}$	3.57	2.61						
40.16	52.08	1.78	1.00	3.59 El	3.57	2.61	1.00	NoLiq	1.00	52.08	52.08	2.08
40.66			1.00	$2.54 \mathrm{E1}$	2.80	2.65						
40.66	37.88	1.00	1.00	$2.54 \mathrm{E1}$	2.80	2.65	1.00	NoLiq	1.00	37.88	37.88	2.08
41.16			1.00	$2.91 \mathrm{E1}$	2.70	2.60						
41.16			0.50	$3.66 \mathrm{E1}$	2.70	2.52						
41.16	43.58	1.11	0.50	3.66 E 1	2.70	2.52	0.84	31.69	0.71	36.63	127.41	0.27
41.66			1.00	$3.17 \mathrm{E1}$	4.22	2.70						
41.66	47.62	1.91	1.00	$3.17 \mathrm{E1}$	4.22	2.70	1.00	NoLiq	1.00	47.62	47.62	2.08
42.16			1.00	4.85 E 1	5.22	2.63						
42.16	72.34	3.65	1.00	4.85 El	5.22	2.63	1.00	NoLiq	1.00	72.34	72.34	2.08
42.66			1.00	$3.42 \mathrm{E1}$	5.01	2.73						
42.66	52.17	2.49	1.00	$3.42 \mathrm{E1}$	5.01	2.73	1.00	NoLiq	1.00	52.17	52.17	2.08
43.16			1.00	2.24 E 1	2.89	2.71						
43.16	35.41	0.95	1.00	$2.24 \mathrm{E1}$	2.89	2.71	1.00	NoLiq	1.00	35.41	35.41	2.08
43.66			1.00	1.98 E 1	3.15	2.77						
43.66	31.88	0.93	1.00	$1.98 \mathrm{E1}$	3.15	2.77	1.00	NoLiq	1.00	31.88	31.88	2.08
44.16			1.00	2.15 El	3.16	2.74						
44.16	34.69	1.02	1.00	2.15 El	3.16	2.74	1.00	NoLiq	1.00	34.69	34.69	2.08
44.66			1.00	2.36E1	3.75	2.76						
44.66	38.16	1.34	1.00	2.36 E 1	3.75	2.76	1.00	NoLiq	1.00	38.16	38.16	2.08
45.16			1.00	2.38 E 1	3.44	2.73						

Page 6

	16-0107-CPT7.cal											
45.16	38.83	1.25	1.00	2.38 EL	3.44	2.73	1.00	NoLiq	1.00	38.83	38.83	2.08
45.66			1.00	2.53 EI	3.04	2.68						
45.66	41.43	1.18	1.00	2.53 EI	3.04	2.68	1.00	NoLiq	1.00	41.43	41.43	2.08
46.16			1.00	$2.38 \mathrm{E1}$	3.02	2.70						
46.16	39.56	1.12	1.00	2.38 EI	3.02	2.70	1.00	NoLiq	1.00	39.56	39.56	2.08
46.66			1.00	$2.31 \mathrm{E1}$	2.98	2.70						
46.66	38.84	1.08	1.00	$2.31 \mathrm{E1}$	2.98	2.70	1.00	NoLiq	1.00	38.84	38.84	2.08
47.16			1.00	$2.42 \mathrm{E1}$	3.74	2.75						
47.16	40.81	1.43	1.00	$2.42 \mathrm{E1}$	3.74	2.75	1.00	NoLiq	1.00	40.81	40.81	2.08
47.66			1.00	1.16 E 2	2.05	2.08						
47.66			0.50	1.48 E 2	2.05	2.01						
47.66	186.82	3.77	0.50	1.48 E 2	2.05	2.01	0.79	13.18	0.22	148.04	189.40	0.71
48.16			1.00	2.72E2	1.20	1.66						
48.16			0.50	3.47 E 2	1.20	1.60						
48.16	439.22	5.22	0.50	3.47 E 2	1.20	1.60	0.79	4.31	0.00	346.59	346.59	2.08
48.66			1.00	2.59 E 2	1.21	1.68						
48.66			0.50	3.31 E 2	1.21	1.61						
48.66	421.77	5.07	0.50	3.31 E 2	1.21	1.61	0.79	4.56	0.00	331.41	331.41	2.08
49.16			1.00	2.90E2	0.41	1.31						
49.16			0.50	3.73 E 2	0.41	1.22						
49.16	476.71	1.93	0.50	3.73 E 2	0.41	1.22	0.78	0.00	0.00	373.02	373.02	2.08
49.66			1.00	3.32 E 2	0.39	1.25						
49.66			0.50	4.28 E 2	0.39	1.17						
49.66	549.29	2.14	0.50	4.28 E 2	0.39	1.17	0.78	0.00	0.00	428.03	428.03	2.08
50.16			1.00	3.15 E 2	0.44	1.30						
50.16			0.50	$4.09 E 2$	0.44	1.22						
50.16	526.39	2.32	0.50	4.09 E 2	0.44	1.22	0.78	0.00	0.00	408.50	408.50	2.08
50.66			1.00	3.36 E 2	0.69	1.42						
50.66			0.50	4.37 E 2	0.69	1.34						
50.66	565.07	3.87	0.50	4.37E2	0.69	1.34	0.77	0.88	0.00	436.73	436.73	2.08
51.16			1.00	3.28 E 2	0.68	1.42						
51.16			0.50	$4.29 E 2$	0.68	1.34						
51.16	556.82	3.75	0.50	$4.29 E 2$	0.68	1.34	0.77	0.87	0.00	428.62	428.62	2.08
51.66			1.00	3.43 E 2	0.26	1.13						
51.66			0.50	4.49 E 2	0.26	1.04						
51.66	585.91	1.52	0.50	4.49 E 2	0.26	1.04	0.77	0.00	0.00	449.21	449.21	2.08
52.16			1.00	3.94 E 2	0.18	1.00						
52.16			0.50	5.18 E 2	0.18	0.90						
52.16	678.89	1.24	0.50	5.18 E 2	0.18	0.90	0.76	0.00	0.00	500.00	500.00	2.08
52.66			1.00	3.77 E 2	0.25	1.09						
52.66			0.50	4.97E2	0.25	0.99						
52.66	653.89	1.64	0.50	4.97 E 2	0.25	0.99	0.76	0.00	0.00	497.36	497.36	2.08

Fines have been calculated, and correction is made by Modify Robertson Method.
Fines=NoLiq means the soils are not liquefiable.
CRR is based on water table at 10.00 during In-Situ Testing

CPT convert to SPT for Settlement Analysis:
Page 8

Fines Depth ft	Correc Ic	$\begin{gathered} \text { n for Se } \\ \text { qc/N60 } \end{gathered}$	$\begin{aligned} & \text { ttlement } \\ & \text { qc1 } \\ & \text { atm } \end{aligned}$	Analysi (N1) 60	s: Fines \%	$\mathrm{d}(\mathrm{N} 1) 60$	(N1)60s
0.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
0.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
1.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
1.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
2.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
2.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
3.16	7.97	1.02	0.00	0.10	NoLia	0.00	0.10
3.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
4.16	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
4.66	7.97	1.02	0.00	0.10	NoLiq	0.00	0.10
5.16	2.39	4.08	34.33	8.42	NoLiq	0.00	8.42
5.66	2.44	3.99	31.07	7.78	NoLiq	0.00	7.78
6.16	2.49	3.89	30.73	7.90	NoLiq	0.00	7.90
6.66	2.46	3.96	34.13	8.62	NoLiq	0.00	8.62
7.16	2.15	4.52	157.92	34.94	17.49	0.00	34.94
7.66	1.95	4.89	207.19	42.38	11.74	0.00	42.38
8.16	1.94	4.91	207.95	42.34	11.43	0.00	42.34
8.66	2.23	4.37	170.23	38.94	20.17	0.00	38.94
9.16	2.63	3.64	215.83	59.32	36.90	0.00	59.32
9.66	2.29	4.27	139.19	32.56	22.04	0.00	32.56
10.16	2.34	4.18	152.69	36.52	23.94	0.00	36.52
10.66	1.95	4.89	148.68	30.41	11.73	0.00	30.41
11.16	1.86	5.06	151.62	29.99	9.55	0.00	29.99
11.66	2.01	4.78	145.57	30.45	13.31	0.00	30.45
12.16	2.10	4.62	110.96	24.03	15.85	0.00	24.03
12.66	2.70	3.52	18.94	5.38	NoLiq	0.00	5.38
13.16	2.55	3.79	68.24	18.02	33.02	0.00	18.02
13.66	2.73	3.46	8.61	2.49	NoLiq	0.00	2.49
14.16	2.70	3.52	9.81	2.79	NoLiq	0.00	2.79
14.66	2.71	3.49	12.13	3.47	NoLiq	0.00	3.47
15.16	2.82	3.29	13.42	4.08	NoLiq	0.00	4.08
15.66	2.84	3.25	14.91	4.59	NoLiq	0.00	4.59
16.16	2.91	3.12	13.47	4.32	NoLiq	0.00	4.32
16.66	2.97	3.01	10.90	3.62	NoLiq	0.00	3.62
17.16	2.85	3.22	11.43	3.54	NoLiq	0.00	3.54
17.66	2.92	3.11	10.88	3.50	NoLiq	0.00	3.50
18.16	3.00	2.97	9.70	3.27	NoLiq	0.00	3.27
18.66	3.07	2.82	9.69	3.44	NoLiq	0.00	3.44
19.16	2.58	3.73	27.33	7.33	NoLiq	0.00	7.33
19.66	2.78	3.36	19.08	5.69	NoLiq	0.00	5.69
20.16	2.72	3.47	30.15	8.70	NoLiq	0.00	8.70
20.66	2.96	3.03	16.39	5.40	NoLiq	0.00	5.40
21.16	2.87	3.19	22.69	7.11	NoLiq	0.00	7.11
21.66	1.63	5.49	143.35	26.10	NoLiq	0.00	26.10
22.16	1.85	5.09	86.30	16.97	NoLiq	0.00	16.97
22.66	2.30	4.25	58.71	13.82	NoLiq	0.00	13.82
23.16	2.60	3.70	38.94	10.52	NoLiq	0.00	10.52
23.66	2.75	3.41	22.17	6.49	NoLiq	0.00	6.49
24.16	2.79	3.35	20.93	6.25	NoLiq	0.00	6.25
24.66	3.18	2.62	12.36	4.72	NoLiq	0.00	4.72
25.16	3.02	2.91	14.00	4.80	NoLiq	0.00	4.80
25.66	2.22	4.40	81.86	18.62	NoLiq	0.00	18.62
26.16	1.63	5.49	228.87	41.72	4.88	0.00	41.72
26.66	1.36	5.99	375.23	62.60	1.01	0.00	62.60
27.16	1.42	5.87	343.03	58.46	1.83	0.00	58.46
27.66	1.31	6.09	500.00	82.13	0.46	0.00	82.13
28.16	1.52	5.68	479.50	84.35	3.18	0.00	84.35
28.66	1.23	6.23	351.20	56.36	0.00	0.00	56.36
29.16	1.70	5.35	255.35	47.71	6.19	0.00	47.71
29.66	1.15	6.37	416.80	65.40	0.00	0.00	65.40
30.16	1.18	6.32	500.00	79.08	0.00	0.00	79.08
30.66	1.25	6.18	500.00	80.89	0.00	0.00	80.89
31.16	1.43	5.86	500.00	85.38	1.90	0.00	85.38
31.66	1.09	6.49	500.00	77.09	0.00	0.00	77.09
32.16	1.07	6.52	401.62	61.60	0.00	0.00	61.60
32.66	2.08	4.67	155.12	33.25	15.07	0.00	33.25
33.16	2.54	3.81	123.30	32.35	32.39	0.00	32.35
33.66	2.49	3.89	85.82	22.05	30.39	0.00	22.05
34.16	2.60	3.69	27.03	7.32	NoLiq	0.00	7.32
34.66	2.32	4.20	104.46	24.85	23.45	0.00	24.85
35.16	2.11	4.61	157.05	34.09	16.01	0.00	34.09
35.66	2.77	3.38	41.88	12.38	NoLiq	0.00	12.38
36.16	2.53	3.83	107.16	27.96	31.86	0.00	27.96
36.66	2.50	3.87	101.61	26.23	30.83	0.00	26.23
37.16	2.47	3.94	98.11	24.92	29.33	0.00	24.92
37.66	2.44	4.00	94.37	23.62	27.98	0.00	23.62
38.16	2.41	4.04	91.63	22.69	27.01	0.00	22.69
38.66	2.46	3.95	106.56	26.98	29.03	0.00	26.98

Page 9

				16-0107-CPT7.cal			
39.16	2.43	4.01	103.94	25.92	27.64	0.00	25.92
39.66	2.54	3.82	184.88	48.45	32.28	0.00	48.45
40.16	2.61	3.68	52.08	14.16	NoLiq	0.00	14.16
40.66	2.65	3.59	37.88	10.54	NoLiq	0.00	10.54
41.16	2.52	3.84	127.41	33.19	31.69	0.00	33.19
41.66	2.70	3.51	47.62	13.55	NoLiq	0.00	13.55
42.16	2.63	3.63	72.34	19.91	NoLiq	0.00	19.91
42.66	2.73	3.46	52.17	15.07	NoLiq	0.00	15.07
43.16	2.71	3.50	35.41	10.11	NoLiq	0.00	10.11
43.66	2.77	3.38	31.88	9.43	NoLiq	0.00	9.43
44.16	2.74	3.43	34.69	10.11	NoLiq	0.00	10.11
44.66	2.76	3.40	38.16	11.22	NoLiq	0.00	11.22
45.16	2.73	3.45	38.83	11.26	NoLiq	0.00	11.26
45.66	2.68	3.55	41.43	11.67	NoLiq	0.00	11.67
46.16	2.70	3.52	39.56	11.25	NoLiq	0.00	11.25
46.66	2.70	3.51	38.84	11.08	NoLiq	0.00	11.08
47.16	2.75	3.42	40.81	11.95	NoLiq	0.00	11.95
47.66	2.01	4.79	189.40	39.55	13.18	0.00	39.55
48.16	1.60	5.55	346.59	62.46	4.31	0.00	62.46
48.66	1.61	5.52	331.41	60.02	4.56	0.00	60.02
49.16	1.22	6.24	373.02	59.78	0.00	0.00	59.78
49.66	1.17	6.34	428.03	67.50	0.00	0.00	67.50
50.16	1.22	6.24	408.50	65.41	0.00	0.00	65.41
50.66	1.34	6.02	436.73	72.60	0.88	0.00	72.60
51.16	1.34	6.02	428.62	71.24	0.87	0.00	71.24
51.66	1.04	6.58	449.21	68.22	0.00	0.00	68.22
52.16	0.90	6.84	500.00	73.05	0.00	0.00	73.05
52.66	0.99	6.67	497.36	74.62	0.00	0.00	74.62

(N1)60s has been fines corrected in 1iquefaction analysis, therefore $d(N 1) 60=0$. (N1) 60 is converted from qc1, (N1)60s is after fines correction
Fines=Noliq means the soils are not liquefiable.

Settlement of Saturated Sands:

$\begin{aligned} & \text { Depth } \\ & \mathrm{ft} \end{aligned}$	CSRsf	/ MSF*	$=C 5 R \mathrm{~m}$	F.S.	Fines \%	(N1)60s	$\begin{aligned} & \mathrm{Dr} \\ & \% \end{aligned}$	$\begin{aligned} & \text { ec } \\ & \% \end{aligned}$	$\begin{aligned} & \text { dsz } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { dsp } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{in} . \end{aligned}$
52.96	0.59	1.00	0.59	4.74	2.95	87.51	100.00	0.000	0.050	0.000	0.000
52.66	0.59	1.00	0.59	4.73	0.00	74.62	100.00	0.000	0.050	0.000	0.000
52.16	0.60	1.00	0.60	4.71	0.00	73.05	100.00	0.000	0.0E0	0.000	0.000
51.66	0.60	1.00	0.60	4.70	0.00	68.22	100.00	0.000	0.0EO	0.000	0.000
51.16	0.60	1.00	0.60	4.69	0.87	71.24	100.00	0.000	0.0EO	0.000	0.000
50.66	0.61	1.00	0.61	4.67	0.88	72.60	100.00	0.000	0.0 EO	0.000	0.000
50.16	0.61	1.00	0.61	4.66	0.00	65.41	100.00	0.000	0.050	0.000	0.000
49.66	0.61	1.00	0.61	4.64	0.00	67.50	100.00	0.000	0.0 EO	0.000	0.000
49.16	0.61	1.00	0.61	4.63	0.00	59.78	100.00	0.000	0.0EO	0.000	0.000
48.66	0.62	1.00	0.62	4.62	4.56	60.02	100.00	0.000	0.0EO	0.000	0.000
48.16	0.62	1.00	0.62	4.60	4.31	62.46	100.00	0.000	0.0 EO	0.000	0.000
47.66	0.62	1.00	0.62	1.57	13.18	39.55	100.00	0.000	0.0EO	0.000	0.000
47.16	0.62	1.00	0.62	5.00	NoLiq	11.95	54.99	0.000	0.0EO	0.000	0.000
46.66	0.63	1.00	0.63	5.00	NoLiq	11.08	53.06	0.000	0.0 EO	0.000	0.000
46.16	0.63	1.00	0.63	5.00	NoLiq	11.25	53.44	0.000	0.0 EO	0.000	0.000
45.66	0.63	1.00	0.63	5.00	Nolia	11.67	54.37	0.000	0.0 EO	0.000	0.000
45.16	0.63	1.00	0.63	5.00	NoLiq	11.26	53.46	0.000	0.0 EO	0.000	0.000
44.66	0.64	1.00	0.64	5.00	Noliq	11.22	53.38	0.000	0.0 EO	0.000	0.000
44.16	0.64	1.00	0.64	5.00	NoLiq	10.11	50.81	0.000	0.0 EO	0.000	0.000
43.66	0.64	1.00	0.64	5.00	NoLiq	9.43	49.15	0.000	0.0 EO	0.000	0.000
43.16	0.64	1.00	0.64	5.00	NoLiq	10.11	50.81	0.000	0.0 EO	0.000	0.000
42.66	0.65	1.00	0.65	5.00	NoLiq	15.07	61.42	0.000	0.0 EO	0.000	0.000
42.16	0.65	1.00	0.65	5.00	NoLiq	19.91	70.38	0.000	0.0 EO	0.000	0.000
41.66	0.65	1.00	0.65	5.00	Noliq	13.55	58.39	0.000	0.0 EO	0.000	0.000
41.16	0.65	1.00	0.65	0.57	31.69	33.19	97.75	0.262	$1.6 \mathrm{E}-3$	0.037	0.037
40.66	0.65	1.00	0.65	5.00	Noliq	10.54	51.81	0.000	0.050	0.000	0.037
40.16	0.66	1.00	0.66	5.00	NoLiq	14.16	59.62	0.000	0.0 EO	0.003	0.041
39.66	0.66	1.00	0.66	1.39	32.28	48.45	100.00	0.000	0.0 EO	0.000	0.041
39.16	0.66	1.00	0.66	0.38	27.64	25.92	81.50	1.683	1.0E-2	0.063	0.104
38.66	0.66	1.00	0.66	0.40	29.03	26.98	83.60	1.593	9.6E-3	0.087	0.191
38.16	0.67	1.00	0.67	0.31	27.01	22.69	75.41	1.953	$1.2 \mathrm{E}-2$	0.114	0.305
37.66	0.67	1.00	0.67	0.32	27.98	23.62	77.12	1.876	$1.1 \mathrm{E}-2$	0.116	0.421
37.16	0.67	1.00	0.67	0.34	29.33	24.92	79.56	1.766	$1.1 \mathrm{E}-2$	0.109	0.530
36.66	0.67	1.00	0.67	0.36	30.83	26.23	82.10	1.657	$9.9 \mathrm{E}-3$	0.102	0.632
36.16	0.67	1.00	0.67	0.40	31.86	27.96	85.63	1.508	$9.0 \mathrm{E}-3$	0.047	0.679
35.66	0.68	1.00	0.68	5.00	Nolia	12.38	55.92	0.000	0.OEO	0.036	0.715
35.16	0.68	1.00	0.68	0.89	16.01	34.09	100.00	0.000	0.0 EO	0.000	0.715
34.66	0.68	1.00	0.68	0.38	23.45	24.85	79.43	1.772	$1.1 \mathrm{E}-2$	0.050	0.765
34.16	0.68	1.00	0.68	5.00	Noliq	7.32	43.64	0.000	0.0 E 0	0.104	0.869
33.66	0.68	1.00	0.68	0.28	30.39	22.05	74.23	2.005	1.2E-2	0.048	0.917
33.16	0.68	1.00	0.68	0.51	32.39	32.35	95.64	0.558	3.3E-3	0.102	1.019
32.66	0.69	1.00	0.69	0.85	15.07	33.25	97.91	0.145	8.7E-4	0.005	1.024
32.16	0.69	1.00	0.69	4.15	0.00	61.60	100.00	0.000	0.050	0.000	1.024

	16-0107-CPT7.cal										
31.66	0.69	1.00	0.69	4.14	0.00	77.09	100.00	0.000	0.0EO	0.000	1.024
31.16	0.69	1.00	0.69	4.13	1.90	85.38	100.00	0.000	0.0EO	0.000	1.024
30.66	0.69	1.00	0.69	4.12	0.00	80.89	100.00	0.000	0.0 EO	0.000	1.024
30.16	0.69	1.00	0.69	4.12	0.00	79.08	100.00	0.000	0.0EO	0.000	1.024
29.66	0.69	1.00	0.69	4.12	0.00	65.40	100.00	0.000	0.0E0	0.000	1.024
29.16	0.69	1.00	0.69	3.23	6.19	47.71	100.00	0.000	0.0EO	0.000	1.024
28.66	0.69	1.00	0.69	4.13	0.00	56.36	100.00	0.000	0.0EO	0.000	1.024
28.16	0.69	1.00	0.69	4.13	3.18	84.35	100.00	0.000	0.0 EO	0.000	1.024
27.66	0.69	1.00	0.69	4.14	0.46	82.13	100.00	0.000	0.0E0	0.000	1.024
27.16	0.69	1.00	0.69	4.15	1.83	58.46	100.00	0.000	0.0 EO	0.000	1.024
26.66	0.69	1.00	0.69	4.16	1.01	62.60	100.00	0.000	0.0 EO	0.000	1.024
26.16	0.68	1.00	0.68	2.39	4.88	41.72	100.00	0.000	0.0 EO	0.000	1.024
25.66	0.68	1.00	0.68	5.00	NoLiq	18.62	68.05	0.000	0.0 EO	0.000	1.024
25.16	0.68	1.00	0.68	5.00	NoLiq	4.80	36.13	0.000	0.0 E 0	0.000	1.024
24.66	0.68	1.00	0.68	5.00	NoLiq	4.72	35.86	0.000	0.0EO	0.000	1.024
24.16	0.68	1.00	0.68	5.00	NoLiq	6.25	40.59	0.000	0.0EO	0.000	1.024
23.66	0.68	1.00	0.68	5.00	NoLiq	6.49	41.29	0.000	0.0 EO	0.000	1.024
23.16	0.67	1.00	0.67	5.00	NoLiq	10.52	51.78	0.000	0.0 E 0	0.000	1.024
22.66	0.67	1.00	0.67	5.00	NoLiq	13.82	58.93	0.000	0.0 EO	0.000	1.024
22.16	0.67	1.00	0.67	5.00	NoLiq	16.97	65.02	0.000	0.0EO	0.000	1.024
21.66	0.67	1.00	0.67	5.00	NoLiq	26.10	81.85	0.000	0.0E0	0.000	1.024
21.16	0.67	1.00	0.67	5.00	NoLiq	7.11	43.05	0.000	0.0E0	0.000	1.024
20.66	0.66	1.00	0.66	5.00	NoLiq	5.40	38.02	0.000	0.0 EO	0.000	1.024
20.16	0.66	1.00	0.66	5.00	NoLiq	8.70	47.31	0.000	0.0 E 0	0.000	1.024
19.66	0.66	1.00	0.66	5.00	NoLiq	5.69	38.90	0.000	0.0 OO	0.000	1.024
19.16	0.66	1.00	0.66	5.00	NoLiq	7.33	43.66	0.000	0.0 OO	0.000	1.024
18.66	0.65	1.00	0.65	5.00	NoLiq	3.44	31.56	0.000	0.0 EO	0.000	1.024
18.16	0.65	1.00	0.65	5.00	NoLiq	3.27	30.98	0.000	0.0EO	0.000	1.024
17.66	0.65	1.00	0.65	5.00	Noliq	3.50	31.78	0.000	0.0 EO	0.000	1.024
17.16	0.64	1.00	0.64	5.00	Noliq	3.54	31.93	0.000	0.0 OO	0.000	1.024
16.66	0.64	1.00	0.64	5.00	NoLiq	3.62	32.18	0.000	0.0 O0	0.000	1.024
16.16	0.63	1.00	0.63	5.00	NoLiq	4.32	34.56	0.000	0.0EO	0.000	1.024
15.66	0.63	1.00	0.63	5.00	Noliq	4.59	35.45	0.000	O. OEO	0.000	1.024
15.16	0.63	1.00	0.63	5.00	NoLiq	4.08	33.76	0.000	0.0 EO	0.000	1.024
14.66	0.62	1.00	0.62	5.00	NoLiq	3.47	31.67	0.000	0.0 OO	0.000	1.024
14.16	0.62	1.00	0.62	5.00	NoLiq	2.79	29.26	0.000	0.0 OO	0.000	1.024
13.66	0.61	1.00	0.61	5.00	Noliq	2.49	28.16	0.000	0.0 EO	0.000	1.024
13.16	0.60	1.00	0.60	0.25	33.02	18.02	66.96	2.381	1.4E-2	0.093	1.117
12.66	0.60	1.00	0.60	5.00	Noliq	5.38	37.96	0.000	0.0 EO	0.056	1.173
12.16	0.59	1.00	0.59	0.48	15.85	24.03	77.89	1.841	1.1E-2	0.076	1.249
11.66	0.58	1.00	0.58	0.86	13.31	30.45	91.09	0.612	3.7E-3	0.071	1.320
11.16	0.58	1.00	0.58	0.96	9.55	29.99	90.04	0.521	3.1E-3	0.037	1.357
10.66	0.57	1.00	0.57	0.93	11.73	30.41	90.99	0.523	3.1E-3	0.023	1.380
10.16	0.56	1.00	0.56	1.01	23.94	36.52	100.00	0.000	0.0 O 0	0.013	1.393
9.66	0.55	1.00	0.55	0.82	22.04	32.56	96.16	0.283	1.7E-3	0.013	1.406
9.16	0.54	1.00	0.54	2.57	36.90	59.32	100.00	0.000	0.0 E 0	0.000	1.406
8.66	0.53	1.00	0.53	1.39	20.17	38.94	100.00	0.000	0.0 OO	0.000	1. 406
8.16	0.52	1.00	0.52	2.42	11.43	42.34	100.00	0.000	0.0E0	0.000	1.406
7.66	0.51	1.00	0.51	2.46	11.74	42.38	100.00	0.000	0.0 E 0	0.000	1.406
7.16	0.49	1.00	0.49	1.24	17.49	34.94	100.00	0.000	0.0 EO	0.000	1.406
6.66	0.48	1.00	0.48	5.00	NoLia	8.62	47.10	0.000	0.0E0	0.000	1.406
6.16	0.46	1.00	0.46	5.00	NoLiq	7.90	45.20	0.000	0.0E0	0.000	1.406
5.66	0.44	1.00	0.44	5.00	NoLiq	7.78	44.90	0.000	0.0 O 0	0.000	1.406
5.16	0.42	1.00	0.42	5.00	NoLiq	8.42	46.60	0.000	0.0 OO	0.000	1.406
5.01	0.42	1.00	0.42	5.00	NoLiq	4.96	36.64	0.000	0.0 EO	0.000	1.406

Settlement of Saturated Sands $=1.406$ in.
qc1 and (N1) 60 is after fines correction in liquefaction analysis
(N1) 60 s is converted from qc1 and after fines correction
$d s z$ is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth
Settlement of Unsaturated Sands:

Depth ft	sigma' atm	sigC' atm	(N1)60s CSRsf	Gmax atm	g * $\mathrm{Ge} / \mathrm{Gm}$	g_eff	$\begin{aligned} & \mathrm{ec} 7.5 \\ & \% \end{aligned}$	Cec	$\begin{aligned} & \mathrm{ec} \\ & \% \end{aligned}$	$\begin{aligned} & \text { dsz } \\ & \text { in. } \end{aligned}$	dsp in.

4.96	0.28	0.18	2.48	0.42	258.90	4.5E-4	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
4.66	0.26	0.17	0.10	0.42	86.09	1.3E-3	1.0000	4.6774	0.82	3.8158	$0.00 E 0$	0.000	0.000
4.16	0.24	0.15	0.10	0.42	81.34	1. $2 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E0	0.000	0.000
3.66	0.21	0.13	0.10	0.42	76.30	1.1E-3	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
3.16	0.18	0.12	0.10	0.42	70.90	1.1E-3	1.0000	4.6774	0.82	3.8158	0.00 E	0.000	0.000
2.66	0.15	0.10	0.10	0.42	65.05	9.7E-4	1.0000	4.6774	0.82	3.8158	0.00 O	0.000	0.000
2.16	0.12	0.08	0.10	0.42	58.62	8.8E-4	1.0000	4.6774	0.82	3.8158	0. O0E0	0.000	0.000
1.66	0.09	0.06	0.10	0.42	51.39	7.7E-4	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
1.16	0.07	0.04	0.10	0.42	42.95	6.5E-4	1.0000	4.6774	0.82	3.8158	$0.00 E 0$	0.000	0.000
0.66	0.04	0.02	0.10	0.42	32.40	4.9E-4	1.0000	4.6774	0.82	3.8158	0.00E0	0.000	0.000
0.16	0.01	0.01	0.10	0.42	15.95	2.4E-4	1.0000	4.6774	0.82	3.8158	$0.00 E 0$	0.000	0.000

Settlement of Unsaturated Sands=0.000 in.
(N1) 60 s is converted from qc1 and after fines correction
dsz is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $\mathrm{dp}=0.50 \mathrm{ft}$
S is cumulated settlement at this depth
Total Settlement of Saturated and Unsaturated Sands=1.406 in. Differential Settlement $=0.703$ to 0.928 in.

Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in.

1 atm (at	$\mathrm{re})=1.0581 \mathrm{tsf}(1 \mathrm{tsf}=1 \mathrm{ton} / \mathrm{ft2}=2 \mathrm{kip} / \mathrm{ft2})$
1 atm (at	re $)=101.325 \mathrm{kPa}(1 \mathrm{kPa}=1 \mathrm{kN} / \mathrm{m} 2=0.001 \mathrm{Mpa})$
SPT	Field data from Standard Penetration Test (SPT)
BPT	Field data from Becker Penetration Test (BPT)
qc	Field data from Cone Penetration Test (CPT) [atm (tsf)]
fs	Friction from CPT testing [atm (tsf)]
Rf	Ratio of fs/qc (\%)
gamma	Total unit weight of soil
gamma'	Effective unit weight of soil
Fines	Fines content [\%]
D50	Mean grain size
Dr	Relative Density
sigma	Total vertical stress [atm]
sigma'	Effective vertical stress [atm]
sigC'	Effective confining pressure [atm]
rd	Acceleration reduction coefficient by Seed
a_max.	Peak Ground Acceleration (PGA) in ground surface
mZ	Linear acceleration reduction coefficient X depth
a_min.	Minimum acceleration under linear reduction, mZ
CRRV	CRR after overburden stress correction, CRRv=CRR7.5 * Ksig
CRR7. 5	Cyclic resistance ratio ($M=7.5$)
Ksig	Overburden stress correction factor for CRR7.5
CRRm	After magnitude scaling correction CRRm=CRRv * MSF
MSF	Magnitude scaling factor from M=7.5 to user input M
CSR	Cyclic stress ratio induced by earthquake
CSRfs	CSRfs=CSR*fs1 (Default fsi=1)
fs1	First CSR curve in graphic defined in \#9 of Advanced page
fs2	2nd CSR curve in graphic defined in \#9 of Advanced page
F.S.	Calculated factor of safety against liquefaction F.S.=CRRm/CSRsf
Cebs	Energy Ratio, Borehole Dia., and Sampling Method Corrections
Cr	Rod Length Corrections
Cn	Overburden Pressure Correction
(N1) 60	SPT after corrections, (N1) $60=$ SPT * $\mathrm{Cr} * \mathrm{Cn}$ * Cebs
d(N1)60	Fines correction of SPT
(N1) 60 f	(N1) 60 after fines corrections, (N1) $60 f=(N 1) 60+\mathrm{d}(\mathrm{N} 1) 60$
Cq	Overburden stress correction factor
qc1	CPT after Overburden stress correction
dqc1	Fines correction of CPT
qc1f	CPT after Fines and Overburden correction, qc1f=qc1 + dqc1
qc1n	CPT after normalization in Robertson's method
Kc	Fine correction factor in Robertson's Method
qc1f	CPT after Fines correction in Robertson's Method
Ic	Soil type index in Suzuki's and Robertson's Methods
(N1)60s	(N1)60 after settlement fines corrections
CSRm	After magnitude scaling correction for Settlement calculation CSRm=CSRsf / MSF*
CSRfs	Cyclic stress ratio induced by earthquake with user inputed fs
MSF*	Scaling factor from CSR, MSF* $=1$, based on Item 2 of Page C.
ec	Volumetric strain for saturated sands
$d z$	Calculation segment, $d z=0.050 \mathrm{ft}$
dsz	Settlement in each segment, dz
dp	User defined print interval
dsp	Settlement in each print interval, dp
Gmax	Shear Modulus at low strain
g_eff	gamma_eff, Effective shear Strain
g* $\mathrm{Ge} / \mathrm{Cm}$	gamma_eff * G_eff/G_max, Strain-modulus ratio
ec7.5	Volumetric Strain for magnitude=7.5
Cec	Magnitude correction factor for any magnitude
ec	Volumetric strain for unsaturated sands, ec=Cec * ec7.5
NoLiq	No-Liquefy Soils

References:

1. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Youd, T.L., and Idriss, I.M., eds., Technical Report NCEER 97-0022.

SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMC Special Publication 117, Guidelines for

Analyzing and Mitigating Liquefaction in California. University of Southern California. March 1999.
2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL-2, PROCEEDINGS: Fourth

International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March 2001.
3. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK, Earthquake Engineering Research Center,

Report No. EERC 2003-06 by R.B Seed and etc. April 2003.
Note: Print Interval you selected does not show complete results. To get complete results, you should select 'Segment' in Print Interval (Item 12, Page C).
GEOSYSTEMS
GREGG GEOSYSTEMS

Col 11	Col 21	Col $3 i$	Col 4i	Col 51	Col 61	Col 7 i	Col 8 i	Col 91	Col 10i	Col 11i	Col 12i	Col 13i	Col $14 i$	Col 15 i	Col 16i
Depth	Depth	ac	fs	u	Other	at	Rf	SBT	Unit Weight. y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qt\|	Normalized Friction raio, Fi	Normalized pore pressure ratio, Bc
(m)	(tt)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pef)	(tsf)	(tsf)	(tsf)			
3.300	10.827	8.802	0.198	12.160		8.98	2.21	5	115	0.616	0.000	0.616	13.58	2.37	0.10
3.400	11.155	9.871	0.226	12.412		10.05	2.25	5	115	0.634	0.005	0.630	14.95	2.40	0.09
3.500	11.483	9.824	0.242	13.283		10.02	2.42	5	115	0.653	0.015	0.638	14.67	2.59	0.10
3.600	11.811	12.241	0.292	15.906		12.47	2.34	5	115	0.672	0.025	0.647	18.24	2.48	0.09
3.700	12.139	13.756	0.371	18.239		14.02	2.65	5	115	0.691	0.035	0.655	20.34	2.79	0.10
3.800	12.467	13.013	0.430	19.110		13.29	3.24	4	115	0.710	0.046	0.664	18.95	3.42	0.11
3.900	12.795	11.767	0.518	19.703		12.05	4.30	3	111	0.728	0.056	0.672	16.85	4.57	0.12
4.000	13.123	10.317	0.513	19.501		10.60	4.84	3	111	0.746	0.066	0.680	14.49	5.20	0.14
4.100	13.451	9.267	0.431	19.665		9.55	4.52	3	111	0.764	0.076	0.688	12.77	4.91	0.15
4.200	13.780	10.020	0.372	20.800		10.32	3.60	3	111	0.783	0.087	0.696	13.70	3.90	0.15
4.300	14.108	10.234	0.389	21.267		10.54	3.69	3	111	0.801	0.097	0.704	13.83	3.99	0.15
4.400	14.436	11.256	0.403	21.166		11.56	3.49	4	115	0.820	0.107	0.713	15.07	3.75	0.13
4.500	14.764	11.702	0.385	22.490		12.03	3.20	4	115	0.839	0.117	0.721	15.51	3.44	0.13
4.600	15.092	13.812	0.467	24.004		14.16	3.30	4	115	0.857	0.128	0.730	18.23	3.51	0.12
4.700	15.420	16.015	0.407	22.730		16.34	2.49	5	115	0.876	0.138	0.738	20.95	2.63	0.10
4.800	15.748	16.219	0.518	22.553		16.54	3.13	. 5	115	0.895	0.148	0.747	20.95	3.31	0.09
4.900	16.076	27.280	0.703	22.692		27.61	2.55	6	115	0.914	0.158	0.755	35.33	2.63	0.06
5.000	16.404	29.873	0.586	20.220		30.16	1.94	6	115	0.933	0.169	0.764	38.26	2.00	0.04
5.100	16.732	14.258	0.279	18.303		14.52	1.92	5	115	0.951	0.179	0.773	17.56	2.06	0.08
5.200	17.060	8.914	0.297	19.690		9.20	3.23	4	115	0.970	0.189	0.781	10.53	3.61	0.15
5.300	17.388	11.785	0.396	20.838		12.09	3.28	4	115	0.989	0.199	0.790	14.05	3.57	0.12
5.400	17.717	18.375	0.566	28.407		18.78	3.01	5	115	1.008	0.209	0.798	22.27	3.18	0.10
5.500	18.045	19.844	0.841	35.962		20.36	4.13	4	115	1.027	0.220	0.807	23.96	4.35	0.12
5.600	18.373	16.321	0.774	35.962		16.84	4.60	3	111	1.045	0.230	0.815	19.38	4.90	0.15
5.700	18.701	11.972	0.473	35.117		12.48	3.79	4	115	1.064	0.240	0.823	13.86	4.15	0.20
5.800	19.029	12.873	0.434	35.571		13.39	3.24	4	115	1.082	0.250	0.832	14.79	3.53	0.19
5.900	19.357	14.704	0.499	38.763		15.26	3.27	4	115	1.101	0.261	0.841	16.85	3.52	0.18
6.000	19.685	18.589	0.663	41.702		19.19	3.45	5	115	1.120	0.271	0.849	21.28	3.67	0.15
6.100	20.013	18.645	0.734	41.664		19.24	3.82	4	115	1.139	0.281	0.858	21.11	4.06	0.15
6.200	20.341	14.397	0.607	42.017		15.00	4.05	4	115	1.158	0.291	0.866	15.98	4.39	0.20
6.300	20.669	12.873	0.584	41.613		13.47	4.34	3	111	1.176	0.302	0.874	14.06	4.75	0.22
6.400	20.997	11.999	0.517	40.844		12.59	4.11	3	111	1.194	0.312	0.882	12.91	4.54	0.23
6.500	21.325	13.115	0.556	45.953		13.78	4.04	3	111	1.212	0.322	0.890	14.11	4.43	0.24
6.600	21.654	14.667	0.633	49.573		15.38	4.11	3	111	1.231	0.332	0.898	15.75	4.47	0.23
6.700	21.982	16.544	0.670	56.523		17.36	3.86	4	115	1.249	0.343	0.907	17.76	4.16	0.23
6.800	22.310	19.881	0.844	64.571		20.81	4.06	4	115	1.268	0.353	0.915	21.35	4.32	0.22
6.900	22.638	30.375	1.221	77.954		31.50	3.88	5	115	1.287	0.363	0.924	32.69	4.04	0.17
7.000	22.966	94.703	1.730	66.576		95.66	1.81	7	118	1.306	0.373	0.933	101.12	1.83	0.05
7.100	23.294	158.000	1.664	46.457		158.67	1.05	9	124	1.327	0.383	0.943	166.81	1.06	0.02
7.200	23.622	209.771	1.805	46.760		210.44	0.86	9	124	1.347	0.394	0.953	219.32	0.86	0.01
7.300	23.950	244.747	2.761	42.118		245.35	1.13	9	124	1.367	0.404	0.964	253.22	1.13	0.01
7.400	24.278	227.738	2.352	12.248		227.91	1.03	9	124	1.388	0.414	0.974	232.66	1.04	0.00
7.500	24.606	299.455	2.018	13.913		299.66	0.67	10	127	1.409	0.424	0.984	303.00	0.68	0.00
7.600	24.934	440.855	2.682	20.195		441.15	0.61	10	127	1.430	0.435	0.995	441.95	0.61	0.00
7.700	25.262	538.654	3.440	15.679		538.88	0.64	10	127	1.450	0.445	1.006	534.44	0.64	0.00
7.800	25.591	588.315	6.122	35.218		588.82	1.04	10	127	1.471	0.455	1.016	577.96	1.04	0.00
7.900	25.919	562.801	6.200	56.763		563.62	1.10	9	124	1.492	0.465	1.026	547.68	1.10	0.01
8.000	26.247	540.717	5.174	47.807		541.41	0.96	10	127	1.513	0.476	1.037	520.62	0.96	0.01
8.100	26.575	528.644	3.201	42.938		529.26	0.60	10	127	1.534	0.486	1.048	503.72	0.61	0.00
8.200	26.903	590.909	3.517	55.438		591.71	0.59	10	127	1.554	0.496	1.058	557.63	0.60	0.01

Col 1 i	Col 2 i	Col 3i	Col 4i	Col $5 i$	Col 6 i	Col 71	Col 8 i	Col 9i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col $15 i$	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, Qtl	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
8.300	27.231	614.554	3.503	44.325		615.19	0.57	10	127	1.575	0.506	1.069	574.03	0.57	0.00
8.400	27.559	478.350	2.555	26.300		478.73	0.53	10	127	1.596	0.517	1.080	441.95	0.54	0.00
8.500	27.887	393.471	2.158	22.768		393.80	0.55	10	127	1.617	0.527	1.090	359.71	0.55	0.00
8.600	28.215	412.674	2.120	25.795		413.05	0.51	10	127	1.638	0.537	1.101	373.69	0.52	0.00
8.700	28.543	384.669	1.200	26.376		385.05	0.31	10	127	1.659	0.547	1.112	344.91	0.31	0.00
8.800	28.871	335.240	1.578	21.898		335.56	0.47	10	127	1.680	0.557	1.122	297.51	0.47	0.00
8.900	29.199	350.586	1.956	28.419		350.99	0.56	10	127	1.701	0.568	1.133	308.33	0.56	0.00
9.000	29.528	452.260	1.514	29.188		452.68	0.33	10	127	1.721	0.578	1.144	394.36	0.34	0.00
9.100	29.856	415.778	1.679	25.190		416.14	0.40	10	127	1.742	0.588	1.154	359.05	0.41	0.00
9.200	30.184	315.145	2.204	24.458		315.50	0.70	10	127	1.763	0.598	1.165	269.34	0.70	0.00
9.300	30.512	283.283	1.679	22.200		283.60	0.59	10	127	1.784	0.609	1.175	239.75	0.60	0.00
9.400	30.840	237.014	2.185	22.554		237.34	0.92	9	124	1.805	0.619	1.186	198.66	0.93	0.00
9.500	31.168	122.383	2.996	27.031		122.77	2.44	7	118	1.824	0.629	1.195	101.24	2.48	0.01
9.600	31.496	137.719	3.848	29.327		138.14	2.79	7	118	1.843	0.639	1.204	113.23	2.82	0.01
9.700	31.824	169.897	3.742	33.427		170.38	2.20	7	118	1.862	0.650	1.213	138.94	2.22	0.01
9.800	32.152	192.260	3.376	16.638		192.50	1.75	8	121	1.882	0.660	1.222	155.93	1.77	0.00
9.900	32.480	173.429	3.899	8.350		173.55	2.25	7	118	1.902	0.670	1.232	139.38	2.27	0.00
10.000	32.808	71.941	2.838	8.401		72.06	3.94	5	115	1.920	0.680	1.240	56.56	4.05	0.00
10.100	33.136	36.965	1.311	9.321		37.10	3.53	5	115	1.939	0.691	1.249	28.16	3.73	0.00
10.200	33.465	31.918	0.670	10.999		32.08	2.09	6	115	1.958	0.701	1.257	23.96	2.22	0.00
10.300	33.793	31.035	0.522	15.477		31.26	1.67	6	115	1.977	0.711	1.266	23.13	1.78	0.01
10.400	34.121	33.554	0.585	43.682		34.18	1.71	6	115	1.996	0.721	1.274	25.26	1.82	0.08
10.500	34.449	35.561	0.631	91.918		36.88	1.71	6	115	2.014	0.732	1.283	27.18	1.81	0.17
10.600	34.777	35.348	0.622	143.685		37.42	1.66	7	118	2.034	0.742	1.292	27.39	1.76	0.27
10.700	35.105	35.543	0.641	199.502		38.42	1.67	7	118	2.053	0.752	1.301	27.95	1.76	0.37
10.800	35.433	37.076	0.709	241.607		40.56	1.75	7	118	2.072	0.762	1.310	29.37	1.84	0.43
10.900	35.761	38.517	0.742	272.070		42.43	1.75	7	118	2.092	0.772	1.319	30.58	1.84	0.47
11.000	36.089	39.400	0.727	288.909		43.56	1.67	7	118	2.111	0.783	1.328	31.20	1.75	0.48
11.100	36.417	40.339	0.721	307.906		44.77	1.61	7	118	2.130	0.793	1.337	31.88	1.69	0.50
11.200	36.745	41.184	0.726	325.263		45.87	1.58	7	118	2.150	0.803	1.346	32.47	1.66	0.52
11.300	37.073	41.296	0.791	339.352		46.18	1.71	7	118	2.169	0.813	1.356	32.47	1.80	0.54
11.400	37.402	40.525	0.813	346.567		45.52	1.79	7	118	2.188	0.824	1.365	31.75	1.88	0.56
11.500	37.730	40.144	0.824	351.298		45.20	1.82	7	118	2.208	0.834	1.374	31.30	1.92	0.57
11.600	38.058	40.385	0.791	351.449		45.45	1.74	7	118	2.227	0.844	1.383	31.25	1.83	0.57
11.700	38.386	60.768	0.782	341.661		65.69	1.19	7	118	2.246	0.854	1.392	45.58	1.23	0.37
11.800	38.714	62.246	0.779	342.998		67.19	1.16	8	121	2.266	0.865	1.401	46.32	1.20	0.37
11.900	39.042	40.199	0.728	335.707		45.03	1.62	7	118	2.285	0.875	1.411	30.31	1.70	0.54
12.000	39.370	36.575	0.853	281.240		40.62	2.10	6	115	2.304	0.885	1.419	27.00	2.23	0.51
12.100	39.698	39.911	0.903	300.577		44.24	2.04	6	115	2.323	0.895	1.428	29.36	2.16	0.49
12.200	40.026	49.578	1.107	304.929		53.97	2.05	7	118	2.342	0.906	1.437	35.93	2.14	0.41
12.300	40.354	53.482	1.610	283.221		57.56	2.80	6	115	2.361	0.916	1.445	38.19	2.92	0.35
12.400	40.682	62.999	1.894	312.762		67.50	2.81	6	115	2.380	0.926	1.454	44.79	2.91	0.33
12.500	41.011	66.476	2.752	344.423		71.44	3.85	5	115	2.399	0.936	1.462	47.21	3.99	0.35
12.600	41.339	59.718	3.130	279.020		63.74	4.91	11	131	2.420	0.946	1.474	41.61	5.11	0.31
12.700	41.667	45.599	2.106	228.325		48.89	4.31	5	115	2.439	0.957	1.482	31.34	4.53	0.33
12.800	41.995	35.059	1.178	235.287		38.45	3.06	6	115	2.458	0.967	1.491	24.14	3.27	0.44
12.900	42.323	33.479	0.990	222.623		36.68	2.70	6	115	2.476	0.977	1.499	22.82	2.89	0.44
13.000	42.651	32.559	1.083	194.393		35.36	3.06	5	115	2.495	0.987	1.508	21.79	3.30	0.40
13.100	42.979	31.909	1.207	167.286		34.32	3.52	5	115	2.514	0.998	1.516	20.97	3.80	0.35
13.200	43.307	32.792	1.252	145.564		34.89	3.59	5	115	2.533	1.008	1.525	21.22	3.87	0.29

商													\bigcirc	N	$\stackrel{9}{6}$															\cdots	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{+}$	$\stackrel{\square}{\square}$		$\stackrel{1}{\mathrm{~N}}$	\％	$\stackrel{\circ}{\circ}$	¢	9 0 0
$\left\|\begin{array}{c} \overline{0} \\ \bar{\sim} \\ \overline{3} \end{array}\right\|$													¢	－	$\stackrel{4}{4}$															8	8	$\stackrel{\sim}{\sim}$	\％		N	－	N	？	¢
$\left\|\begin{array}{c} \hat{N} \\ \overline{0} \\ \mathbf{O} \end{array}\right\|$		$\stackrel{C}{4}$												＋	$\stackrel{\leftrightarrow}{\square}$															\sim	$\begin{gathered} \boldsymbol{o} \\ \stackrel{N}{N} \end{gathered}$	\％	＋		$\stackrel{8}{8}$	$\stackrel{\circ}{c}$			\cdots
$\left\lvert\, \begin{gathered} \overline{\mathrm{N}} \\ \overline{\mathrm{O}} \end{gathered}\right.$			$\underset{\sim}{N} \underset{\sim}{\mathbb{N}} \underset{\sim}{\mathbf{N}}$	$\underset{\sim}{\circ} \underset{\sim}{\sim}$				$\underset{N}{N}$			$\underset{\sim}{\mathbf{O}} \underset{\sim}{2} \underset{\sim}{2}$	용	$\underset{\sim}{0} \mathbf{0}$	$\underset{\sim}{2}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	¢	0	$\begin{array}{\|l\|l} \infty & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	0°	인	\％		$\stackrel{\sim}{N}$			NiN	ํNN				$\underset{N}{N}$	∞	$\stackrel{\stackrel{n}{m}}{\mathbf{m}}$	\mathbb{N}	$\frac{N}{\infty}$	$\underset{\sim}{\underset{\sim}{g}}$		－	¢
$\left\lvert\, \begin{gathered} \overline{i n} \\ \stackrel{3}{0} \\ \overline{0} \end{gathered}\right.$			$\stackrel{\leftrightarrow}{\sigma} \underset{\sim}{n} \stackrel{n}{n} \stackrel{N}{n}$					$\stackrel{\rightharpoonup}{\mathrm{r}} \underset{\mathrm{r}}{ }$	¢	N®	ㅇ	－					\％	$\stackrel{i n}{\stackrel{\rightharpoonup}{2}} \stackrel{\stackrel{1}{2}}{2}$	$\stackrel{\rightharpoonup}{4}$	앙	$\stackrel{\text { ̇ }}{ }$	$\stackrel{1}{2}$	－	－	－	\bigcirc	\％	－				$\stackrel{\circ}{\sim}$							
$\left\lvert\, \begin{aligned} & \dot{\tilde{j}} \\ & \overline{0} \end{aligned}\right.$			$\mathfrak{q} \mathcal{F} \hat{F}$	$\hat{寸} \mathcal{F}$	$0 \% \text { g }$	F	flg 県	$\stackrel{\circ g}{\circ} \text { 寸 }$	F「	テํ	\％	ソ					\cdots	¢	m	ぶ	m	¢	m	M	ल	ल	M	9	m			\％							
$\left\|\begin{array}{l} \stackrel{N}{N} \\ \overline{0} \end{array}\right\|$			$\underset{\sim}{m}$	뭄		융융	5	∞	－ 10.8	0	8	8				N	$\stackrel{\sim}{\sim}$	ㅇN	N	，	－	\bar{m}		\bar{m}	\bar{m}	¢	m	\％	－			m							
$\left\lvert\, \begin{aligned} & \bar{N} \\ & \overline{\mathrm{O}} \end{aligned}\right.$	$\frac{5}{\infty}$		N0	¢0：			¢す	O	－	$\stackrel{\text { N }}{\text { N }}$	－	－		0	7	$\stackrel{\varphi}{\square}$		$\stackrel{\infty}{\sim}$	$\cdots-$	－	\pm			－	∞	－	∞		∞	\bigcirc	∞	F	$\stackrel{-}{\square}$	\pm	$\stackrel{\square}{\square}$	－	$\stackrel{\square}{\circ}$	$\stackrel{10}{1}$	$\xrightarrow[\sim]{\infty}$
$\left\lvert\, \frac{\overline{\mathrm{N}}}{\overline{\mathrm{O}}}\right.$	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \frac{b}{\infty} \end{aligned}$			$\begin{array}{l\|l\|l} \infty & \underset{\sim}{0} \\ \underset{\sim}{n} & 0 \\ \sim \end{array}$		－		\％	N	N	－		$\stackrel{-}{\stackrel{\circ}{\rightleftharpoons}} \stackrel{0}{\circ}$	$\underset{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	\％		\bigcirc	∞	\％	\％	$\stackrel{\leftrightarrow}{\circ}$	－	$\stackrel{\infty}{\infty}$		へ－	－			ก	\bigcirc	¢	$\stackrel{\text { N }}{ }$	\bigcirc	$\stackrel{\infty}{\sim}$	$\stackrel{\text { ̇ }}{\text { ¢ }}$	O	－ 0°	－sos
$\begin{array}{\|} \hline \mathbf{N} \\ \hline 0 \end{array}$						crand									$\begin{gathered} \infty \\ \stackrel{0}{4} \\ \stackrel{\rightharpoonup}{8} \\ \end{gathered}$	¢	¢				¢	¢	菅		$\begin{aligned} & \varphi \\ & \vdots \end{aligned}$		9 4 8 8 0 4	－	¢	晏		¢	－		－	$\begin{aligned} & \infty \\ & \dot{1} \\ & \stackrel{1}{8} \\ & \dot{\mu} \end{aligned}$			$\begin{array}{l\|l} 0 \\ \text { un } \\ 0 \\ \hline \end{array}$
$\frac{\overline{3}}{\frac{1}{0}}$						¢ ${ }^{\text {a }}$		$\begin{array}{c\|c} \mathrm{O} \\ \mathrm{~N} \\ \mathrm{~N} \\ \mathrm{~N} \\ \mathrm{~N} \\ \hline \end{array}$	年	Nol				$\underset{N}{\substack{c}}$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \underset{\sim}{2} \end{gathered}$	边	－	Nox	$\begin{array}{ll} \infty \\ \mathbf{N} \\ \text { No } \\ \mathbf{N} \\ \hline \mathbf{N} \end{array}$	$\begin{gathered} 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{gathered}$		\％	－		$\stackrel{\leftrightarrow}{\infty}$		¢			－	$\frac{\vec{子}}{\bar{m}}$	N	\％		N	$\underset{\substack{\text { Nu} \\ \\ \hline}}{ }$			$\stackrel{\sim}{v} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{N}$
$\frac{0}{\frac{0}{0}}$		$\underset{~ N}{\text { No }}$		$\underset{\sim}{\underset{\sim}{\infty}} \underset{\sim}{\infty} \underset{\sim}{\underset{\sim}{n}} \underset{\sim}{\sim}$	－	\mathfrak{n}				$\stackrel{\circ}{\text { in }}$	$\stackrel{\sim}{\text { N }}$			$\underset{\sim}{c}$	－へ／	－	ก	N	N	－	＋		¢		N	\mathfrak{i}	N	N	¢	ลิ	N	¢ั่	内			$\stackrel{N}{\mathrm{~N}}$	$\underset{\sim}{\top}$	－$\stackrel{\sim}{\sim}$	
$\frac{i}{i}$			$A N$	$\wedge \wedge N$	$\cdots \cdots$	N	$-\infty$	ω	）n แn	in in	\bigcirc	0 －	$\nabla \sigma$			\pm	∞	∞			مس	ぃ		2∞	∞	$\sim \sim$	15		n	－	－		O			＊			＊m
$\overline{\mathrm{O}}$	$\begin{aligned} & \text { F } \\ & 0 \end{aligned}$	$=\underset{N}{n}$													$\begin{gathered} 8 \\ \underset{\sim}{8} \\ \underset{\sim}{2} \\ \\ \end{gathered}$	$\stackrel{\text { N}}{\stackrel{\rightharpoonup}{c}}$	\％					$\begin{array}{\|c} \mathbf{8} \\ 0 \\ \hline \end{array}$	${ }^{\circ}$	¢				0	\％	\％	$\begin{aligned} & \mathbf{8} \\ & \mathbf{8} \\ & \mathbf{g} \\ & \hline \end{aligned}$	－	\％		－	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{+}{\dot{+}} \end{aligned}$			
$\frac{\bar{\sigma}}{\bar{O}}$			$\begin{array}{l\|l\|l} \hline 8 \\ \hline \end{array}$				Co	$\begin{aligned} & 8.8 \\ & \hline ⿸ 户 ⿵ 冂 卄 \\ & 0.0 \\ & \hline \end{aligned}$			$\begin{array}{ll} 8 \\ \hline \end{array}$					－	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				吕		号		$=$	$\begin{aligned} & 8 \\ & 0 \\ & \stackrel{0}{2} \\ & \hline \end{aligned}$	－	0	\％	N	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{\mathrm{~N}} \\ & \hline \end{aligned}$	O	$\stackrel{\sim}{\mathrm{N}}$		－	$\begin{gathered} \mathrm{O} \\ \underset{\sim}{\mathrm{~N}} \end{gathered}$			

Col 1 i	Col 2i	Col 3i	Col 4i	Col $5 i$	Col $6 i$	Col 7i	Col 8 i	Col 9i	Col 10i	Col 11i	Col 12i	Col 13i	Col 14i	Col 15i	Col 16i
Depth	Depth	qc	fs	u	Other	qt	Rf	SBT	Unit Weight, y	Total Overburden Stress, ov	Insitu pore pressure, uo	Effective overburden stress, σ 'v	Normalized cone resistance, QtI	Normalized Friction raio, Fr	Normalized pore pressure ratio, Bq
(m)	(ft)	(tsf)	(tsf)	(psi)		(tsf)	(\%)		(pcf)	(tsf)	(tsf)	(tsf)			
18.300	60.039	522.602	4.988	46.986		523.28	0.95	10	127	3.569	1.530	2.039	254.84	0.96	0.00
18.400	60.367	509.181	4.576	74.800		510.26	0.90	10	127	3.590	1.540	2.050	247.15	0.90	0.01
18.500	60.696	556.639	1.585	82.949		557.83	0.28	10	127	3.611	1.550	2.061	268.95	0.29	0.01

Col 11	Col 21	Col 171	Col 18 i	Col 19 i	Col 20 i	Col21i	Col 22i	Col 23 i	Col $24 i$	Col 251	Col 26 i	Col 271	Col 28 i	Col 291
Depth	Depth	Soil Behavior Type (normalized) SBTn	SBTn Index, Ic	Normalized Cone resistance, Qtn	Estimated permeability, kSBT	SPT N60	$\begin{gathered} \text { SPT } \\ \text { (N1) } 60 \end{gathered}$	Relative Density, Dr	Friction Angle φ^{\prime}	Young's modulus, Es	Small strain shear modulus, Go	$\begin{gathered} \text { Undrained } \\ \text { shear strength, } \\ \text { su } \end{gathered}$	Undrained strength ratio, su/o'v	Over consolidation ratio, OCR
(m)	(tt)				(ttsec)	(blows (tit)	(blows/tit)	(\%)	(degrees)	(tsf)	(isf)	(tsf)		
18.300	60.039	6	1.61	353.79	3.00E-4	89.3	64.3	101	45	2093	1874			
18.400	60.367	6	1.59	344.02	3.00E-4	86.6	62.3	99	45	2041	1862			
18.500	60.696	7	1.24	375.33	3.00E-2	84.8	60.7	104	45	2231	1921			

Input Data:
Surface Elev. $=0$
Hole No. =CPT8
Depth of Hole=61.00 ft
Water Table during Earthquake $=5.00 \mathrm{ft}$
Water Table during In-Situ Testing= 10.00 ft
Max. Acceleration=0.65 g
Earthquake Magnitude $=6.63$
No-Liquefiable Soils: CL, OL are Non-Liq. Soi

1. CPT Calulation Method: Modify Robertson*
2. Settlement Analysis Method: Ishihara / Yoshimine
3. Fines Correction for Liquefaction: Stark/Olson et al.*
4. Fine Correction for Settlement: During Liquefaction*
5. Settlement Calculation in: All zones*
6. User request factor of safety (apply to CSR) , User= 1.1 Plot two CSR (fsi=1, fs2=User)
7. Average two input data between two Depths: Yes*

* Recommended Options

In-Situ Depth ft	Test qC atm	ta: fs atm	$\begin{aligned} & \text { Rf } \\ & \% \end{aligned}$	Gamma pcf	Fines \%	$\begin{aligned} & \mathrm{D} 50 \\ & \mathrm{~mm} \end{aligned}$
0.16	0.00	0.00	100.00	120.00	0.00	0.50
0.66	0.00	0.00	100.00	120.00	0.00	0.50
1.15	0.00	0.00	100.00	120.00	0.00	0.50
1.64	0.00	0.00	100.00	120.00	0.00	0.50
2.13	0.00	0.00	100.00	120.00	0.00	0.50
2.62	0.00	0.00	100.00	120.00	0.00	0.50
3.12	0.00	0.00	100.00	120.00	0.00	0.50
3.61	0.00	0.00	100.00	120.00	0.00	0.50
4.10	0.00	0.00	100.00	120.00	0.00	0.50
4.59	0.00	0.00	100.00	120.00	0.00	0.50
5.09	28.13	1.29	4.60	120.00	0.00	0.50
5.58	37.36	1.46	3.90	120.00	0.00	0.50
6.07	62.90	1.15	1.83	120.00	0.00	0.50
6.56	31.03	1.24	4.01	120.00	0.00	0.50
7.05	67.28	1.42	2.12	120.00	0.00	0.50
7.55	97.09	1.53	1.57	120.00	0.00	0.50
8.04	30.72	1.26	4.10	120.00	0.00	0.50
8.53	73.33	1.26	1.72	120.00	0.00	0.50
9.02	63.77	1.09	1.71	120.00	0.00	0.50
9.51	43.72	0.84	1.92	120.00	0.00	0.50
10.00	12.99	0.28	2.12	120.00	0.00	0.50
10.49	8.70	0.17	1.93	120.00	0.00	0.50
10.99	9.84	0.22	2.25	120.00	0.00	0.50
11.48	9.17	0.25	2.71	120.00	0.00	0.50
11.97	13.35	0.34	2.58	120.00	0.00	0.50
12.46	13.30	0.41	3.09	120.00	NoLiq	0.50
12.95	11.51	0.55	4.75	120.00	NoLiq	0.50
13.45	9.03	0.43	4.78	120.00	NoLiq	0.50
13.94	10.17	0.37	3.63	120.00	NoLiq	0.50
14.43	11.32	0.40	3.52	120.00	NoLiq	0.50
14.92	10.90	0.43	3.90	120.00	NoLiq	0.50
15.41	16.20	0.35	2.15	120.00	NoLiq	0.50
15.91	18.12	0.64	3.56	120.00	NoLia	0.50
16.40	29.97	0.64	2.15	120.00	NoLiq	0.50
16.89	9.40	0.27	2.91	120.00	NoLia	0.50
17.38	9.54	0.40	4.21	120.00	NoLia	0.50
17.88	19.29	0.64	3.33	120.00	NoLiq	0.50
18.37	16.08	0.79	4.93	120.00	NoLiq	0.50
18.86	11.87	0.41	3.49	120.00	NoLiq	0.50
19.35	14.27	0.49	3.41	120.00	NoLiq	0.50
19.84	20.46	0.75	3.66	120.00	NoLiq	0.50
20.34	13.88	0.59	4.27	120.00	NoLiq	0.50
20.83	11.96	0.56	4.67	120.00	NoLiq	0.50
21.32	13.38	0.55	4.07	120.00	NoLiq	0.50
21.81	15.44	0.64	4.17	120.00	NoLiq	0.50
22.30	18.84	0.77	4.09	120.00	NoLiq	0.50
22.80	43.19	1.49	3.44	120.00	NoLiq	0.50

Page 1

					16-0107-CPT8.cal	
23.29	159.30	1.68	1.05	120.00	0.00	0.50
23.78	243.00	2.07	0.85	120.00	0.00	0.50
24.27	222.50	1.94	0.87	120.00	0.00	0.50
24.77	408.80	2.15	0.52	120.00	0.00	0.50
25.26	531.20	2.75	0.52	120.00	0.00	0.50
25.75	605.90	6.30	1.04	120.00	0.00	0.50
26.24	564.30	4.85	0.86	120.00	0.00	0.50
26.73	540.20	2.50	0.46	120.00	0.00	0.50
27.23	588.60	3.36	0.57	120.00	0.00	0.50
27.72	385.60	1.76	0.46	120.00	0.00	0.50
28.21	431.00	2.21	0.51	120.00	0.00	0.50
28.70	358.70	1.36	0.38	120.00	0.00	0.50
29.19	328.60	1.61	0.49	120.00	0.00	0.50
29.69	483.00	1.01	0.21	120.00	0.00	0.50
30.18	309.80	2.51	0.81	120.00	0.00	0.50
30.67	306.80	1.57	0.51	120.00	0.00	0.50
31.16	96.36	3.06	3.18	120.00	0.00	0.50
31.66	151.10	4.28	2.83	120.00	0.00	0.50
32.15	187.90	3.05	1.62	120.00	0.00	0.50
32.64	112.30	3.95	3.52	120.00	0.00	0.50
33.13	35.30	1.14	3.24	120.00	0.00	0.50
33.62	30.64	0.50	1.64	120.00	0.00	0.50
34.12	34.26	0.61	1.77	120.00	0.00	0.50
34.61	35.46	0.65	1.84	120.00	0.00	0.50
35.10	35.32	0.62	1.74	120.00	0.00	0.50
35.59	38.14	0.73	1.90	120.00	0.00	0.50
36.08	39.26	0.72	1.84	120.00	0.00	0.50
36.58	40.82	0.73	1.80	120.00	0.00	0.50
37.07	40.90	0.82	2.01	120.00	0.00	0.50
37.56	40.09	0.81	2.03	120.00	0.00	0.50
38.05	40.73	0.79	1.95	120.00	0.00	0.50
38.54	103.20	0.80	0.78	120.00	0.00	0.50
39.04	40.12	0.71	1.77	120.00	0.00	0.50
39.53	38.50	0.86	2.24	120.00	0.00	0.50
40.02	46.76	1.06	2.26	120.00	0.00	0.50
40.51	49.99	1.89	3.78	120.00	0.00	0.50
41.01	64.13	2.98	4.65	120.00	0.00	0.50
41.50	52.58	2.74	5.21	120.00	0.00	0.50
41.99	33.51	1.13	3.36	120.00	0.00	0.50
42.48	33.15	1.07	3.22	120.00	0.00	0.50
42.97	31.95	1.28	4.00	120.00	0.00	0.50
43.47	33.68	1.24	3.67	120.00	0.00	0.50
43.96	42.21	1.23	2.90	120.00	0.00	0.50
44.45	38.34	1.14	2.96	120.00	0.00	0.50
44.94	40.73	1.14	2.80	120.00	0.00	0.50
45.43	38.48	1.04	2.70	120.00	0.00	0.50
45.93	36.44	0.82	2.26	120.00	0.00	0.50
46.42	31.39	0.90	2.86	120.00	0.00	0.50
46.91	31.95	0.87	2.73	120.00	0.00	0.50
47.40	96.42	1.52	1.58	120.00	0.00	0.50
47.90	243.10	3.39	1.39	120.00	0.00	0.50
48.39	438.70	4.95	1.13	120.00	0.00	0.50
48.88	439.20	1.84	0.42	120.00	0.00	0.50
49.37	491.30	1.39	0.28	120.00	0.00	0.50
49.86	536.00	1.81	0.34	120.00	0.00	0.50
50.36	549.70	1.91	0.35	120.00	0.00	0.50
50.85	592.70	2.02	0.34	120.00	0.00	0.50
51.34	568.00	1.38	0.24	120.00	0.00	0.50
51.83	613.80	2.94	0.48	120.00	0.00	0.50
52.32	562.20	2.11	0.37	120.00	0.00	0.50
52.82	489.70	4.76	0.97	120.00	0.00	0.50
53.31	434.00	1.66	0.38	120.00	0.00	0.50
53.80	427.90	4.39	1.03	120.00	0.00	0.50
54.29	446.10	5.31	1.19	120.00	0.00	0.50
54.79	462.10	1.06	0.23	120.00	0.00	0.50
55.28	538.00	2.32	0.43	120.00	0.00	0.50
55.77	546.10	3.16	0.58	120.00	0.00	0.50
56.26	544.30	1.26	0.23	120.00	0.00	0.50
56.75	559.30	3.35	0.60	120.00	0.00	0.50
57.25	534.70	3.50	0.65	120.00	0.00	0.50
57.74	499.40	4.34	0.87	120.00	0.00	0.50
58.23	564.60	1.34	0.24	120.00	0.00	0.50
58.72	582.10	1.47	0.25	120.00	0.00	0.50
59.21	581.80	2.31	0.40	120.00	0.00	0.50
59.71	583.00	5.71	0.98	120.00	0.00	0.50
60.20	490.60	4.46	0.91	120.00	0.00	0.50
60.69	557.70	0.02	0.00	120.00	0.00	0.50

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:
Page 2

Calculation segment, $d z=0.050 \mathrm{ft}$
User defined Print Interval, dp=0.50 ft
Peak Ground Acceleration (PGA), a_max $=0.65 \mathrm{~g}$

Depth ft	gamma pcf	sigma atm	gamma' pef	sigma' atm	rd	$\begin{aligned} & \mathrm{mZ} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & a(z) \\ & g \end{aligned}$	CSR	$\times \mathrm{fs} 1$	$=C S R f s$
0.16	120.00	0.009	120.00	0.009	1.00	0.000	0.650	0.42	1.00	0.42
0.66	120.00	0.037	120.00	0.037	1.00	0.000	0.650	0.42	1.00	0.42
1.16	120.00	0.066	120.00	0.066	1.00	0.000	0.650	0.42	1.00	0.42
1.66	120.00	0.094	120.00	0.094	1.00	0.000	0.650	0.42	1.00	0.42
2.16	120.00	0.122	120.00	0.122	0.99	0.000	0.650	0.42	1.00	0.42
2.66	120.00	0.151	120.00	0.151	0.99	0.000	0.650	0.42	1.00	0.42
3.16	120.00	0.179	120.00	0.179	0.99	0.000	0.650	0.42	1.00	0.42
3.66	120.00	0.208	120.00	0.208	0.99	0.000	0.650	0.42	1.00	0.42
4.16	120.00	0.236	120.00	0.236	0.99	0.000	0.650	0.42	1.00	0.42
4.66	120.00	0.264	120.00	0.264	0.99	0.000	0.650	0.42	1.00	0.42
5.16	120.00	0.293	57.60	0.288	0.99	0.000	0.650	0.42	1.00	0.42
5.66	120.00	0.321	57.60	0.302	0.99	0.000	0.650	0.44	1.00	0.44
6.16	120.00	0.349	57.60	0.315	0.99	0.000	0.650	0.46	1.00	0.46
6.66	120.00	0.378	57.60	0.329	0.98	0.000	0.650	0.48	1.00	0.48
7.16	120.00	0.406	57.60	0.343	0.98	0.000	0.650	0.49	1.00	0.49
7.66	120.00	0.434	57.60	0.356	0.98	0.000	0.650	0.51	1.00	0.51
8.16	120.00	0.463	57.60	0.370	0.98	0.000	0.650	0.52	1.00	0.52
8.66	120.00	0.491	57.60	0.383	0.98	0.000	0.650	0.53	1.00	0.53
9.16	120.00	0.519	57.60	0.397	0.98	0.000	0.650	0.54	1.00	0.54
9.66	120.00	0.548	57.60	0.411	0.98	0.000	0.650	0.55	1.00	0.55
10.16	120.00	0.576	57.60	0.424	0.98	0.000	0.650	0.56	1.00	0.56
10.66	120.00	0.604	57.60	0.438	0.98	0.000	0.650	0.57	1.00	0.57
11.16	120.00	0.633	57.60	0.451	0.97	0.000	0.650	0.58	1.00	0.58
11.66	120.00	0.661	57.60	0.465	0.97	0.000	0.650	0.58	1.00	0.58
12.16	120.00	0.690	57.60	0.479	0.97	0.000	0.650	0.59	1.00	0.59
12.66	120.00	0.718	57.60	0.492	0.97	0.000	0.650	0.60	1.00	0.60
13.16	120.00	0.746	57.60	0.506	0.97	0.000	0.650	0.60	1.00	0.60
13.66	120.00	0.775	57.60	0.520	0.97	0.000	0.650	0.61	1.00	0.61
14.16	120.00	0.803	57.60	0.533	0.97	0.000	0.650	0.62	1.00	0.62
14.66	120.00	0.831	57.60	0.547	0.97	0.000	0.650	0.62	1.00	0.62
15.16	120.00	0.860	57.60	0.560	0.96	0.000	0.650	0.63	1.00	0.63
15.66	120.00	0.888	57.60	0.574	0.96	0.000	0.650	0.63	1.00	0.63
16.16	120.00	0.916	57.60	0.588	0.96	0.000	0.650	0.63	1.00	0.63
16.66	120.00	0.945	57.60	0.601	0.96	0.000	0.650	0.64	1.00	0.64
17.16	120.00	0.973	57.60	0.615	0.96	0.000	0.650	0.64	1.00	0.64
17.66	120.00	1.001	57.60	0.628	0.96	0.000	0.650	0.65	1.00	0.65
18.16	120.00	1.030	57.60	0.642	0.96	0.000	0.650	0.65	1.00	0.65
18.66	120.00	1.058	57.60	0.656	0.96	0.000	0.650	0.65	1.00	0.65
19.16	120.00	1.086	57.60	0.669	0.96	0.000	0.650	0.66	1.00	0.66
19.66	120.00	1.115	57.60	0.683	0.95	0.000	0.650	0.66	1.00	0.66
20.16	120.00	1.143	57.60	0.696	0.95	0.000	0.650	0.66	1.00	0.66
20.66	120.00	1.172	57.60	0.710	0.95	0.000	0.650	0.66	1.00	0.66
21.16	120.00	1.200	57.60	0.724	0.95	0.000	0.650	0.67	1.00	0.67
21.66	120.00	1.228	57.60	0.737	0.95	0.000	0.650	0.67	1.00	0.67
22.16	120.00	1.257	57.60	0.751	0.95	0.000	0.650	0.67	1.00	0.67
22.66	120.00	1.285	57.60	0.765	0.95	0.000	0.650	0.67	1.00	0.67
23.16	120.00	1.313	57.60	0.778	0.95	0.000	0.650	0.67	1.00	0.67
23.66	120.00	1.342	57.60	0.792	0.94	0.000	0.650	0.68	1.00	0.68
24.16	120.00	1.370	57.60	0.805	0.94	0.000	0.650	0.68	1.00	0.68
24.66	120.00	1.398	57.60	0.819	0.94	0.000	0.650	0.68	1.00	0.68
25.16	120.00	1.427	57.60	0.833	0.94	0.000	0.650	0.68	1.00	0.68
25.66	120.00	1.455	57.60	0.846	0.94	0.000	0.650	0.68	1.00	0.68
26.16	120.00	1.483	57.60	0.860	0.94	0.000	0.650	0.68	1.00	0.68
26.66	120.00	1.512	57.60	0.873	0.94	0.000	0.650	0.69	1.00	0.69
27.16	120.00	1.540	57.60	0.887	0.94	0.000	0.650	0.69	1.00	0.69
27.66	120.00	1.568	57.60	0.901	0.94	0.000	0.650	0.69	1.00	0.69
28.16	120.00	1.597	57.60	0.914	0.93	0.000	0.650	0.69	1.00	0.69
28.66	120.00	1.625	57.60	0.928	0.93	0.000	0.650	0.69	1.00	0.69
29.16	120.00	1.654	57.60	0.941	0.93	0.000	0.650	0.69	1.00	0.69
29.66	120.00	1.682	57.60	0.955	0.93	0.000	0.650	0.69	1.00	0.69
30.16	120.00	1.710	57.60	0.969	0.93	0.000	0.650	0.69	1.00	0.69
30.66	120.00	1.739	57.60	0.982	0.92	0.000	0.650	0.69	1.00	0.69
31.16	120.00	1.767	57.60	0.996	0.92	0.000	0.650	0.69	1.00	0.69
31.66	120.00	1.795	57.60	1.009	0.92	0.000	0.650	0.69	1.00	0.69
32.16	120.00	1.824	57.60	1.023	0.91	0.000	0.650	0.69	1.00	0.69
32.66	120.00	1.852	57.60	1.037	0.91	0.000	0.650	0.69	1.00	0.69
33.16	120.00	1.880	57.60	1.050	0.90	0.000	0.650	0.68	1.00	0.68
33.66	120.00	1.909	57.60	1.064	0.90	0.000	0.650	0.68	1.00	0.68
34.16	120.00	1.937	57.60	1.078	0.90	0.000	0.650	0.68	1.00	0.68
34.66	120.00	1.965	57.60	1.091	0.89	0.000	0.650	0.68	1.00	0.68
35.16	120.00	1.994	57.60	1.105	0.89	0.000	0.650	0.68	1.00	0.68
35.66	120.00	2.022	57.60	1.118	0.88	0.000	0.650	0.68	1.00	0.68
36.16	120.00	2.050	57.60	1.132	0.88	0.000	0.650	0.67	1.00	0.67

Page 3

		16-0107-CPT8.cal								
36.66	120.00	2.079	57.60	1.146	0.88	0.000	0.650	0.67	1.00	0.67
37.16	120.00	2.107	57.60	1.159	0.87	0.000	0.650	0.67	1.00	0.67
37.66	120.00	2.136	57.60	1.173	0.87	0.000	0.650	0.67	1.00	0.67
38.16	120.00	2.164	57.60	1.186	0.86	0.000	0.650	0.67	1.00	0.67
38.66	120.00	2.192	57.60	1.200	0.86	0.000	0.650	0.66	1.00	0.66
39.16	120.00	2.221	57.60	1.214	0.86	0.000	0.650	0.66	1.00	0.66
39.66	120.00	2.249	57.60	1.227	0.85	0.000	0.650	0.66	1.00	0.66
40.16	120.00	2.277	57.60	1.241	0.85	0.000	0.650	0.66	1.00	0.66
40.66	120.00	2.306	57.60	1.254	0.84	0.000	0.650	0.65	1.00	0.65
41.16	120.00	2.334	57.60	1.268	0.84	0.000	0.650	0.65	1.00	0.65
41.66	120.00	2.362	57.60	1.282	0.83	0.000	0.650	0.65	1.00	0.65
42.16	120.00	2.391	57.60	1.295	0.83	0.000	0.650	0.65	1.00	0.65
42.66	120.00	2.419	57.60	1.309	0.83	0.000	0.650	0.65	1.00	0.65
43.16	120.00	2.447	57.60	1.322	0.82	0.000	0.650	0.64	1.00	0.64
43.66	120.00	2.476	57.60	1.336	0.82	0.000	0.650	0.64	1.00	0.64
44.16	120.00	2.504	57.60	1.350	0.81	0.000	0.650	0.64	1.00	0.64
44.66	120.00	2.532	57.60	1.363	0.81	0.000	0.650	0.64	1.00	0.64
45.16	120.00	2.561	57.60	1.377	0.81	0.000	0.650	0.63	1.00	0.63
45.66	120.00	2.589	57.60	1.391	0.80	0.000	0.650	0.63	1.00	0.63
46.16	120.00	2.618	57.60	1.404	0.80	0.000	0.650	0.63	1.00	0.63
46.66	120.00	2.646	57.60	1.418	0.79	0.000	0.650	0.63	1.00	0.63
47.16	120.00	2.674	57.60	1.431	0.79	0.000	0.650	0.62	1.00	0.62
47.66	120.00	2.703	57.60	1.445	0.79	0.000	0.650	0.62	1.00	0.62
48.16	120.00	2.731	57.60	1.459	0.78	0.000	0.650	0.62	1.00	0.62
48.66	120.00	2.759	57.60	1.472	0.78	0.000	0.650	0.62	1.00	0.62
49.16	120.00	2.788	57.60	1.486	0.77	0.000	0.650	0.61	1.00	0.61
49.66	120.00	2.816	57.60	1.499	0.77	0.000	0.650	0.61	1.00	0.61
50.16	120.00	2.844	57.60	1.513	0.77	0.000	0.650	0.61	1.00	0.61
50.66	120.00	2.873	57.60	1.527	0.76	0.000	0.650	0.61	1.00	0.61
51.16	120.00	2.901	57.60	1.540	0.76	0.000	0.650	0.60	1.00	0.60
51.66	120.00	2.929	57.60	1.554	0.75	0.000	0.650	0.60	1.00	0.60
52.16	120.00	2.958	57.60	1.567	0.75	0.000	0.650	0.60	1.00	0.60
52.66	120.00	2.986	57.60	1.581	0.75	0.000	0.650	0.59	1.00	0.59
53.16	120.00	3.014	57.60	1.595	0.74	0.000	0.650	0.59	1.00	0.59
53.66	120.00	3.043	57.60	1.608	0.74	0.000	0.650	0.59	1.00	0.59
54.16	120.00	3.071	57.60	1.622	0.73	0.000	0.650	0.59	1.00	0.59
54.66	120.00	3.100	57.60	1.635	0.73	0.000	0.650	0.58	1.00	0.58
55.16	120.00	3.128	57.60	1.649	0.73	0.000	0.650	0.58	1.00	0.58
55.66	120.00	3.156	57.60	1.663	0.72	0.000	0.650	0.58	1.00	0.58
56.16	120.00	3.185	57.60	1.676	0.72	0.000	0.650	0.58	1.00	0.58
56.66	120.00	3.213	57.60	1.690	0.71	0.000	0.650	0.57	1.00	0.57
57.16	120.00	3.241	57.60	1.704	0.71	0.000	0.650	0.57	1.00	0.57
57.66	120.00	3.270	57.60	1.717	0.70	0.000	0.650	0.57	1.00	0.57
58.16	120.00	3.298	57.60	1.731	0.70	0.000	0.650	0.56	1.00	0.56
58.66	120.00	3.326	57.60	1.744	0.70	0.000	0.650	0.56	1.00	0.56
59.16	120.00	3.355	57.60	1.758	0.69	0.000	0.650	0.56	1.00	0.56
59.66	120.00	3.383	57.60	1.772	0.69	0.000	0.650	0.56	1.00	0.56
60.16	120.00	3.411	57.60	1.785	0.68	0.000	0.650	0.55	1.00	0.55
60.66	120.00	3.440	57.60	1.799	0.68	0.000	0.650	0.55	1.00	0.55

CSR is based on water table at 5.00 during earthquake
CRR Calculation from CPT data, using Modify Robertson's Method:

Depth ft	$\begin{aligned} & \mathrm{qc} \\ & \mathrm{~atm} \end{aligned}$	fric atm	n	Q	Rf	Ic	Cq	Fines \%	Kc	qc1n atm	$q \subset 1 f$ atm	CRR7. 5
0.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
0.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
0.66			1.00	1.00E-4	0.00	7.97						
0.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
1.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
1.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
2.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
2.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
3.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
3.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.16			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.16	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
4.66			1.00	$1.00 \mathrm{E}-4$	0.00	7.97						
4.66	0.00	0.00	1.00	$1.00 \mathrm{E}-4$	0.00	7.97	1.00	NoLiq	1.00	0.00	0.00	2.08
5.16			1.00	$9.51 \mathrm{E1}$	4.93	2.43						
5.16			0.50	$5.20 \mathrm{E1}$	4.93	2.60						
5.16	28.12	1.37	0.50	$5.20 \mathrm{E1}$	4.93	2.60	1.85	35.13	0.80	51.98	259.89	1.71
5.66			1.00	1.37E2	3.28	2.19						
5.66			0.50	7.81E1	3.28	2.35						

Page 4

	16-0107-CPT8.cal											
5.66	44.23	1.44	0.50	7.81 El	3.28	2.35	1.77	24.26	0.51	78.08	160.78	0.47
6.16			1.00	1.63 E 2	2.00	1.97						
6.16			0.50	9.72 EI	2.00	2.12						
6.16	57.44	1.14	0.50	9.72 EI	2.00	2.12	1.69	16.54	0.31	97.19	140.46	0.34
6.66			1.00	8.30 El	3.98	2.39						
6.66			0.50	5.16 E 1	3.98	2.53						
6.66	31.71	1.25	0.50	5.16 El	3.98	2.53	1.63	32.04	0.72	51.59	185.60	0.67
7.16			1.00	2.20E2	1.84	1.86						
7.16			0.50	1.41 E 2	1.84	1.99						
7.16	89.87	1.64	0.50	1.41 E 2	1.84	1.99	1.57	12.60	0.20	141.04	176.93	0.60
7.66			1.00	2.11 E 2	1.46	1.80						
7.66			0.50	1.40E2	1.46	1.92						
7.66	92.30	1.34	0.50	1.40 E 2	1.46	1.92	1.52	10.78	0.15	140.05	165.59	0.50
8.16			1.00	6.72 El	4.03	2.46						
8.16			0.50	$4.64 \mathrm{E1}$	4.03	2.57						
8.16	31.55	1.25	0.50	$4.64 \mathrm{E1}$	4.03	2.57	1.47	33.73	0.77	46.39	199.22	0.82
8.66			1.00	1.63 E 2	1.53	1.88						
8.66			0.50	1.15 E 2	1.53	1.99						
8.66	80.49	1.22	0.50	1.15 E 2	1.53	1.99	1.43	12.66	0.20	114.86	144.39	0.36
9.16			1.00	1.26 E 2	1.70	2.00						
9.16			0.50	9.12 El	1.70	2.09						
9.16	65.71	1.11	0.50	9.12 E 1	1.70	2.09	1.39	15.65	0.28	91.18	127.41	0.27
9.66			1.00	$5.27 \mathrm{E1}$	2.55	2.39						
9.66			0.50	3.98 EI	2.55	2.48						
9.66	29.42	0.74	0.50	3.98 EL	2.55	2.48	1.35	29.74	0.66	39.75	117.14	0.23
10.16			1.00	1.72 E 1	1.82	2.68						
10.16	10.39	0.18	1.00	1.72 El	1.82	2.68	1.00	NoLiq	1.00	10.39	10.39	2.08
10.66			1.00	1.28 El	2.25	2.84						
10.66	8.11	0.17	1.00	1.28 EI	2.25	2.84	1.00	NoLiq	1.00	8.11	8.11	2.08
11.16			1.00	1.65 El	2.55	2.78						
11.16	10.53	0.25	1.00	$1.65 \mathrm{E1}$	2.55	2.78	1.00	NoLiq	1.00	10.53	10.53	2.08
11.66			1.00	$1.73 \mathrm{E1}$	2.59	2.76						
11.66	11.27	0.27	1.00	$1.73 \mathrm{E1}$	2.59	2.76	1.00	NoLiq	1.00	11.27	11.27	2.08
12.16			1.00	2.14 El	2.75	2.71						
12.16	14.09	0.37	1.00	$2.14 \mathrm{E1}$	2.75	2.71	1.00	NoLiq	1.00	14.09	14.09	2.08
12.66			1.00	1.76 E 1	4.30	2.90						
12.66	11.95	0.48	1.00	1.76 El	4.30	2.90	1.00	NoLiq	1.00	11.95	11.95	2.08
13.16			1.00	1.42 El	5.44	3.03						
13.16	10.04	0.51	1.00	1.42 E 1	5.44	3.03	1.00	NoLiq	1.00	10.04	10.04	2.08
13.66			1.00	1.36 E 1	4.17	2.97						
13.66	9.85	0.38	1.00	1.36E1	4.17	2.97	1.00	NoLiq	1.00	9.85	9.85	2.08
14.16			1.00	$1.41 \mathrm{E1}$	4.11	2.96						
14.16	10.37	0.39	1.00	$1.41 \mathrm{E1}$	4.11	2.96	1.00	NoLiq	1.00	10.37	10.37	2.08
14.66			1.00	1.63 E 1	3.26	2.85						
14.66	12.18	0.37	1.00	$1.63 \mathrm{E1}$	3.26	2.85	1.00	NoLiq	1.00	12.18	12.18	2.08
15.16			1.00	1.98 E 1	3.48	2.80						
15.16	14.90	0.49	1.00	1.98 El	3.48	2.80	1.00	NoLiq	1.00	14.90	14.90	2.08
15.66			1.00	1.99 EI	3.16	2.77						
15.66	15.27	0.46	1.00	1.99 EI	3.16	2.77	1.00	NoLiq	1.00	15.27	15.27	2.08
16.16			1.00	4.27E1	2.34	2.43						
16.16	32.31	0.73	1.00	4.27E1	2.34	2.43	1.00	NoLiq	1.00	32.31	32.31	2.08
16.66			1.00	2.03 E 1	1.80	2.62						
16.66	16.11	0.27	1.00	$2.03 \mathrm{E1}$	1.80	2.62	1.00	NoLiq	1.00	16.11	16.11	2.08
17.16			1.00	$1.00 \mathrm{E1}$	3.98	3.07						
17.16	8.60	0.30	1.00	1.00 E 1	3.98	3.07	1.00	NoLiq	1.00	8.60	8.60	2.08
17.66			1.00	$2.20 \mathrm{E1}$	3.15	2.73						
17.66	18.09	0.54	1.00	$2.20 \mathrm{E1}$	3.15	2.73	1.00	NoLiq	1.00	18.09	18.09	2.08
18.16			1.00	$2.41 \mathrm{E1}$	5.00	2.84						
18.16	20.04	0.95	1.00	$2.41 \mathrm{E1}$	5.00	2.84	1.00	NoLiq	1.00	20.04	20.04	2.08
18.66			1.00	1.31 E 1	4.46	3.01						
18.66	11.54	0.47	1.00	$1.31 \mathrm{E1}$	4.46	3.01	1.00	NoLiq	1.00	11.54	11.54	2.08
19.16			1.00	1.53 E 1	3.59	2.89						
19.16	13.59	0.45	1.00	1.53 E 1	3.59	2.89	1.00	NoLiq	1.00	13.59	13.59	2.08
19.66			1.00	2.13 E 1	3.77	2.79						
19.66	18.80	0.67	1.00	2.13 E 1	3.77	2.79	1.00	NoLiq	1.00	18.80	18.80	2.08
20.16			1.00	$1.80 \mathrm{E1}$	4.35	2.89						
20.16	16.34	0.66	1.00	$1.80 \mathrm{E1}$	4.35	2.89	1.00	NoLiq	1.00	16.34	16.34	2.08
20.66			1.00	1.44 El	5.01	3.01						
20.66	13.49	0.62	1.00	1.44 El	5.01	3.01	1.00	NoLiq	1.00	13.49	13.49	2.08
21.16			1.00	1.27 El	4.51	3.02						
21.16	12.26	0.50	1.00	1.27 EI	4.51	3.02	1.00	NoLiq	1.00	12.26	12.26	2.08
21.66			1.00	1.54 E 1	4.62	2.96						
21.66	14.90	0.63	1.00	1.54 El	4.62	2.96	1.00	NoLiq	1.00	14.90	14.90	2.08
22.16			1.00	$1.85 \mathrm{E1}$	4.40	2.89						
22.16	17.87	0.73	1.00	$1.85 \mathrm{E1}$	4.40	2.89	1.00	NoLiq	1.00	17.87	17.87	2.08
22.66			1.00	$2.94 \mathrm{E1}$	4.49	2.74						
22.66	28.10	1.20	1.00	2.94 El	4.49	2.74	1.00	NoLiq	1.00	28.10	28.10	2.08
23.16			1.00	1.52 E 2	1.35	1.87						
23.16			0.50	1.47 E 2	1.35	1.88						
23.16	141.86	1.90	0.50	1.47 E 2	1.35	1.88	1.04	9.81	0.13	147.45	169.19	0.53
23.66			1.00	2.29E2	0.93	1.63						
23.66			0.50	2.24 E 2	0.93	1.63						

Page 5

	16-0107-CPT8.cal											
23.66	216.81	2.01	0.50	2.24 E 2	0.93	1.63	1.03	4.95	0.00	223.72	223.72	1.12
24.16			1.00	2.45E2	1.16	1.68						
24.16			0.50	2.41E2	1.16	1.68						
24.16	235.02	2.70	0.50	2.41 E 2	1.16	1.68	1.02	5.80	0.02	240.78	246.00	1.46
24.66			1.00	3.28E2	0.61	1.39						
24.66			0.50	3.24 E 2	0.61	1.39						
24.66	318.66	1.95	0.50	3.24 E 2	0.61	1.39	1.02	1.42	0.00	324.15	324.15	2.08
25.16			1.00	5.21 E 2	0.58	1.24						
25.16			0.50	5.17E2	0.58	1.24						
25.16	511.77	2.97	0.50	5.17E2	0.58	1.24	1.01	0.00	0.00	500.00	500.00	2.08
25.66			1.00	5.89 E 2	1.20	1.48						
25.66			0.50	5.89E2	1.20	1.48						
25.66	587.03	7.04	0.50	5.89 E 2	1.20	1.48	1.00	2.51	0.00	500.00	500.00	2.08
26.16			1.00	5.35 E 2	1.05	1.45						
26.16			0.50	5.38 E 2	1.06	1.45						
26.16	540.12	5.70	0.50	5.38 E 2	1.06	1.45	1.00	2.13	0.00	500.00	500.00	2.08
26.66			1.00	5.12 E 2	0.52	1.21						
26.66			0.50	5.19 E 2	0.52	1.20						
26.66	524.29	2.71	0.50	5.19 E 2	0.52	1.20	0.99	0.00	0.00	500.00	500.00	2.08
27.16			1.00	5.92 Ez	0.60	1.22						
27.16			0.50	6.04 E 2	0.60	1.21						
27.16	614.13	3.68	0.50	6.04 E 2	0.60	1.21	0.98	0.00	0.00	500.00	500.00	2.08
27.66			1.00	3.86 E 2	0.53	1.29						
27.66			0.50	3.97 E 2	0.53	1.29						
27.66	406.58	2.16	0.50	3.97 E 2	0.53	1.29	0.98	0.27	0.00	397.15	397.15	2.08
28.16			1.00	3.98 E 2	0.58	1.31						
28.16			0.50	4.12 E 2	0.58	1.30						
28.16	424.11	2.43	0.50	4.12 E 2	0.58	1.30	0.97	0.42	0.00	411.61	411.61	2.08
28.66			1.00	$3.41 \mathrm{E2}$	0.35	1.21						
28.66			0.50	3.55 E 2	0.35	1.19						
28.66	368.39	1.27	0.50	3.55 E 2	0.35	1.19	0.96	0.00	0.00	355.26	355.26	2.08
29.16			1.00	2.97E2	0.54	1.38						
29.16			0.50	3.12 E 2	0.54	1.36						
29.16	325.30	1.75	0.50	3.12 E 2	0.54	1.36	0.96	1.09	0.00	311.74	311.74	2.08
29.66			1.00	4.33 E 2	0.23	1.02						
29.66			0.50	4.56 E 2	0.23	1.00						
29.66	479.24	1.12	0.50	4.56 E 2	0.23	1.00	0.95	0.00	0.00	456.42	456.42	2.08
30.16			1.00	2.82 E 2	0.80	1.52						
30.16			0.50	2.99 E 2	0.80	1.50						
30.16	316.33	2.53	0.50	2.99 E 2	0.80	1.50	0.95	2.85	0.00	299.43	299.43	2.08
30.66			1.00	2.68 E 2	0.53	1.41						
30.66			0.50	2.87 E 2	0.53	1.38						
30.66	304.60	1.60	0.50	2.87 E 2	0.53	1.38	0.94	1.33	0.00	286.58	286.58	2.08
31.16			1.00	8.28 El	3.23	2.32						
31.16			0.50	$9.02 \mathrm{E1}$	3.23	2.30						
31.16	96.42	3.06	0.50	$9.02 \mathrm{E1}$	3.23	2.30	0.94	22.50	0.47	90.18	169.26	0.53
31.66			1.00	1.29 E 2	2.87	2.16						
31.66			0.50	1.40 E 2	2.87	2.14						
31.66	151.09	4.28	0.50	1.40 E 2	2.87	2.14	0.93	16.92	0.32	140.47	206.08	0.89
32.16			1.00	1.60 E 2	1.65	1.92						
32.16			0.50	1.75 E 2	1.65	1.89						
32.16	189.06	3.09	0.50	1.75 E 2	1.65	1.89	0.92	10.17	0.14	174.75	202.72	0.85
32.66			1.00	8.81 El	3.62	2.34						
32.66			0.50	9.76 El	3.62	2.31						
32.66	106.16	3.78	0.50	9.76 EL	3.62	2.31	0.92	23.07	0.48	97.56	188.53	0.70
33.16			1.00	2.78 EL	3.24	2.66						
33.16	35.21	1.08	1.00	2.78 E 1	3.24	2.66	1.00	NoLiq	1.00	35.21	35.21	2.08
33.66			1.00	2.39E1	1.75	2.55						
33.66			0.50	2.80 E 1	1.75	2.50						
33.66	30.82	0.51	0.50	2.80 E 1	1.75	2.50	0.91	30.55	0.68	28.00	88.12	0.14
34.16			1.00	2.66 E 1	1.86	2.53						
34.16			0.50	$3.12 \mathrm{E1}$	1.86	2.47						
34.16	34.53	0.61	0.50	$3.12 \mathrm{E1}$	1.86	2.47	0.90	29.58	0.66	31.20	90.74	0.15
34.66			1.00	2.71 El	1.89	2.53						
34.66			0.50	3.19 E 1	1.89	2.47						
34.66	35.51	0.63	0.50	3.19 E 1	1.89	2.47	0.90	29.40	0.65	31.91	91.55	0.15
35.16			1.00	2.69 El	1.91	2.53						
35.16			0.50	3.19 E 1	1.91	2.47						
35.16	35.71	0.64	0.50	3.19 E 1	1.91	2.47	0.89	29.51	0.65	31.91	92.34	0.15
35.66			1.00	$2.87 \mathrm{E1}$	2.03	2.53						
35.66			0.50	$3.40 \mathrm{E1}$	2.03	2.47						
35.66	38.29	0.74	0.50	$3.40 \mathrm{E1}$	2.03	2.47	0.89	29.29	0.65	34.03	96.81	0.16
36.16			1.00	$2.94 \mathrm{E1}$	1.91	2.50						
36.16			0.50	3.50 El	1.91	2.44						
36.16	39.63	0.72	0.50	3.50 E 1	1.91	2.44	0.88	28.16	0.62	35.03	91.79	0.15
36.66			1.00	3.00 E 1	1.86	2.49						
36.66			0.50	3.60 E 1	1.86	2.43						
36.66	40.90	0.72	0.50	3.60 E 1	1.86	2.43	0.88	27.46	0.60	35.97	89.88	0.15
37.16			1.00	2.98 E 1	2.10	2.52						
37.16			0.50	3.59 EI	2.10	2.46						
37.16	41.09	0.82	0.50	3.59 EI	2.10	2.46	0.87	28.85	0.64	35.95	99.00	0.17
37.66			1.00	2.87E1	2.20	2.55						

Page 6

	16-0107-CPT8.cal											
37.66			0.50	$3.48 \mathrm{E1}$	2.20	2.48						
37.66	40.04	0.83	0.50	3.48 E 1	2.20	2.48	0.87	29.86	0.66	34.85	103.63	0.18
38.16			1.00	2.86E1	2.04	2.53						
38.16			0.50	$3.49 \mathrm{E1}$	2.04	2.46						
38.16	40.32	0.78	0.50	$3.49 \mathrm{E1}$	2.04	2.46	0.87	28.94	0.64	34.91	96.75	0.16
38.66			1.00	$4.16 \mathrm{E1}$	1.45	2.31						
38.66			0.50	$5.02 \mathrm{E1}$	1.45	2.25						
38.66	58.21	0.81	0.50	$5.02 \mathrm{E1}$	1.45	2.25	0.86	20.56	0.42	50.15	85.81	0.14
39.16			1.00	2.58 E 1	2.13	2.58						
39.16			0.50	$3.20 \mathrm{E1}$	2.13	2.50						
39.16	37.28	0.75	0.50	3.20 E 1	2.13	2.50	0.86	30.79	0.69	31.96	102.61	0.18
39.66			1.00	2.71E1	2.41	2.59						
39.66			0.50	$3.37 \mathrm{E1}$	2.41	2.52						
39.66	39.56	0.90	0.50	$3.37 \mathrm{E1}$	2.41	2.52	0.85	31.44	0.71	33.74	114.78	0.22
40.16			1.00	$4.02 \mathrm{E1}$	2.28	2.44						
40.16			0.50	4.93 El	2.28	2.38						
40.16	58.10	1.27	0.50	4.93 El	2.28	2.38	0.85	25.48	0.55	49.31	108.82	0.20
40.66			1.00	4.64 El	2.79	2.45						
40.66			0.50	$5.69 \mathrm{E1}$	2.79	2.39						
40.66	67.35	1.81	0.50	$5.69 \mathrm{E1}$	2.79	2.39	0.84	26.02	0.56	56.88	129.65	0.28
41.16			1.00	4.49 El	5.14	2.65						
41.16	65.88	3.27	1.00	$4.49 \mathrm{E1}$	5.14	2.65	1.00	NoLiq	1.00	65.88	65.88	2.08
41.66			1.00	$3.07 \mathrm{E1}$	4.69	2.74						
41.66	46.29	2.06	1.00	$3.07 \mathrm{E1}$	4.69	2.74	1.00	NoLiq	1.00	46.29	46.29	2.08
42.16			1.00	2.17E1	2.86	2.71						
42.16	33.72	0.90	1.00	$2.17 E 1$	2.86	2.71	1.00	NoLiq	1.00	33.72	33.72	2.08
42.66			1.00	$2.05 \mathrm{E1}$	3.61	2.80						
42.66	32.26	1.08	1.00	$2.05 \mathrm{E1}$	3.61	2.80	1.00	NoLiq	1.00	32.26	32.26	2.08
43.16			1.00	$1.99 \mathrm{E1}$	4.24	2.85						
43.16	31.71	1.24	1.00	$1.99 \mathrm{E1}$	4.24	2.85	1.00	NoLiq	1.00	31.71	31.71	2.08
43.66			1.00	2.20E1	3.58	2.77						
43.66	35.07	1.17	1.00	2.20 EI	3.58	2.77	1.00	NoLiq	1.00	35.07	35.07	2.08
44.16			1.00	2.57E1	3.23	2.69						
44.16	40.94	1.24	1.00	2.57E1	3.23	2.69	1.00	NoLiq	1.00	40.94	40.94	2.08
44.66			1.00	2.38E1	3.03	2.70						
44.66	38.51	1.09	1.00	$2.38 \mathrm{E1}$	3.03	2.70	1.00	NoLiq	1.00	38.51	38.51	2.08
45.16			1.00	$2.54 \mathrm{E1}$	2.88	2.66						
45.16	41.26	1.11	1.00	$2.54 \mathrm{E1}$	2.88	2.66	1.00	NoLiq	1.00	41.26	41.26	2.08
45.66			1.00	2.16 El	2.88	2.72						
45.66	35.79	0.95	1.00	$2.16 \mathrm{E1}$	2.88	2.72	1.00	NoLiq	1.00	35.79	35.79	2.08
46.16			1.00	$2.06 \mathrm{E1}$	2.67	2.71						
46.16	34.58	0.85	1.00	$2.06 E 1$	2.67	2.71	1.00	NoLiq	1.00	34.58	34.58	2.08
46.66			1.00	1.78 E 1	3.33	2.82						
46.66	30.57	0.93	1.00	1.78 E 1	3.33	2.82	1.00	NoLiq	1.00	30.57	30.57	2.08
47.16			1.00	$2.32 \mathrm{E1}$	3.12	2.71						
47.16	39.31	1.14	1.00	$2.32 \mathrm{E1}$	3.12	2.71	1.00	NoLiq	1.00	39.31	39.31	2.08
47.66			1.00	5.97E1	2.87	2.38						
47.66			0.50	7.75E1	2.87	2.30						
47.66	97.85	2.73	0.50	$7.75 \mathrm{E1}$	2.87	2.30	0.79	22.71	0.47	77.54	147.06	0.38
48.16			1.00	2.54 E 2	1.13	1.66						
48.16			0.50	3.25 E2	1.13	1.59						
48.16	411.33	4.61	0.50	3.25 E 2	1.13	1.59	0.79	4.25	0.00	324.57	324.57	2.08
48.66			1.00	2.75 E 2	1.27	1.68						
48.66			0.50	3.52 E 2	1.27	1.61						
48.66	447.91	5.64	0.50	3.52 E 2	1.27	1.61	0.79	4.58	0.00	351.95	351.95	2.08
49.16			1.00	2.72 E 2	0.46	1.36						
49.16			0.50	3.49 E 2	0.46	1.28						
49.16	446.38	2.02	0.50	3.49 E 2	0.46	1.28	0.78	0.17	0.00	349.28	349.28	2.08
49.66			1.00	2.92 E 2	0.21	1.14						
49.66			0.50	3.76 E 2	0.21	1.04						
49.66	482.99	0.99	0.50	3.76 E 2	0.21	1.04	0.78	0.00	0.00	376.37	376.37	2.08
50.16			1.00	3.25 E 2	0.42	1.28						
50.16			0.50	4.22 E 2	0.42	1.19						
50.16	543.24	2.27	0.50	4.22 E 2	0.42	1.19	0.78	0.00	0.00	421.58	421.58	2.08
50.66			1.00	3.34 E 2	0.39	1.24						
50.66			0.50	4.34 E 2	0.39	1.16						
50.66	561.38	2.16	0.50	4.34 E 2	0.39	1.16	0.77	0.00	0.00	433.88	433.88	2.08
51.16			1.00	3.42 E 2	0.43	1.27						
51.16			0.50	4.46 E 2	0.43	1.19						
51.16	579.87	2.49	0.50	$4.46 E 2$	0.43	1.19	0.77	0.00	0.00	446.37	446.37	2.08
51.66			1.00	3.50 E 2	0.23	1.10						
51.66			0.50	4.59 E 2	0.23	1.00						
51.66	598.14	1.38	0.50	4.59 E 2	0.23	1.00	0.77	0.00	0.00	458.58	458.58	2.08
52.16			1.00	3.49 E 2	0.25	1.12						
52.16			0.50	4.59 E 2	0.25	1.02						
52.16	601.59	1.51	0.50	4.59 E 2	0.25	1.02	0.76	0.00	0.00	459.39	459.39	2.08
52.66			1.00	3.01 E 2	0.89	1.53						
52.66			0.50	3.97 E 2	0.89	1.46						
52.66	522.46	4.61	0.50	3.97 E 2	0.89	1.46	0.76	2.25	0.00	397.40	397.40	2.08
53.16			1.00	2.50 E 2	0.37	1.33						
53.16			0.50	3.32 E 2	0.37	1.23						
53.16	438.78	1.61	0.50	3.32 E 2	0.37	1.23	0.76	0.00	0.00	332.44	332.44	2.08

Page 7

							7-C					
53.66			1.00	2.39 E 2	0.85	1.59						
53.66			0.50	3.19 E 2	0.85	1.50						
53.66	422.54	3.58	0.50	3.19 E 2	0.85	1.50	0.75	2.88	0.00	318.89	318.89	2.08
54.16			1.00	2.48E2	1.13	1.67						
54.16			0.50	3.32 E 2	1.13	1.59						
54.16	441.94	4.94	0.50	3.32 E 2	1.13	1.59	0.75	4.14	0.00	332.25	332.25	2.08
54.66			1.00	2.50E2	0.21	1.20						
54.66			0.50	3.36 E 2	0.21	1.09						
54.66	449.05	0.93	0.50	3.36 E 2	0.21	1.09	0.75	0.00	0.00	336.30	336.30	2.08
55.16			1.00	2.86 E 2	0.31	1.24						
55.16			0.50	3.86 E 2	0.31	1.13						
55.16	516.80	1.58	0.50	$3.86 E 2$	0.31	1.13	0.75	0.00	0.00	385.57	385.57	2.08
55.66			1.00	3.06 E 2	0.43	1.30						
55.66			0.50	4.14 E 2	0.43	1.21						
55.66	556.81	2.38	0.50	4.14 E 2	0.43	1.21	0.74	0.00	0.00	413.86	413.86	2.08
56.16			1.00	2.98 E 2	0.47	1.34						
56.16			0.50	4.04 E 2	0.47	1.24						
56.16	545.81	2.55	0.50	$4.04 \mathrm{E}^{2}$	0.47	1.24	0.74	0.00	0.00	404.16	404.16	2.08
56.66			1.00	3.02 E 2	0.38	1.27						
56.66			0.50	4.12 E 2	0.38	1.17						
56.66	557.83	2.11	0.50	4.12 E 2	0.38	1.17	0.74	0.00	0.00	411.53	411.53	2.08
57.16			1.00	2.90 E 2	0.51	1.37						
57.16			0.50	3.97 E 2	0.51	1.27						
57.16	540.45	2.76	0.50	$3.97 E 2$	0.51	1.27	0.74	0.15	0.00	397.25	397.25	2.08
57.66			1.00	2.75E2	0.70	1.48						
57.66			0.50	3.77E2	0.70	1.39						
57.66	515.14	3.57	0.50	3.77 E 2	0.70	1.39	0.73	1.39	0.00	377.26	377.26	2.08
58.16			1.00	2.91 E 2	0.40	1.30						
58.16			0.50	4.02 E 2	0.40	1.19						
58.16	550.48	2.19	0.50	4.02 E 2	0.40	1.19	0.73	0.00	0.00	401.67	401.67	2.08
58.66			1.00	3.04 E 2	0.38	1.27						
58.66			0.50	$4.21 E 2$	0.38	1.17						
58.66	578.50	2.20	0.50	$4.21 E 2$	0.38	1.17	0.73	0.00	0.00	420.60	420.60	2.08
59.16			1.00	3.03 E 2	0.39	1.28						
59.16			0.50	4.21 E 2	0.39	1.17						
59.16	581.07	2.28	0.50	4.21 E 2	0.39	1.17	0.72	0.00	0.00	420.96	420.96	2.08
59.66			1.00	3.02 E 2	0.98	1.56						
59.66			0.50	4.21 E 2	0.98	1.48						
59.66	583.51	5.67	0.50	$4.21 E 2$	0.98	1.48	0.72	2.50	0.00	421.22	421.22	2.08
60.16			1.00	2.56E2	0.87	1.57						
60.16			0.50	3.58 E 2	0.87	1.48						
60.16	498.01	4.29	0.50	3.58 E 2	0.87	1.48	0.72	2.51	0.00	358.23	358.23	2.08
60.66			1.00	2.84 E 2	0.17	1.11						
60.66			0.50	$3.99 E 2$	0.17	0.97						
60.66	556.78	0.92	0.50	$3.99 E 2$	0.17	0.97	0.72	0.00	0.00	399.11	399.11	2.08

Fines have been calculated, and correction is made by Modify Robertson Method.
Fines=NoLiq means the soils are not liquefiable.
CRR is based on water table at 10.00 during In-Situ Testing

			$16-0107-C P T 8 . C a l$					
55.16	1.17	2.08	0.98	2.04	1.37	2.79	0.58	4.81
55.66	1.18	2.08	0.98	2.04	1.37	2.79	0.58	4.83
56.16	1.19	2.08	0.98	2.03	1.37	2.79	0.58	4.84
56.66	1.19	2.08	0.98	2.03	1.37	2.78	0.57	4.86
57.16	1.20	2.08	0.97	2.03	1.37	2.78	0.57	4.88
57.66	1.21	2.08	0.97	2.02	1.37	2.78	0.57	4.89
58.16	1.22	2.08	0.97	2.02	1.37	2.77	0.56	4.91
58.66	1.23	2.08	0.97	2.02	1.37	2.77	0.56	4.93
59.16	1.24	2.08	0.97	2.02	1.37	2.76	0.56	4.95
59.66	1.25	2.08	0.97	2.01	1.37	2.76	0.56	4.97
60.16	1.26	2.08	0.97	2.01	1.37	2.76	0.55	4.99
60.66	1.27	2.08	0.97	2.01	1.37	2.75	0.55	5.00

* F.S.<l: Liquefaction Potential Zone. (If above water table: F.S.=5)
\wedge No-liquefiable Soils or above Water Table.
(F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)

CPT convert to SPT for Settlement Analysis:

					16-0107-СРТ8.cal		
29.66	1.00	6.65	456.42	68.65	0.00	0.00	68.65
30.16	1.50	5.73	299.43	52.28	2.85	0.00	52.28
30.66	1.38	5.94	286.58	48.22	1.33	0.00	48.22
31.16	2.30	4.25	169.26	39.81	22.50	0.00	39.81
31.66	2.14	4.55	206.08	45.27	16.92	0.00	45.27
32.16	1.89	5.01	202.72	40.49	10.17	0.00	40.49
32.66	2.31	4.22	188.53	44.65	23.07	0.00	44.65
33.16	2.66	3.58	35.21	9.84	NoLiq	0.00	9.84
33.66	2.50	3.89	88.12	22.68	30.55	0.00	22.68
34.16	2.47	3.93	90.74	23.11	29.58	0.00	23.11
34.66	2.47	3.93	91.55	23.27	29.40	0.00	23.27
35.16	2.47	3.93	92.34	23.50	29.51	0.00	23.50
35.66	2.47	3.94	96.81	24.58	29.29	0.00	24.58
36.16	2.44	3.99	91.79	23.02	28.16	0.00	23.02
36.66	2.43	4.02	89.88	22.37	27.46	0.00	22.37
37.16	2.46	3.96	99.00	25.02	28.85	0.00	25.02
37.66	2.48	3.91	103.63	26.47	29.86	0.00	26.47
38.16	2.46	3.95	96.75	24.47	28.94	0.00	24.47
38.66	2.25	4.35	85.81	19.73	20.56	0.00	19.73
39.16	2.50	3.88	102.61	26.47	30.79	0.00	26.47
39.66	2.52	3.85	114.78	29.82	31.44	0.00	29.82
40.16	2.38	4.11	108.82	26.49	25.48	0.00	26.49
40.66	2.39	4.08	129.65	31.75	26.02	0.00	31.75
41.16	2.65	3.60	65.88	18.30	NoLiq	0.00	18.30
41.66	2.74	3.44	46.29	13.47	NoLiq	0.00	13.47
42.16	2.71	3.49	33.72	9.67	NoLiq	0.00	9.67
42.66	2.80	3.33	32.26	9.68	NoLiq	0.00	9.68
43.16	2.85	3.23	31.71	9.81	NoLiq	0.00	9.81
43.66	2.77	3.38	35.07	10.37	NoLiq	0.00	10.37
44.16	2.69	3.53	40.94	11.60	NoLiq	0.00	11.60
44.66	2.70	3.52	38.51	10.95	NoLiq	0.00	10.95
45.16	2.66	3.58	41.26	11.52	NoLiq	0.00	11.52
45.66	2.72	3.48	35.79	10.28	NoLiq	0.00	10.28
46.16	2.71	3.49	34.58	9.92	NoLiq	0.00	9.92
46.66	2.82	3.29	30.57	9.30	NoLiq	0.00	9.30
47.16	2.71	3.48	39.31	11.28	NoLiq	0.00	11.28
47.66	2.30	4.24	147.06	34.68	22.71	0.00	34.68
48.16	1.59	5.56	324.57	58.41	4.25	0.00	58.41
48.66	1.61	5.52	351.95	63.77	4.58	0.00	63.77
49.16	1.28	6.14	349.28	56.88	0.17	0.00	56.88
49.66	1.04	6.57	376.37	57.26	0.00	0.00	57.26
50.16	1.19	6.29	421.58	66.98	0.00	0.00	66.98
50.66	1.16	6.36	433.88	68.26	0.00	0.00	68.26
51.16	1.19	6.31	446.37	70.75	0.00	0.00	70.75
51.66	1.00	6.65	458.58	68.91	0.00	0.00	68.91
52.16	1.02	6.62	459.39	69.43	0.00	0.00	69.43
52.66	1.46	5.81	397.40	68.43	2.25	0.00	68.43
53.16	1.23	6.22	332.44	53.42	0.00	0.00	53.42
53.66	1.50	5.72	318.89	55.72	2.88	0.00	55.72
54.16	1.59	5.57	332.25	59.66	4.14	0.00	59.66
54.66	1.09	6.49	336.30	51.79	0.00	0.00	51.79
55.16	1.13	6.41	385.57	60.17	0.00	0.00	60.17
55.66	1.21	6.27	413.86	66.01	0.00	0.00	66.01
56.16	1.24	6.21	404.16	65.12	0.00	0.00	65.12
56.66	1.17	6.34	411.53	64.95	0.00	0.00	64.95
57.16	1.27	6.15	397.25	64.64	0.15	0.00	64.64
57.66	1.39	5.93	377.26	63.57	1.39	0.00	63.57
58.16	1.19	6.29	401.67	63.82	0.00	0.00	63.82
58.66	1.17	6.34	420.60	66.29	0.00	0.00	66.29
59.16	1.17	6.33	420.96	66.51	0.00	0.00	66.51
59.66	1.48	5.77	421.22	72.97	2.50	0.00	72.97
60.16	1.48	5.77	358.23	62.07	2.51	0.00	62.07
60.66	0.97	6.70	399.11	59.57	0.00	0.00	59.57

(N1) 60s has been fines corrected in liquefaction analysis, therefore $d(N 1) 60=0$. (N1) 60 is converted from qcI, (N1) 605 is after fines correction Fines=NoLiq means the soils are not liquefiable.

Settlement of Saturated Sands:

Page 11

16-0107-СРТ8.ca1

| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16.16 | 0.63 | 1.00 | 0.63 | 5.00 | NoLiq | 8.06 | 45.65 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 15.66 | 0.63 | 1.00 | 0.63 | 5.00 | NoLiq | 4.51 | 35.19 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 15.16 | 0.63 | 1.00 | 0.63 | 5.00 | NoLiq | 4.47 | 35.06 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 14.66 | 0.62 | 1.00 | 0.62 | 5.00 | NoLiq | 3.76 | 32.66 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 14.16 | 0.62 | 1.00 | 0.62 | 5.00 | NoLiq | 3.42 | 31.50 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 13.66 | 0.61 | 1.00 | 0.61 | 5.00 | NoLiq | 3.28 | 31.00 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 13.16 | 0.60 | 1.00 | 0.60 | 5.00 | NoLiq | 3.47 | 31.66 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 12.66 | 0.60 | 1.00 | 0.60 | 5.00 | NoLiq | 3.80 | 32.80 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 12.16 | 0.59 | 1.00 | 0.59 | 5.00 | NoLiq | 4.03 | 33.59 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 11.66 | 0.58 | 1.00 | 0.58 | 5.00 | NoLiq | 3.32 | 31.17 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 11.16 | 0.58 | 1.00 | 0.58 | 5.00 | NoLiq | 3.13 | 30.47 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 10.66 | 0.57 | 1.00 | 0.57 | 5.00 | NoLiq | 2.49 | 28.17 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 10.16 | 0.56 | 1.00 | 0.56 | 5.00 | NoLiq | 2.93 | 29.77 | 0.000 | $0.0 E 0$ | 0.000 | 1.478 |
| 9.66 | 0.55 | 1.00 | 0.55 | 0.57 | 29.74 | 29.88 | 89.80 | 1.175 | $7.1 E-3$ | 0.009 | 1.487 |
| 9.16 | 0.54 | 1.00 | 0.54 | 0.69 | 15.65 | 27.52 | 84.72 | 1.224 | $7.3 E-3$ | 0.093 | 1.580 |
| 8.66 | 0.53 | 1.00 | 0.53 | 0.93 | 12.66 | 29.93 | 89.90 | 0.581 | $3.5 E-3$ | 0.061 | 1.641 |
| 8.16 | 0.52 | 1.00 | 0.52 | 2.15 | 33.73 | 53.01 | 100.00 | 0.000 | $0.0 E 0$ | 0.021 | 1.662 |
| 7.66 | 0.51 | 1.00 | 0.51 | 1.36 | 10.78 | 33.38 | 98.26 | 0.034 | $2.0 E-4$ | 0.011 | 1.673 |
| 7.16 | 0.49 | 1.00 | 0.49 | 1.66 | 12.60 | 36.64 | 100.00 | 0.000 | $0.0 E 0$ | 0.000 | 1.673 |
| 6.66 | 0.48 | 1.00 | 0.48 | 1.94 | 32.04 | 48.52 | 100.00 | 0.000 | $0.0 E 0$ | 0.001 | 1.674 |
| 6.16 | 0.46 | 1.00 | 0.46 | 1.00 | 16.54 | 30.70 | 91.65 | 0.372 | $2.2 E-3$ | 0.012 | 1.687 |
| 5.66 | 0.44 | 1.00 | 0.44 | 1.44 | 24.26 | 38.60 | 100.00 | 0.000 | $0.0 E 0$ | 0.005 | 1.692 |
| 5.16 | 0.42 | 1.00 | 0.42 | 5.00 | 35.13 | 70.16 | 100.00 | 0.000 | $0.0 E 0$ | 0.000 | 1.692 |
| 5.01 | 0.42 | 1.00 | 0.42 | 2.17 | 39.58 | 52.01 | 100.00 | 0.000 | $0.0 E 0$ | 0.000 | 1.692 |

Settlement of Saturated Sands=1.692 in.
qc1 and (N1) 60 is after fines correction in liquefaction analysis
(N1)60s is converted from qc1 and after fines correction
dsz is per each segment, dz=0.05 ft
dsp is per each print interval, dp=0.50 ft
S is cumulated settlement at this depth
Settlement of Unsaturated Sands:

4.96	0.28	0.18	2.06	0.42	243.23	$4.8 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000	0.000
4.66	0.26	0.17	0.10	0.42	86.09	$1.3 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
4.16	0.24	0.15	0.10	0.42	81.34	$1.2 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
3.66	0.21	0.13	0.10	0.42	76.30	$1.1 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
3.16	0.18	0.12	0.10	0.42	70.90	$1.1 \mathrm{E}-3$	1.0000	4.6774	0.82	3.8158	0.00 EO	0.000	0.000
2.66	0.15	0.10	0.10	0.42	65.05	$9.7 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
2.16	0.12	0.08	0.10	0.42	58.62	$8.8 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
1.66	0.09	0.06	0.10	0.42	51.39	$7.7 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
1.16	0.07	0.04	0.10	0.42	42.95	$6.5 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
0.66	0.04	0.02	0.10	0.42	32.40	$4.9 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000
0.16	0.01	0.01	0.10	0.42	15.95	$2.4 \mathrm{E}-4$	1.0000	4.6774	0.82	3.8158	0.00 E 0	0.000	0.000

Settlement of Unsaturated Sands
Settlement of Unsaturated Sands=0.000 in.
(N1) 60 s is converted from qc1 and after fines correction
$d s z$ is per each segment, $d z=0.05 \mathrm{ft}$
dsp is per each print interval, $d p=0.50 \mathrm{ft}$
S is cumulated settlement at this depth
Total Settlement of Saturated and Unsaturated Sands=1.692 in. Differential Settlement $=0.846$ to 1.117 in .

Units: Unit: qc, fs, Stress or Pressure $=$ atm (1.0581tsf); Unit Weight $=$ pcf; Depth $=f t ;$ Settlement $=$ in

$\begin{aligned} & 1 \mathrm{~atm} \\ & 1 \mathrm{~atm} \end{aligned}$	$\mathrm{e})=1.0581 \mathrm{tsf}(1 \mathrm{tsf}=1 \mathrm{ton} / \mathrm{ft} 2=2 \mathrm{kip} / \mathrm{ft} 2)$ $\mathrm{e})=101.325 \mathrm{kPa}(1 \mathrm{kPa}=1 \mathrm{kN} / \mathrm{m} 2=0.001 \mathrm{Mpa})$
SPT	Field data from Standard Penetration Test (SPT)
BPT	Field data from Becker Penetration Test (BPT)
qC	Field data from Cone Penetration Test (CPT) [atm (tsf)]
fs	Friction from CPT testing [atm (tsf)]
Rf	Ratio of fs/qc (\%)
gamma	Total unit weight of soil
gamma'	Effective unit weight of soil
Fines	Fines content [\%]
D50	Mean grain size
Dr	Relative Density
sigma	Total vertical stress [atm]
sigma'	Effective vertical stress [atm]
sigC'	Effective confining pressure [atm]
rd	Acceleration reduction coefficient by Seed
a_max.	Peak Ground Acceleration (PGA) in ground surface
$m \mathrm{~L}$	Linear acceleration reduction coefficient X depth
a_min.	Minimum acceleration under linear reduction, mZ
CRRv	CRR after overburden stress correction, CRRv=CRR7.5* Ks

CRR7. 5	Cyclic resistance ratio ($\mathrm{M}=7.5$) ${ }^{16-0107-C P T 8 . c a l}$
Ksig	Overburden stress correction factor for CRR7. 5
CRRm	After magnitude scaling correction CRRm=CRRv* MSF
MSF	Magnitude scaling factor from $M=7.5$ to user input M
CSR	Cyclic stress ratio induced by earthquake
CSRfs	CSRfs=CSR*fs 1 (Default fsl=1)
fsi	First CSR curve in graphic defined in \#9 of Advanced page
fs2	2nd CSR curve in graphic defined in \#9 of Advanced page
F.S.	Calculated factor of safety against liquefaction F.S.=CRRm/CSRsf
Cebs	Energy Ratio, Borehole Dia., and Sampling Method Corrections
Cr	Rod Length Corrections
Cn	Overburden Pressure Correction
(N1)60	SPT after corrections, (N1) 60=SPT * Cr * Cn * Cebs
d(N1) 60	Fines correction of SPT
(N1)60f	(N1) 60 after fines corrections, (N1) $60 f=(N 1) 60+d(N 1) 60$
Cq	Overburden stress correction factor
qc1	CPT after Overburden stress correction
dqc1	Fines correction of CPT
qc1f	CPT after Fines and Overburden correction, qc1f=qc1 + dqc1
qcin	CPT after normalization in Robertson's method
Kc	Fine correction factor in Robertson's Method
qc1f	CPT after Fines correction in Robertson's Method
Ic	Soil type index in Suzuki's and Robertson's Methods
(N1)60s	(N1)60 after settlement fines corrections
CSRm	After magnitude scaling correction for Settlement calculation CSRm=CSRsf / MSF*
CSRfs	Cyclic stress ratio induced by earthquake with user inputed fs
MSF*	Scaling factor from CSR, MSF* $=1$, based on Item 2 of Page C.
ec	Volumetric strain for saturated sands
dz	Calculation segment, $\mathrm{dz}=0.050 \mathrm{ft}$
dsz	Settlement in each segment, dz
dp	User defined print interval
dsp	Settlement in each print interval, dp
Gmax	Shear Modulus at low strain
g_eff	gamma_eff, Effective shear Strain
$\mathrm{g}^{*} \mathrm{Ge} / \mathrm{Cm}$	gamma_eff * G_eff/C_max, Strain-modulus ratio
ec7.5	Volumetric Strain for magnitude=7.5
Cec	Magnitude correction factor for any magnitude
ec	Volumetric strain for unsaturated sands, ec=Cec * ec7.5
NoLiq	No-Liquefy Soils

References:

1. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Youd, T.L., and Idriss, I.M., eds., Technical Report NCEER 97-0022.

SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for

Analyzing and Mitigating Liquefaction in California. University of Southern California. March 1999.
2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL-2, PROCEEDINGS: Fourth

International Conference on Recent Advances in Ceotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March 2001.
3. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK, Earthquake Engineering Research Center,

Report No. EERC 2003-06 by R.B Seed and etc. April 2003.
Note: Print Interval you selected does not show complete results. To get complete results, you should select 'Segment' in Print Interval (Item 12, Page C).

APPENDIX D

CBC Seismic Design / Site Specific Response Spectra

ThUSGS

 Design Maps Summary Report

 Design Maps Summary Report}

User-Specified Input

Report Title 12870 Panama Street
Tue March 22, 2016 15:41:21 UTC

Building Code Reference Document ASCE 7-10 Standard

(which utilizes USGS hazard data available in 2008)
Site Coordinates $33.98417^{\circ} \mathrm{N}, 118.42733^{\circ} \mathrm{W}$
Site Soil Classification Site Class D - "Stiff Soil"
Risk Category I/II/III

USGS-Provided Output

$$
\begin{array}{lll}
\mathbf{S}_{\mathrm{s}}=1.688 \mathrm{~g} & \mathbf{S}_{\mathrm{MS}}=1.688 \mathrm{~g} & \mathbf{S}_{\mathrm{DS}}=1.125 \mathrm{~g} \\
\mathbf{S}_{\mathbf{1}}=0.657 \mathrm{~g} & \mathbf{S}_{\mathrm{M} 1}=0.986 \mathrm{~g} & \mathbf{S}_{\mathrm{D} 1}=0.657 \mathrm{~g}
\end{array}
$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For $P G A_{M}, T_{L}, C_{R 5^{\prime}}$ and $C_{R 1}$ values, please view the detailed report.

= $=10$ USS
 Design Maps Detailed Report

ASCE 7-10 Standard ($33.98417^{\circ} \mathrm{N}, 118.42733^{\circ} \mathrm{W}$)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 11.4.1 - Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{s}) and 1.3 (to obtain S_{1}). Maps in the 2010 ASCE-7 Standard are provided for Site Class B.

Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From Figure 22-1 ${ }^{[1]}$
$\mathrm{S}_{\mathrm{S}}=1.688 \mathrm{~g}$

From Figure 22-2 ${ }^{[2]}$
$\mathrm{S}_{1}=0.657 \mathrm{~g}$

Section 11.4.2 - Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3-1 Site Classification

Site Class	$\overline{\boldsymbol{v}}_{\mathbf{s}}$	$\overline{\boldsymbol{N}}$ or $\overline{\boldsymbol{N}}_{\mathbf{c h}}$	$\overline{\boldsymbol{s}}_{\mathbf{u}}$
A. Hard Rock	$>5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
B. Rock	2,500 to $5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
C. Very dense soil and soft rock	1,200 to $2,500 \mathrm{ft} / \mathrm{s}$	>50	$>2,000 \mathrm{psf}$
D. Stiff Soil	600 to $1,200 \mathrm{ft} / \mathrm{s}$	15 to 50	1,000 to $2,000 \mathrm{psf}$
E. Soft clay soil	$<600 \mathrm{ft} / \mathrm{s}$	<15	$<1,000 \mathrm{psf}$

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content $w \geq 40 \%$, and
- Undrained shear strength $\bar{s}_{u}<500$ psf
F. Soils requiring site response

See Section 20.3.1
analysis in accordance with Section
21.1

$$
\text { For } \mathrm{SI}: 1 \mathrm{ft} / \mathrm{s}=0.3048 \mathrm{~m} / \mathrm{s} 1 \mathrm{lb} / \mathrm{ft}^{2}=0.0479 \mathrm{kN} / \mathrm{m}^{2}
$$

Section 11.4.3 - Site Coefficients and Risk-Targeted Maximum Considered Earthquake ($M C E_{R}$) Spectral Response Acceleration Parameters

Table 11.4-1: Site Coefficient F_{a}

Site Class	Mapped MCE ${ }_{\mathrm{R}}$ Spectral Response Acceleration Parameter at Short Period				
	$\mathrm{S}_{\mathrm{s}} \leq 0.25$	$\mathrm{~S}_{\mathrm{S}}=0.50$	$\mathrm{~S}_{\mathrm{s}}=0.75$	$\mathrm{~S}_{\mathrm{S}}=1.00$	$\mathrm{~S}_{\mathrm{S}} \geq 1.25$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See Section 11.4 .7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of S_{s}

For Site Class $=D$ and $S_{s}=1.688 \mathrm{~g}, \mathrm{~F}_{\mathrm{a}}=1.000$
Table 11.4-2: Site Coefficient F_{v}

Site Class	Mapped MCE ${ }_{\mathrm{R}}$ Spectral Response Acceleration Parameter at 1-s Period				
	$\mathrm{S}_{1} \leq 0.10$	$\mathrm{~S}_{1}=0.20$	$\mathrm{~S}_{1}=0.30$	$\mathrm{~S}_{1}=0.40$	$\mathrm{~S}_{1} \geq 0.50$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	
F		See Section 11.4 .7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of S_{1}

For Site Class $=D$ and $S_{1}=0.657$ g, $F_{v}=1.500$

Equation (11.4-2):

$S_{M 1}=F_{v} S_{1}=1.500 \times 0.657=0.986 \mathrm{~g}$

Section 11.4.4 - Design Spectral Acceleration Parameters

Equation (11.4-3): $\quad \mathrm{S}_{\mathrm{DS}}=2 / 3 \mathrm{~S}_{\mathrm{MS}}=2 / 3 \times 1.688=1.125 \mathrm{~g}$

Equation (11.4-4): $\quad S_{D 1}=2 / 3 S_{M 1}=2 / 3 \times 0.986=0.657 \mathrm{~g}$

Section 11.4.5 - Design Response Spectrum

From Figure 22-12 ${ }^{[3]}$

$$
T_{L}=8 \text { seconds }
$$

Figure 11.4-1: Design Response Spectrum

Section 11.4.6 - Risk-Targeted Maximum Considered Earthquake ($\mathrm{MCE}_{\mathrm{R}}$) Response Spectrum

The $\mathrm{MCE}_{\mathrm{R}}$ Response Spectrum is determined by multiplying the design response spectrum above by 1.5 .

Section 11.8.3 - Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From Figure 22-7 ${ }^{[4]}$

$$
\text { PGA }=0.651
$$

Equation (11.8-1): $\quad P G G A_{M}=F_{P G A} P G A=1.000 \times 0.651=0.651 \mathrm{~g}$

Table 11.8-1: Site Coefficient $\mathrm{F}_{\text {PGA }}$

Site Class	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA				
	PGA ≤ 0.10	$\mathrm{PGA}=0.20$	$\mathrm{PGA}=0.30$	$\mathrm{PGA}=0.40$	$\mathrm{PGA} \geq 0.50$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	
F		See Section 11.4 .7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class $=\mathrm{D}$ and $P G A=0.651 \mathrm{~g}, \mathrm{~F}_{\mathrm{PGA}}=1.000$
Section 21.2.1.1 - Method 1 (from Chapter 21 - Site-Specific Ground Motion Procedures for Seismic Design)

From Figure 22-17 ${ }^{[5]}$
$C_{R S}=0.995$

From Figure 22-18 ${ }^{[6]}$
$C_{R 1}=0.998$

Section 11.6 - Seismic Design Category

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

VALUE OF S	RISK CATEGORY		
	I or II	III	IV
$\mathbf{S}_{\mathrm{DS}}<0.167 \mathrm{~g}$	A	A	A
$0.167 \mathrm{~g} \leq \mathbf{S}_{\mathrm{DS}}<0.33 \mathrm{~g}$	B	B	C
$0.33 \mathrm{~g} \leq \mathbf{S}_{\mathrm{DS}}<0.50 \mathrm{~g}$	C	C	D
$\mathbf{0 . 5 0 \mathrm { g } \leq S _ { \mathrm { DS } }}$	D	D	D

For Risk Category $=\mathrm{I}$ and $\mathrm{S}_{\mathrm{DS}}=1.125 \mathrm{~g}$, Seismic Design Category = D

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

VALUE OF S $_{\mathrm{D} 1}$	RISK CATEGORY		
	I or II	III	IV
$\mathrm{S}_{\mathrm{D} 1}<0.067 \mathrm{~g}$	A	A	A
$0.067 \mathrm{~g} \leq \mathrm{S}_{\mathrm{D} 1}<0.133 \mathrm{~g}$	B	B	C
$0.133 \mathrm{~g} \leq \mathrm{S}_{\mathrm{D} 1}<0.20 \mathrm{~g}$	C	C	D
$0.20 \mathrm{~g} \leq \mathrm{S}_{\mathrm{D} 1}$	D	D	D

For Risk Category $=\mathrm{I}$ and $\mathrm{S}_{\mathrm{D} 1}=0.657 \mathrm{~g}$, Seismic Design Category $=\mathrm{D}$
Note: When S_{1} is greater than or equal to 0.75 g , the Seismic Design Category is \mathbf{E} for buildings in Risk Categories I, II, and III, and \mathbf{F} for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or $11.6-2^{\prime \prime}=\mathrm{D}$

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-

7_Figure_22-1.pdf
2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-

7_Figure_22-12.pdf
4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-

7_Figure_22-7.pdf
5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf


```
* *
* EQFAULT *
* *
* Version 3.00 *
DETERMINISTIC ESTIMATION OF
PEAK ACCELERATION FROM DIGITIZED FAULTS
```

JOB NUMBER: 16-0107
DATE: 03-23-2016
JOB NAME: 12870 Panama Street
CALCULATION NAME: Test Run Analysis
FAULT-DATA-FILE NAME: CGSFLTE.DAT

SITE COORDINATES:
SITE LATITUDE: 33.9817
SITE LONGITUDE: 118.4273
SEARCH RADIUS: 100 mi
ATTENUATION RELATION: 1) Boors et al. (1997) Horiz. - NEHRP B (1070)
UNCERTAINTY (M=Median, S=Sigma): M Number of Sigmas: 0.0
DISTANCE MEASURE: cd_2drp
SCOND: 0
Basement Depth: 5.00 km Campbell SSR: Campbell SHR:
COMPUTE PEAK HORIZONTAL ACCELERATION
FAULT-DATA FILE USED: CGSFLTE.DAT

MINIMUM DEPTH VALUE (km): 0.0

Page 1

```
EQFAULT SUMMARY
```


DETERMINISTIC SITE PARAMETERS

Page 1

	APPROXI	MATE	ESTIMATED M	MAX. EARTHQ	Jake event
ABBREVIATED	DISTA	NCE	MAXIMUM	PEAK	EST. SITE
FAULT NAME		(km)	EARTHQUAKE	SITE	INTENSITY
			MAG. (Mw)	ACCEL. g	MOD. MERC.
NEWPORT-INGLEWOOD (L.A.Basin)	4.01	$6.4)$	7.1	0.273	IX
SANTA MONICA	4.61	7.4)	6.6	0.238	IX
malibu coast	$6.9($	11.1)	6.7	0.200	VIII
palos verdes	7.1 ($11.4)$	7.3	0.222	IX
HOLLYWOOD	7.1 (11.5)	6.4	0.167	VIII
PUENTE HILLS BLIND THRUST	9.1 (14.7)	7.1	0.206	VIII
UPPER ELYSIAN PARK BLIND THRUST	$11.7($	18.9)	6.4	0.119	VII
NORTHRIDGE (E. Oak Ridge)	$11.9($	19.1)	7.0	0.162	VIII
RAYMOND	15.2 ($24.4)$	6.5	0.104	VII
ANACAPA-DUME	15.3 ($24.6)$	7.5	0.176	VIII
VERDUGO	16.5 ($26.5)$	6.9	0.121	VII
SIERRA MADRE	20.9 ($33.6)$	7.2	0.119	VII
SIERRA MADRE (San Fernando)	21.1 ($34.0)$	6.7	0.090	VII
SANTA SUSANA	23.1 ($37.1)$	6.7	0.085	VII
WHITTIER	23.4 ($37.7)$	6.8	0.072	VII
SAN GABRIEL	24.7 ($39.8)$	7.2	0.086	VII
SIMI-SANTA ROSA	27.0 (43.4)	7.0	0.088	VII
HOLSER	27.9 ($44.9)$	6.5	0.066	VI
CLAMSHELL-SAWPIT	27.9 ($44.9)$	6.5	0.066	VI
OAK RIDGE (Onshore)	30.4 ($48.9)$	7.0	0.080	VII
SAN JOSE	30.8 ($49.6)$	6.4	0.058	VI
SAN JOAQUIN HILLS	34.5 ($55.6)$	6.6	0.059	VI
CHINO-CENTRAL AVE. (Elsinore)	35.5 ($57.2)$	6.7	0.061	VI
SAN CAYETANO	36.8 ($59.2)$	7.0	0.069	VI
NEWPORT-INGLEWOOD (Offshore)	39.9($64.2)$	7.1	0.056	VI
CUCAMONGA	40.8 ($65.6)$	6.9	0.061	VI
SAN ANDREAS - 1857 Rupture M-2a	43.2 ($69.6)$	7.8	0.077	VII
SAN ANDREAS - Mojave M-1c-3	43.2($69.6)$	7.4	0.062	VI
SAN ANDREAS - Whole M-1a	43.2 ($69.6)$	8.0	0.085	VII
SAN ANDREAS - Cho-Moj M-1b-1	43.2 ($69.6)$	7.8	0.077	VII
OAK RIDGE(Blind Thrust Offshore)	45.7 ($73.5)$	7.1	0.062	VI
ELSINORE (GLEN IVY)	46.1($74.2)$	6.8	0.043	VI
VENTURA - PITAS POINT	48.0 ($77.2)$	6.9	0.054	VI
CHANNEL IS. THRUST (Eastern)	48.0 ($77.3)$	7.5	0.073	VII
SANTA YNEZ (East)	48.7 ($78.3)$	7.1	0.048	VI
SAN ANDREAS - Carrizo M-1c-2	49.8($80.1)$	7.4	0.056	VI
OAK RIDGE MID-CHANNEL STRUCTURE	52.1 ($83.8)$	6.6	0.043	VI
M.RIDGE-ARROYO PARIDA-SANTA ANA	54.1 ($87.1)$	7.2	0.057	VI
SAN JACINTO-SAN BERNARDINO	55.7 (89.7)	6.7	0.035	V
RED MOUNTAIN	56.9(91.5)	7.0	0.049	VI

Page 2

16-0107-EQ.txt				
DETERMINISTIC SITE PARAMETERS				
Page 2				
		ESTIMATED MAX	MAX. EARTHQ	JAKE EVENT
ABBREVIATED FAULT NAME	$\begin{aligned} & \text { DISTANCE } \\ & \text { mi } \quad \text { (km) } \end{aligned}$	MAXIMUM EARTHQUAKE MAG. (MW)	$\begin{aligned} & \text { PEAK } \\ & \text { SITE } \\ & \text { ACCEL. } \mathrm{g} \end{aligned}$	EST. SITE INTENSITY MOD.MERC.
CORONADO BANK	57.0 (91.7)	7.6	0.056	VI
SAN ANDREAS - SB-Coach. M-1b-2	57.4 (92.3)	7.7	0.058	VI
SAN ANDREAS - San Bernardino M-1	57.4 (92.3)	7.5	0.053	VI
SAN ANDREAS - SB-Coach. M-2b	57.4 (92.3)	7.7	0.058	VI
CLEGHORN	59.7 (96.1)	6.5	0.030	V
SANTA CRUZ ISLAND	$62.3(100.3)$	7.0	0.046	VI
GARLOCK (West)	63.8 (102.7)	7.3	0.044	VI
PLEITO THRUST	$64.3(103.5)$	7.0	0.045	VI
ELSINORE (TEMECULA)	$66.1(106.4)$	6.8	0.033	V
BIG PINE	$66.2(106.6)$	6.9	0.034	V
SAN JACINTO-SAN JACINTO VALLEY	$68.5(110.2)$	6.9	0.033	V
NORTH FRONTAL FAULT ZONE (West)	$70.3(113.1)$	7.2	0.047	VI
NORTH CHANNEL SLOPE	$76.4(123.0)$	7.4	0.049	VI
SANTA YNEZ (West)	$77.4(124.6)$	7.1	0.034	V
WHITE WOLF	78.6 (126.5)	7.3	0.045	VI
ROSE CANYON	$82.6(133.0)$	7.2	0.034	V
HELENDALE - S. LOCKHARDT	84.1(135.4)	7.3	0.035	V
SANTA ROSA ISLAND	$84.8(136.5)$	7.1	0.038	V
SAN JACINTO-ANZA	88.1 (141.8)	7.2	0.032	V
ELSINORE (JULIAN)	91.2(146.7)	7.1	0.030	V
LENWOOD-LOCKHART-OLD WOMAN SPRGS	$92.3(148.6)$	7.5	0.036	V
GARLOCK (East)	92.9 (149.5)	7.5	0.036	V
NORTH FRONTAL FAULT ZONE (East)	94.1 (151.4)	6.7	0.029	V
PINTO MOUNTAIN	$97.9(157.6)$	7.2	0.030	V

```
-END OF SEARCH- }64\mathrm{ FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS.
THE NEWPORT-INGLEWOOD (L.A.Basin) FAULT IS CLOSEST TO THE SITE.
IT IS ABOUT 4.0 MILES (6.4 km) AWAY.
```

LARGEST MAXIMUM-EARTHQUAKE SITE ACCELERATION: 0.2731 g

Page 3

File: G:IGS16\GS16-0107_PanamalDesign _Analysis $\mid \sim$ Seismic Hazard Analysis. 12870 PANAMA.PSP Date modified: 05/31/2016 11:28:26 AM

Probabilistic Spectra results for EZ-FRISK 7.65 Build 004

ANNOAL FREQUENCY OF EXCEEDANCE: 4.041e-004
RETURN PERIOD: 2474.9
PROBABILITY OF EXCEEDENCE: 2.0\% IN 50.0 YEARS
Column 1: Spectral Period
Column 2: Acceleration (g) for: Mean
Column 3: Acceleration (g) for: Boore-Atkinson (2008) NGA USGS 2008
Column 4: Acceleration (g) for: Abrahamson-Silva (2008) NGA
Column 5: Acceleration (g) for: Campbell-Bozorgnia (2014) NGA West 2

1	2	3	4	5
PGA	$6.577 \mathrm{e}-001$	$7.096 \mathrm{e}-001$	$6.589 \mathrm{e}-001$	$5.964 \mathrm{e}-001$
0.05	$7.885 \mathrm{e}-001$	$8.624 \mathrm{e}-001$	$7.474 \mathrm{e}-001$	$7.534 \mathrm{e}-001$
0.1	$1.136 \mathrm{e}+000$	$1.234 \mathrm{e}+000$	$1.050 \mathrm{e}+000$	$1.115 \mathrm{e}+000$
0.2	$1.435 \mathrm{e}+000$	$1.582 \mathrm{e}+000$	$1.417 \mathrm{e}+000$	$1.286 \mathrm{e}+000$
0.3	$1.543 \mathrm{e}+000$	$1.632 \mathrm{e}+000$	$1.524 \mathrm{e}+000$	$1.468 \mathrm{e}+000$
0.4	$1.526 \mathrm{e}+000$	$1.521 \mathrm{e}+000$	$1.491 \mathrm{e}+000$	$1.566 \mathrm{e}+000$
0.5	$1.458 \mathrm{e}+000$	$1.423 \mathrm{e}+000$	$1.392 \mathrm{e}+000$	$1.554 \mathrm{e}+000$
0.75	$1.238 \mathrm{e}+000$	$1.183 \mathrm{e}+000$	$1.167 \mathrm{e}+000$	$1.359 \mathrm{e}+000$
1	$1.034 \mathrm{e}+000$	$9.199 \mathrm{e}-001$	$9.975 \mathrm{e}-001$	$1.164 \mathrm{e}+000$
2	$5.638 \mathrm{e}-001$	$4.941 \mathrm{e}-001$	$5.553 \mathrm{e}-001$	$6.409 \mathrm{e}-001$
3	$3.656 \mathrm{e}-001$	$3.189 \mathrm{e}-001$	$3.580 \mathrm{e}-001$	$4.191 \mathrm{e}-001$
4	$2.517 \mathrm{e}-001$	$2.233 \mathrm{e}-001$	$2.567 \mathrm{e}-001$	$2.745 \mathrm{e}-001$

File: G:IGS16 GS 16-0107_PanamalDesign Analysis \sim _Seismic Hazard Analysis. 12870 PANAMA.OUT Date modified: 05/31/201 $\overline{6} 11: 28: 25 \mathrm{AM}$
Uniform Hazard Spectra
Spectral Response @ 5\% Damping -Average Horizontal Component

		$\begin{aligned} & \text { Probablistic } \\ & \text { Spectrum, } \\ & \text { Abrahamson \& } \end{aligned}$$\text { Silva, } 2008$		$\left\|\begin{array}{c}\text { Probabisisic } \\ \text { Spectrum, Campbell } \\ \text { Bozorgnia, } 2014\end{array}\right\|$		$\begin{aligned} & \text { Average } \\ & \text { Probabistic } \\ & \text { Spectrum } \end{aligned}$					$\begin{gathered} \text { Rotatod } \\ \text { Maximum } \\ \text { Componont } \end{gathered}$		$\begin{array}{\|c\|c\|} \hline \text { Adjustod Averase } \\ \text { Probablistic } \\ \text { Spectrum } \end{array}$	
Period	Sa	Period	Sa	iod		Period	Sa	eriod		Sa	riod		Period	
ec)	(g)	(sec)	g)	(sec)	(g)	(sec)	(g)	(sec)		(g)	(sec)		(sec)	g)
0.01	0.71	0.0	0.66	0.01	0.60	0.0	0.65	0.0	0.99	0.6	0.0	. 21	0.0	0.79
0.05	0.86	0.05	0.75	. 05	0.75	0.05	0.79	0.05	0.98	0.7	0.05	1.20	0.05	0.93
0.10	1.23	0.10	1.05	0.10	1.12	0.1	1.13	0. 1	0.98	1.12	0.10	1.2	0.10	1.3
0.20	1.58	0.20	1.42	0.20	1.29	0.2	1.43	0.2	0.98	1.41	0.2	1.2	0.20	1.7
0.30	1.63	0.30	1.52	0.30	1.47	0.30	1.54	0.30	0.999	1.5	0.3	1.26	0.30	1.94
0.40	1.52	0.40	1.49	0.40	1.57	0.40	1.53	0.40	0.999	1.52	0.40	1.27	0.40	1.9
0.50	1.42	0.50	1.39	0.50	1.5	0.50	1.46	0.50	0.999	1.45	0.5	1.2	0.50	1.8
0.75	1.18	0.75	1.17	0.75	1.36	0.75	1.24	0.75	0.99	1.24	0.75	1.29	0.75	1.5
1.00	0.92	1.00	1.00	1.00	1.16	1.00	1.03	1.00	0.99	1.0	1.00	1.3	1.00	1.3
2.00	0.49	2.00	0.56	2.00	0.64	2.00	0.56	2.00	0.99	0.56	2.00	1.3	2.00	0.73
3.00	0.32	3.00	0.36	3.00	0.42	3.00	0.37	3.00	0.99	0.36	3.00	1.3	3.00	0.4
4.00	0.22	4.0	0.2	4.00	0.27	4.00	0.25	4	0.9	0.25	4.00	1.32	4.00	0.3

File: G:|GS16|GS16-0107_PanamalDesign_Analysis__Seismic Hazard Analysis. 12870 PANAMA.DSP Date modified: 05/31/2016 11:28:42 AM

Deterministic Spectra Results using EZ-FRISK 7.65 Build 004

Largest Amplitudes of Ground Motions Considering Sources Calculated with Boore-Atkinson (2008) NGA USGS 2008

Amplitude Units: Acceleration (g)

$\begin{gathered} \text { Fractile: } 0.84 \\ \text { Period } \end{gathered}$	Amplitude	Magnitude closest Distance (km)				Region		Controlling Source
PGA	9.290e-001	7.00	Mw	5.00	USGS	2008	California	California Gridded
0.05	$1.181 e+000$	7.00	Mw	5.00	UsGs	2008	California	California Gridded
0.1	$1.649 \mathrm{e}+000$	7.00	Mw	5.00	USGS	2008	California	California Gridded
0.2	$2.163 e+000$	7.00	NW	5.00	USGS	2008	California	California Gridded
0.3	$2.359 \mathrm{e}+000$	7.00	Mw	5.00	USGS	2008	California	California Gridded
0.4	$2.333 e+000$	7.00	Mw	5.00	USGS	2008	California	California Gridded
0.5	2.212e+000	7.00	Mw	5.00	USGS	2008	California	California Gridded
0.75	$1.857 e+000$	7.00	Mw	5.00	USGS	2008	California	California Gridded
1	1.374 e+000	7.00	Mw	5.00	USGS	2008	California	California Gridded
2	7.030e-001	7.00	Nw	5.00	USGS	2008	California	California Gridded
3	4.215e-001	7.00	Mw	5.00	USGS	2008	California	California Gridded
4	2.937e-001	7.00	Mw	5.00	USGS	2008	California	California Gridded

Largest Amplitudes of Ground Motions Considering Sources Calculated with Abrahamson-Silva (2008) NGA Amplitude Units: Acceleration (g)

Fractile: 0.84

| Period | Amplitude | MagnitudeClosest
 Distance(km) | Region | Controlling Source | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PGA | $7.888 e-001$ | 7.00 Mw | 5.00 | USGS 2008 California | California Gridded |
| 0.05 | $8.145 e-001$ | 7.00 MW | 5.00 | USGS 2008 California | California Gridded |
| 0.1 | $1.040 e+000$ | 7.00 MW | 5.00 | USGS 2008 California | California Gridded |
| 0.2 | $1.477 e+000$ | 7.00 MW | 5.00 | USGS 2008 California | California Gridded |
| 0.3 | $1.695 e+000$ | 7.00 Mw | 5.00 | USGS 2008 California | California Gridded |
| 0.4 | $1.730 e+000$ | 7.00 Mw | 5.00 | USGS 2008 California | California Gridded |

File: G: IGS16 GS16-0107 Panama\Design Analysis $1 \sim$ Seismic Hazard Analysis. 12870 PANAMA.DSP Date modified: 05/31/2016 11:28:42 AM

| 0.5 | $1.632 e+000$ | 7.00 Mw | 5.00 | USGS 2008 California | California Gridded |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.75 | $1.340 e+000$ | 7.00 Mw | 5.00 | USGS 2008 California | California Gridded |
| 1 | $1.096 e+000$ | 7.00 Mw | 5.00 | USGS 2008 California | California Gridded |
| 2 | $6.318 e-001$ | 7.40 Mw | 6.13 | USGS 2008 California | Santa Monica |
| 3 | $4.118 e-001$ | 7.40 Mw | 6.13 | USGS 2008 California | Santa Monica |
| 4 | $2.987 e-001$ | 7.50 Mw | 5.88 | USGS 2008 California | Newport-Inglewood |

Largest Amplitudes of Ground Motions Considering Sources Calculated with Campbell-Bozorgnia (2014)
NGA West 2

Largest Amplitudes of Ground Motions for Each Source

```
Source: So Sierra Nevada
Region: USGS 2008 California
    Closest Distance: 150.31 km
    Amplitude Units: Acceleration (g)
    Magnitude: 7.50 Mw
    Fractile: 0.84
    Column 1: Spectral Period
    Column 2: Acceleration (g) for: Weighted Mean of Attenuation Equations
    Column 3: Acceleration (g) for: BOOre-Atkinson (2008) NGA USGS 2008
```

1	2	3
PGA	$5.291 e-002$	$5.291 e-002$
0.05	$5.895 e-002$	$5.895 e-002$
0.1	$7.508 e-002$	$7.508 e-002$
0.2	$1.048 e-001$	$1.048 e-001$
0.3	$1.210 e-001$	$1.210 e-001$
0.4	$1.256 e-001$	$1.256 e-001$
0.5	$1.282 e-001$	$1.282 e-001$
0.75	$1.086 e-001$	$1.086 e-001$
1	$9.044 e-002$	$9.044 e-002$
2	$5.306 e-002$	$5.306 e-002$
3	$3.456 e-002$	$3.456 e-002$
4	$2.587 e-002$	$2.587 e-002$

File: G:GSS16|GS16-0107_PanamaLDesign Analysis \sim _Seismic Hazard Analysis. 12870 PANAMA.OUT Date modified: 05/31/2016 11:28:25 AM

Site Specific Spectrum, ASCE 7-10, Chapter 21

APPENDIX E

Earth Pressure Analyses

EARTH PRESSURE DISTRIBUTION OF RETAINING WALL

Restrained (Non-Yielding) Wall

SURCHARGE, q (psf)

$0.45 \mathrm{q} \quad 42 \times \mathrm{H}$ (psf)

Seismic Earth Pressure Calculations

$$
\begin{array}{rll}
\gamma= & 125.0 & \mathrm{pcf} \\
\mathrm{~S}_{\mathrm{DS}} & =1.130 & \mathrm{~g} \\
\mathrm{PGA}=\mathrm{S}_{\mathrm{DS}} / 2.5= & 0.45 & \mathrm{~g} \\
\mathrm{k}_{\mathrm{h}}=\mathrm{PGA} 2= & 0.23 & \left(\mathrm{k}_{\mathrm{h}}>=0.15\right) \\
\Delta \mathrm{P}_{\mathrm{AE}}=3 / 8 \mathrm{k}_{\mathrm{h}} \gamma \mathrm{H}^{2}= & 10.6 & \mathrm{H}^{2}(\mathrm{lb}) \\
\Delta \mathrm{P}_{\mathrm{E}}=\mathrm{k}_{\mathrm{h}} \gamma \mathrm{H}^{2}= & 28.3 & \mathrm{H}^{2}(\mathrm{lb})
\end{array}
$$

Reference: 1. FEMA 369 commentary Part 2 (2000)
2. NEHRP Workshop (2006)

GEOSYSTEMS,Inc. ENVIRONMENTAL, ENGINEERING-GEOLOGY AND GEOTECHNICAL ENGINEERINC 1545 VICTORY BLVD., 2ND FLR., GLENDALE, CA $91201-9240$	EARTH PRESSURE DISTRIBUTION STATIC \& SEISMIC LOADS 12870 Panama Street Los Angeles, California			
	DATE: June, 2016	GS 16-107	PLATE	

Active Pressure Analysis: Search for Maximum Value (Vector Method)

Height of wall, $\mathrm{H}=$	10.0	feet			
Angle of back slope, $\beta=$	0.0	degrees			
Surcharge, q =	0.0	psf			
Soil parameters					
Unit weight $\gamma(\mathrm{pcf})$	Cohesion C (psf)	Friction angle ϕ (deg)	Factor of Safety, F.S.	Design Cohesion C_{d} (psf)	Design Friction angle ϕ_{d} (deg)
125.0	150.0	23.0	1.50	100.0	15.8

Failure plane angle (deg)	Tension crack (ft)	Failure plane length (ft)	Weight of soil wedge (lb/ft)	Active Force $(\mathrm{lb} / \mathrm{ft})$	EFP (pcf)
40	3.0	10.9	6778.1	1897.3	37.9
41	3.0	10.7	6542.7	1944.0	38.9
42	3.0	10.5	6316.6	1986.2	39.7
43	3.0	10.3	6099.1	2024.0	40.5
44	3.0	10.1	5889.6	2057.7	41.2
45	3.0	9.9	5687.5	2087.3	41.7
46	3.0	9.7	5492.4	2113.2	42.3
47	3.0	9.6	5303.7	2135.3	42.7
48	3.0	9.4	5121.0	2153.7	43.1
49	3.0	9.3	4944.1	2168.7	43.4
50	3.0	9.1	4772.4	2180.2	43.6
51	3.0	9.0	4605.6	2188.2	43.8
52	3.0	8.9	4443.6	2192.9	43.9
53	3.0	8.8	4285.8	2194.3	43.9
54	3.0	8.7	4132.2	2192.2	43.8
55	3.0	8.5	3982.4	2186.9	43.7
56	3.0	8.4	3836.3	2178.1	43.6
57	3.0	8.3	3693.5	2166.0	43.3
58	3.0	8.3	3553.9	2150.3	43.0
59	3.0	8.2	3417.4	2131.1	42.6
60	3.0	8.1	3283.7	2108.3	42.2
61	3.0	8.0	3152.6	2081.7	41.6
62	3.0	7.9	3024.1	2051.3	41.0
63	3.0	7.9	2897.9	2016.8	40.3
64	3.0	7.8	2774.0	1978.2	39.6
65	3.0	7.7	2652.1	1935.1	38.7
66	3.0	7.7	2532.2	1887.4	37.7
67	3.0	7.6	2414.2	1834.9	36.7
68	3.0	7.5	2297.9	1777.1	35.5
69	3.0	7.5	2183.2	1713.9	34.3
70	3.0	7.4	2070.1	1644.8	32.9

GEOSYSTEMS, Inc. ENVIRONMENTAL, ENGINEERING-GEOLOGY AND GEOTECHNICAL ENGINEERING 1545 VICTORY BLVD., 2ND FLR., GLENDALE, CA 91201-9240	12870 Panama Street Los Angeles, California			
18-500-9533 FAX 818-500-0134	DATE: Mar., 2016	GS 16-0107	PLATE	RW-1

Active Pressure Analysis: Search for Maximum Value (Vector Method)

Height of wall, H	$=$	10.0
feet		
Angle of back slope, $\beta=$	0.0	degrees
Surcharge, q	$=$	0.0

Soil parameters

Unit weight $\gamma(\mathrm{pcf})$	Cohesion $\mathrm{C}(\mathrm{psf})$	Friction angle $\phi(\mathrm{deg})$	Factor of Safety, F.S.	Design Cohesion $\mathrm{C}_{\mathrm{d}}(\mathrm{psf})$	Design Friction angle (deg)
125.0	150.0	23.0	1.25	120.0	18.8

Failure plane angle (deg)	Tension crack (ft)	Failure plane length (ft)	Weight of soil wedge (lb/ft)	Active Force (lb/ft)	EFP (pcf)
40	3.0	10.9	6778.1	1307.4	26.1
41	3.0	10.7	6542.7	1366.0	27.3
42	3.0	10.5	6316.6	1419.3	28.4
43	3.0	10.3	6099.1	1467.5	29.4
44	3.0	10.1	5889.6	1511.0	30.2
45	3.0	9.9	5687.5	1549.8	31.0
46	3.0	9.7	5492.4	1584.3	31.7
47	3.0	9.6	5303.7	1614.5	32.3
48	3.0	9.4	5121.0	1640.5	32.8
49	3.0	9.3	4944.1	1662.6	33.3
50	3.0	9.1	4772.4	1680.8	33.6
51	3.0	9.0	4605.6	1695.1	33.9
52	3.0	8.9	4443.6	1705.7	34.1
53	3.0	8.8	4285.8	1712.6	34.3
54	3.0	8.7	4132.2	1715.9	34.3
55	3.0	8.5	3982.4	1715.4	34.3
56	3.0	8.4	3836.3	1711.3	34.2
57	3.0	8.3	3693.5	1703.5	34.1
58	3.0	8.3	3553.9	1692.0	33.8
59	3.0	8.2	3417.4	1676.7	33.5
60	3.0	8.1	3283.7	1657.6	33.2
61	3.0	8.0	3152.6	1634.6	32.7
62	3.0	7.9	3024.1	1607.5	32.1
63	3.0	7.9	2897.9	1576.3	31.5
64	3.0	7.8	2774.0	1540.8	30.8
65	3.0	7.7	2652.1	1500.8	30.0
66	3.0	7.7	2532.2	1456.2	29.1
67	3.0	7.6	2414.2	1406.8	28.1
68	3.0	7.5	2297.9	1352.2	27.0
69	3.0	7.5	2183.2	1292.2	25.8
70	3.0	7.4	2070.1	1226.6	24.5

GEOSYSTENMS, Inc. EMVIRONMENTAL, ENGINEERING-GEOLOOY and geotechnical. engineering 1545 VICTORY BLVO., 2ND FLR., GLENDALE, CA 91201-9240 PHONE 818-500-9533 FAX 818-500-0134	ACTIVE PRESSURE ANALYSIS 12870 Panama Street Los Angeles, California			
	DATE: Mar., 2016	GS 16-0107	PLATE	RW-2

SLOT CUT ANALYSIS

Height of Slot cut, $\mathrm{H}=$
5 ft
Width of Slot cut, $\mathrm{X}=$
8 ft Surcharge, $q=\quad 0.5 \mathrm{kips} / \mathrm{ft}$

Unit weight of soil, $\gamma=\quad 125 \mathrm{pcf}$ Friction angle of soil, $\phi=\quad 23$ degrees Cohesion of soil, C = 150 psf
Angle of Influence, $\phi_{i}=\quad 56.5$ degrees
Length of Failure surface, $\mathrm{L}=\quad 6.0 \mathrm{ft}$
Depth of Centroid from surface, $\mathrm{d}=1.7 \mathrm{ft}$

1) FORCES ALONG BEDDING FOR UNIT WIDTH (Base of Wedge)

Area of Failure, $\mathrm{A}=$	$8.3 \mathrm{tt}^{2}$
Weight $\mathrm{W}=$	$1.0 \mathrm{kips} / \mathrm{ft}$
$\mathrm{W}+\mathrm{q}=$	$1.5 \mathrm{kips} / \mathrm{ft}$
Tangent Force, $\mathrm{F}_{\mathrm{T}}=$	$1.3 \mathrm{kips} / \mathrm{ft}$
Normal Force, $\mathrm{F}_{\mathrm{N}}=$	$0.8 \mathrm{kips} / \mathrm{ft}$
$\mathrm{R}=\mathrm{F}_{\mathrm{N}} \tan \phi+\mathrm{L} \times \mathrm{C}=$	$1.3 \mathrm{kips} / \mathrm{ft}$

2) RESISTING FORCES ALONG SIDES OF WEDGE

Area in X-section, $\mathrm{A}_{\mathrm{s}}=\quad 8.3 \mathrm{ft}^{2}$
Average Intergranular stress, $\tau=203.9$ psf

$$
\mathrm{R}_{\mathrm{s}}=2 \tau \mathrm{~A}_{\mathrm{s}}=\quad 3.4 \mathrm{kips}
$$

3) FACTOR OF SAFETY

$$
\text { F. S. }=\left(R X+R_{s}\right) /\left(F_{T} X\right)=\quad 1.3>1.25 \quad \text { O.K. }
$$

SLOT CUT ANALYSIS

12870 Panama Street

Los Angeles, California

12870 Panama Street			
Los Angeles, California			
DATE: June, 2016	GS 16-0107	PLATE	SC-1

CONFINED BACKFILL AND SUBDRAIN OPTIONS FOR RETAINING WALLS (Space between back of wall and face of excavation is less than 24-inches)

*Retaining wall plans should be reviewed and approved by the geotechnical engineer.
*These details apply only to retaining walls not surcharged by adjacent structures or adverse geology. See text of report for specific backfill recommendations if these conditions exist.
*Walls over 12 feet in height ore subject to a special review by the geotechnical engineer and modifications to the above requirements may be necessary (see text of report).
*Waterproofing should be provided where moisture intrusion through the wall is undesirable.
*Waterproofing of the walls is not under purview of the geotechnical engineer or geologist.
*All drains should have a gradient of 1 percent minimum.
*Outlet portion of the subdrain should have a 4 -inch diameter solid pipe discharged into a suitable disposal area designed by the project engineer. The subdrain pipe should be accessible for maintenance (rodding) and must remain clear at all times.
*Other subdrain/backfill options are subject to the review by the geotechnical engineer and modification of design parameters.
*Additional or revised backfilling and compaction procedures may be required by the local governing agency.
NOTES:

1) The following plastic subdrain pipes are acceptable. All pipe should be SDR35:
a. Acrylonitrile Butadiene Styrene (ABS): ASTM D2661, D2680 and D2751;
b. Polyvinyl Chloride (PVC): ASTM D2665, D2729, D3033 and D3034;
c. Polyethylene (PE): ASTM D2239, D3035 and F810.

Pipe should be installed with perforations down. Perforations should be $3 / 8$ inch in diameter placed at the ends of a 120-degree arc in two rows at 3 -inch on center (staggered).
2) Weepholes should be 3 -inch minimum diameter and provided at 10 -foot maximum intervals. If exposure is permitted, weepholes should be located 12 -inches above finished grade. If exposure is not permitted, such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk discharging through the curb face or equivalent should be provided. For a basement-type wall, a proper subdrain outlet system should be provided.
3) All gravel or Class 2 Filter Material should be compacted at every 2 -feet of vertical elevation rise using vibratory compaction equipment. All placement and compaction of backfill should be observed and verified by our field representative.
4) Gradation: Caltrans Class 2 Filter Permeable Material Gradation

Sieve Size	Percent Possing
1^{n}	100
$3 / 4^{n}$	$90-100$
$3 / 8^{n}$	$40-100$
No. 4	$25-40$
No. 8	$18-33$
No. 30	$5-15$
No. 50	$0-7$
No. 200	$0-3$

ENVIRONMENTAL, ENGINEERING GEOLOGY AND GEOTECHNICAL ENGINEERING

45 Victory Blvd., 2nd Floor, Glendale, CA 91201
PHONE 818-500-9533 FAX 818-500-0134

UNCONFINED BACKFILL AND SUBDRAIN OPTIONS FOR RETAINING WALLS (Space between back of wall and face of excavation is greater than 24-inches)

* wall design (and height of freeboard) must take into account minimum 2\% gradient of v-drain.
- height of freeboard equal to distonce " A " (plus thickness of v-drain), not " B ".

GENERAL NOTES:

*Retaining wall plans should be reviewed and approved by the geotechnical engineer.
*These details apply only to retaining walls not surcharged by adjacent structures or adverse geology. See text of report for specific backfill recommendations if these conditions exist.
*Walls over 12 feet in height ore subject to a special review by the geotechnical engineer and modifications to the above requirements may be necessary (see text of report).
*Waterproofing should be provided where moisture intrusion through the wall is undesirable.
*Waterproofing of the walls is not under purview of the geotechnical engineer or geologist.
*All drains should have a gradient of 1 percent minimum.
*Outlet portion of the subdrain should have a 4 -inch diameter solid pipe discharged into a suitable disposal area designed by the project engineer. The subdrain pipe should be aceessible for maintenance (rodding) and must remain clear at all times.
*Other subdrain/backfill options are subject to the review by the geotechnical engineer and modification of design parameters.
*Additional or revised backfilling and compaction procedures may be required by the local governing agency.

NOTES:

1) The following plastic subdrain pipes are acceptable. All pipe should be SDR35:
a. Acrylonitrile Butadiene Styrene (ABS): ASTM D2661, D2680 and D2751;
b. Polyvinyl Chloride (PVC): ASTM D2665, D2729, D3033 and D3034;
c. Polyethylene (PE): ASTM D2239, D3035 and F810.

Pipe should be installed with perforations down. Perforations should be $3 / 8$ inch in diameter placed at the ends of a 120 -degree arc in two rows at 3 -inch on center (staggered).
2) Weepholes should be 3 -inch minimum diameter and provided at 10 -foot maximum intervals. If exposure is permitted, weepholes should be located 12 -inches above finished grade. If exposure is not permitted, such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk discharging through the curb face or equivalent should be provided. For a basement-type wall, a proper subdrain outlet system should be provided.
3) All gravel or Class 2 Filter Material should be compacted at every 2 -feet of vertical elevation rise using vibratory compaction equipment. All placement and compaction of backfill should be observed and verified by our field representative.

FIGURE 15
Typical Foundation Drainage and Waterproofing

TYPICAL FOUNDATION DRAINAGE \& WATERPROOFING

MINIMUM RECOMMENDATIONS FOR INTERIOR FLOOR SLAB \& FOUNDATION DESIGN*

Expansion Index	$\frac{\text { Very Low }}{0-20}$	$\frac{\text { Low }}{21-50}$	$\frac{\text { Medium }}{51-90}$	$\frac{\text { High }}{91-130}$
Plastic Index	0-10	10-15	15-25	25-35
Footing Width 1 story 2 story	$\begin{aligned} & 12^{\prime \prime} \\ & 12^{\prime \prime} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & 15^{\prime \prime} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & 15^{\prime \prime} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & 15^{\prime \prime} \end{aligned}$
Exterior Footing Depth 1 story 2 story	$\begin{aligned} & 12^{\prime \prime} \\ & 18^{\prime \prime} \end{aligned}$	$\begin{aligned} & 15^{\prime \prime} \\ & 18^{\prime \prime} \end{aligned}$	$\begin{aligned} & 21^{\prime \prime} \\ & 24^{\prime \prime} \end{aligned}$	$\begin{aligned} & 27^{\prime \prime} \\ & 30^{\prime \prime} \end{aligned}$
Interior Footing Depth 1 story 2 story	$\begin{aligned} & 12^{\prime \prime} \\ & 18^{\prime \prime} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & 18^{\prime \prime} \end{aligned}$	$\begin{aligned} & 15^{\prime \prime} \\ & 21^{\prime \prime} \end{aligned}$	$\begin{aligned} & 18^{\prime \prime} \\ & 24^{\prime \prime} \end{aligned}$
Footing Reinforcement	$\begin{aligned} & \text { 4-\#4 rebar } \\ & 2 \text { top } \\ & 2 \text { bottom } \end{aligned}$	$\begin{aligned} & \text { 4-\#4 rebar } \\ & 2 \text { top } \\ & 2 \text { bottom } \end{aligned}$	$\begin{aligned} & \text { 4-\#4 rebar } \\ & 2 \text { top } \\ & 2 \text { bottom } \end{aligned}$	$\begin{aligned} & \text { 4-\#4 rebar } \\ & 2 \text { top } \\ & 2 \text { bottom } \end{aligned}$
Slab Thickness (3)	4 " nominal	4 " nominal	$4^{\prime \prime}$ nominal	$4^{\prime \prime}$ actual
Slab Reinforcement	\#4 rebar on $16^{\prime \prime}$ centers each way	\#4 rebar on 16 " centers each way	\#4 rebar on 16 " centers each way	\#4 rebar on 16 " centers each way
Moisture Barrier (2)	10 mil visqueen sandwiched within $3^{\prime \prime}$ of sand	10 mil visqueen sandwiched within 3 " of sand	10 mil visqueen sandwiched within 3" of sand	10 mil visqueen sandwiched within 3 " of sand
Garage Floor Slab Reinforcement	\#4 rebar on $16^{\prime \prime}$ centers each way	\#4 rebar on 16 " centers each way	\#4 rebar on 16 " centers each way	\#4 rebar on 16 " centers each way
Grade Beam at Garage Entrance	not required	not required	same as adjacent exterior footing	same as adjacent exterior footing
Subgrade	4" thick coarse aggregate (4)	4" thick coarse aggregate (4)	$4^{\prime \prime}$ thick coarse aggregate (4)	6 " thick coarse aggregate (4)
Pre-saturation	optional	110% of opt. m / c to depth of 6 " below subgrade (no testing req.'d)	120% of opt. m / c to depth of $6 "$ below subgrade (testing req.'d)	130% of opt. m/c to depth of $6^{\prime \prime}$ below subgrade (testing req.'d)

* All recommendations presented in the text of this report which are in addition to or more restrictive than the minimum recommendations presented on this Plate should be incorporated into the construction plans.

Notes: (1) The surrounding areas should be graded so as to ensure drainage away from the building.
(2) The 10 mil visqueen should be properly lapped, sealed, and protected within $3^{\prime \prime}$ of sand.
(3) Any quatering of slab should be accomplished by the use of pre-molded expansion joint material, not by saw cutting.
(4) $3 / 4^{\prime \prime}$ coarse aggregate (Caltrans Class II permeable material or equivalent) compacted to the equivalent of 95 percent relative compaction to act as a capillary break.

PLATE EI-1

[^0]: Settlement of Unsaturated Sands=0.000 in.
 (N1) 60 s is converted from qc1 and after fines correction $d s z$ is per each segment, $d z=0.05 \mathrm{ft}$
 dsp is per each print interval, $d p=0.50 \mathrm{ft}$

